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Abstract

A general method recently developed to establish the conditions
for the existence of similarity solutions of the Fokker-Planck—
Smoluchowsky equation is applied to the 1-dimensional advection-
diffusion equation in the form

% - 2 (r(x)p + D(x)2D).

dt 1) 4 o) 4

The case of power-law behaviour of the coefficient functions
R(X), D(x) 1is investigated in detail and few classes of similarity
solutions are presented. In addition, a class of functions R(x), D(x)
is identified such that the general method, based on the invariance
under continuous group of transformations, is equivalent to a

generalized scale transformation of the space and time variables.



The starting point of the present investigation is the work
exposed in Ref. [1], in which the authors, starting from the general
theory of continuous group of transformations [2], establish the
condition that the diffusion coefficient D(x) has to fulfill in order
the equation

E = 8_ D(X)E

ot ()4 0X

to admit similarity solutions.

They suggest that such a condition should be checked case by case
providing a quick answer whether or not the specific problem one has

to solve admits a solution in similarity form.

In the present investigation we just adopt such a philosophy and
extend it to the more general case of a 1-dimensional advection—
diffusion equation:

22 -5 (r(x)P + D(x)%E) (1)

ot ox ()4

which has applications in many fields of physics.

This paper is organized as follows: in Section 1 we derive the
general equation that R(x) and D(x) have to fulfill in order the
eq. (1) to admit similarity solutions. In Section 2 an application to
the case R(x)=xP+\xS, D(x)=x9 is made and the corresponding
solutions briefly discussed. Finally, in Section 3 we give a quantita-
tive insight into the effective capabilities of the similarity method
to yield solutions which could not have been obtained with less
sophisticated methods, like generalized scale transformation of the

original space and time variables.



1. GENERAL THEORY

Following Ref. [1], we look for a couple of functions R(x), D(x)

such that the eq. (1), regarded as a form

is invariant under the continuous group of transformations

X* = X + 5(x,t)e (3)
t* =t + g(t)e (4)
P* = P + n(x,t,P)e (5)

£ being the parameter and £,t,n the infinitesimals of the group.

Once the coefficients a(x),b(x),c(x) are appropriately identified
in terms of R(x) and D(x), the invariance condition w=w*, leads to the

following set of differential equations:

Dfyy + (R+D')fx + ER" + R'% - £ = 0 (6)
D(2fx-Exx) + (R'4D")E + (RD')(1-Ex) + £ = 0 (7)
D'E + D(1-284) = 0 (8)

where prime denotes the d/dx and dot the d/dt operators respectively

and we have chosen n(x,t,P) = f(x,t)pP.

From the solution of egs (6-8), one can obtain the three unkown
functions g,v,f and thus deduce the form of the similarity solution by

integrating the characteristic equations

& _de_dP (9)



The system of equations (6-8) is better handled by introducing a
new variable, z, defined by z(x) = | dx'//D(x'). After some algebra

one obtains:

£ =222y (10)
2
"T22 - 27 - b(z)% - 8f, = 0 (11)
£f=-"22 -2 H(z) + f4(t) (12)
8 8
where:
D 2R
H(z) = z(-=& + =) (13)
D YD
b(z) = Hyy + ' HH, - 42(82), - 8(Re) (14)
2z YD YD

and f,(t) is an arbitrary function.

Any choice of R(x) and D(x) which make it possible to satisfy

eq. (11), will lead to a class of similarity solutions.

Egs (10), (14) represent the direct generalization of those given

in Ref. [1] to which they are easily seen to reduce by letting R -+ 0.

2. APPLICATION TO POWER-LAW DRAG AND DIFFUSION

As an example, we apply the general procedure to the case of
power-law drag and diffusion
R(x) = xP + xS (15)

D(x) = x9 (16)



where p,q,s,\ are real and AxS is meant to model the coupling of the
system with the exterior. This choice is computationally quite comfor-
table and at the same time representative from the physical point of

view,

As few examples we can cite the case s=p=1, g=0 which corresponds
to the familiar Brownian motion with friction (Ornstein-Uhlenbeck
process) [3] or the case p=-2, s=0, g=-3 which can model the behaviour
of fast electrons in a hot plasma in presence of a d.c. electric field
[4]. In a different context, with the choice s=p=1/,, g="/3 one can

describe the turbulent two-particle diffusion in configuration space

[5].

After some lengthy but staightforward algebra, three classes of
similarity solutions can be identified:
I)A=0;p=1,2-g> 0
x2q

(2-9)=

One has: P(x,t) = const. 1'1/2'q exp (- ) (17)

with T(t) = 1 - exp (=(2-q)t). (18)

This class is immediately recognized to be a sort of generalized
brownian motion with friction (g=0 corresponds to the classical case) .
As the parameter 2-q becomes more and more positive the particle popu-
lation is correspondingly flatter around the origin where diffusion
overwhelms the drag effects (see Fig. 1) and depressed for large
values of x, where just the opposite tendence occurs. The separation
value, Xg, between these two regions is approximately given by

Xg = (2-q)1/2-9 7(t)1/2-q,



For 2-q < 0 the diffusion is completely dominated by the drag
effects for x < xg, and P(x,t) gets squeezed around the origin where
it develops a singularity which corresponds to the absence of a steady

state.

II) p=s=1; (A1)(2=q) > 0

x2—9

T

We have: P(x,t) = const. ;1/2-q exp [ ~( / 2=q)(A+1) ] (19)

T(t) = 1 - exp (=(A+1) (2-q)t) (20)

This class is essentially the same as the previous one. The only
reason why we keep it distinguished is the occurence of physically

acceptable solutions also for q > 2.

These solutions correspond to A+1 < 0, that is the drag term
"pushing" away from the origin, so that the squeezing effect Ijust
discussed is no longer effective. On the contrary, the particles tend

to accumulate to infinity, 1imx+m P(x,t) = const., so that these solu-

tions are acceptable only in a finite space.

III) p=1; s=g-1; 2-9g> 0

x%—q

(2-9)t

We have: P(x,t) = const. T—1/2—q(x/r1/2-q)—x exp (- ) (21)

T(t) = 1 - exp (=(2-q)t) (22)



The new feature is the presence of the factor (x/7l/2-d)-A
which stems from the competition between the "internal drag, Rint =

xP, and the external one, Rext = axa-l,

If A\ > 0, we have once more a singular behaviour around x=0,
which results from the squeezing effect already discussed. For A < 0,
P(x,t) exhibits a humped shape (Fig. 2) since Rext prevails for

small x and is overbalanced by Rint for large x (remember that g-1 <
1).

The separation value, xorit, is determined by the condition
Rint = Rextr, that is =xopjp = |x| 1/2-4,  since it is the
dragging action which prevails for large x, no runaway phenomenon [6 ]

occurs.,

3. DISCUSSION

The three classes of similarity solutions we have just discussed
have been presented with the main purpose of illustrating an applica-
tion of the general procedure outlined in Section 1. Now, independent-
ly from their physical relevance, one can notice that they exhibit an
important common feature on the mathematical ground. In fact, all of

them can be written in the form
P(x,t) = t(t)@ N(xtP) a,b reals (23)

which means that they can be obtained by a generalized scale trans—

formation:
t > T(t) (24)
X > n = xP (25)
P = (1)aN(n) (26)



A guestion arises quite naturally up to which extent the general
method is really needed to give more than what one could achieve with
a bit of skill and "feeling" in selecting the right ansatz for its

particular problem.

To answer this question, at least partially, let us come back to
the general equations (9)-(14). Integrating the first of eqg. (9) we

obtain

z = t1/2 const. (27)

which yields the form of the natural variable: n = zv=1/2, To obtain
the form of the solution with respect to the ignorable variable 1, we
integrate the second of eq. (9) along a characteristic line
(n=const.):

dt

P = N(n) exp | (£/7)
h=const. T

(28)

where N is an arbitrary function.

The eq. (28) tells us that the most general similarity solution

of eq. (1) takes the form:

P(x,t) N(n) T(t,n) (29)

where T(<,n)

P £=constff/€) é%

which corresponds to a generalized separation of the natural and
ignorable variables n and t. The trivial solutions, eq. (23), are then
just a special case of eq. (29) which occurs whenever f is propor-
tional to 1 through a constant. To see under which circumstances this

can happen, let us go back to eq. (11).



By inspecting this equation, we realize that in order to fulfill
it without letting t=0 (which would correspond to the usual method of
separation of variables, [1]), we must require:

b(z) = Hy, +.51 HHy — 42(Ry/VD)z - 8(Ry//D) = by + b,z? (30)
z

with by, by > 0 constants. Eq. (11) then splits into

ere 14

T - byt = 0 (31)

-2% - byt ~ 8f, = 0 (32)
From eq. (31), we get, after rejecting the growing exponential

©(t) = (rp—1e)exp (=Vbyt) + 14 ; Tgr To arb. constants (33)
and from eq. (32)

1 by

folt) = - —1 - 57+ fo 7 fo arb. constant (34)

We are now in condition to calculate f/t, which reads

. 1 by 1 Yoy
f = -— 4+ — | - —H(2) + = 35
/T [(4 8/b2) 5 H(z) 8z] (35)

where we have chosen £, such that f_ + bgty/8 = 0.

The condition for obtaining a "trivial" solution, f/€ = const.,

therefore reads

H(z) = Vb, z2 + hy , hy arb. constant (36)
Inserting this expression in the eq. (30), we have

G(z) = 4z(Ry/YD) + 8 Ry/Y/D = (2+hg)vby-by = const. (37)

These two equations have to be fulfilled independently in order

for a similarity solution to exist and being of trivial type.
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The question concerning the real power of the general method can
now be reformulated by asking which ones of the solutions of ed. (29)
do also satisfy eq. (36) and (37). This question goes beyond the scope

of the present work, here we only want to notice that:

"If the functions R(x), D(x) are such that under the transforma-

tion x » z = [ dx'//D(x') they take the form R(z)

z¥, D(z) = A,
with r and 4 real, then no similarity solutions of eq. (28) exist

other than the "trivial" ones defined by the condition d=2r-2",

This assertion is easily proven by observing that with the choice
d=2r-2, which is imposed by eqg. (30), eq. (36) and (37) are also
fulfilled.

Two relevant classes of functions R(x), D(x) which fall within
the range of validity of our assertion are easily identified. The
first class is of course that of powers R(x) = xP, D(x) = x9 which
has already been investigated in detail. The second class is that of
exponentials R(x) = exp(px), D(x) = exp(ax) which also bears a certain

physical interest.

IV. CONCLUSION

The formalism developed in Ref. [ 1] has been extended to the case

of the 1-dimensional advection-diffusion equation

219

=% (R(x) + D(x) oP ).
0x ox

As an application we have studied the case of power-law dependence of

R(x) and D(x) and exhibited few classes of similarity solutions.
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Conditions have been given under which the results yielded by the
transformation group method are not obtainable with more elementary

techniques.
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