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Abstract

ADLER (Anomalous Doppler Lausanne Electron Runaway), a 2-D+2-D
finite element code recently developed at CRPP, Lausanne, is
presented. This code is designed to investigate problems associated
with lower-hybrid current drive. The basic structure of the code,
including its convergence properties, is briefly illustrated together
with some problems related to the discretization of the time variable,

which arise in a long-time evolution.



Introduction

The remarkable progress recently made in the domain of lower
hybrid current drive has provided a considerable impetus on the devel-
opment of theoretical models describing the behaviour of the plasma
under the effect of rf power and electric field [1]. Although a quali-
tative comprehension can be obtained with semi-analytical methods, it
is nonetheless very important to try to parallel the experimental
progress with a corresponding improvement of the numerical tools.

In this paper, we describe our new 2-D+2-D quasilinear code ADLER
that simultaneously evolves the electron distribution Ffunction
£(vy, vy (t) and the wave spectral distribution Wik, k.l. (£t) both in
two dimensions.

Basic Equations

ADLER is devised to solve the following guasilinear equations:

d3f/dt = (C + Q + E)f (1)
dW/dt = (2y —Zvei) + 8 (2)
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with the initial conditions f(v,0) = ¢(v) and W(k,0) = Wo(k) , where

¢ 1s an arbitrary function eventually modelling unstable situations

Fa)
and S represents an rf power source. The term Cf is a linearized
collision operator:
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where vej is the electron-ion collision frequency, wpe the elec-
tron plasma frequency and Z the ion charge state. The term 6f stands
for the quasilinear operator including both Cerenkov (n = o) and anom—
alous Doppler (n = 1) resonances:
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where En 2 dNdv, - n(v, —k‘l)vj_'l 0/0v; and wp = Ki/kK + mwee,
Wee being the electron~cyclotron frequency. The symbol ﬁf stands for
the advective operator Vei/wpe E3f/dv) which represents the
inductive electric field. Finally, the quasilinear damping rate is
given by y = Yo + Y1 with
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The normalizations adopted throughout the paper are :
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The Numerical Treatment

As a first step the unbounded % and X spaces are reduced to the
corresponding finite size domains defined by:

0 = {V sM<V, os«rlsvt\i ; E={Kr<k..sk,_; kgsklskq}

In these domains a finite element expansion of both the unknown func-
tions f and W is adopted:
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where the ¥; and Xy are bilinear and piecewise oonstant basis

functions. The pivotal amplitudes fj(t), We (t) become therefore



the actual unknowns of the problem. By inserting expressions (6) and
(7) inequations (1) and (2) and subsequently projecting onto two sets
of test functions ¢5 and Iy respectively, we obtain a system of
coupled O.D.E,s.
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where ajj = <¢j|¥4>, Agp = <€y |xm> are the mass matrices.

The force matrices are given by :

i
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b;') <4’,;|C"EH)3> (10)

byt = <41 8K} 14; >

(1)

(o)

B = %<3, | X (12)
(1)

i = L <SIV{H]IX,> (13)

Here the bracket <«{+> stands for the usual scalar product in L,(Q) or
LQ(:B). We note that the matrices b(!) and B(!) involve 4-di-
mensional integrations. However, since the Dirac operators only

involve vy, the integration over v, can be singled out.



The treatment of the time variable is the same as in our previous
codes [2]: A synchronous two-level scheme is adopted for the time dis-
cretization with an adjustable parameter which allows a transition
between fully explicit and fully implicit schemes. The nonlinearity of
the resulting equations is handled with a Picard scheme and the
resulting algebraic problem is solved with a direct Gauss elimination
technique at each time and iteration step.

Results

To date, the most severe validation tests for ADLER are made for
the two-dimensional quasilinear beam relaxation. In this case, the
particle density, the total momentum and energy are conserved and
provide therefore a diagnostic tool for the numerical scheme. However,
these conservation properties cannot be exactly translated into the
numerical scheme. To see this, we write the rate of nonconservation of
the parallel momentum AP and energy A‘Z in the form (only the most
critical case of anomalous Doppler is considered) :
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where the matrices Izl- and ?@re expressed as :
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From these expressions we see that, for the conservation laws to hold
exactly in the numerical scheme, the basis functions X and ¥y
must represent exactly the functions ‘k‘ »/k2+k2 and v? respec-

tively. In the present version Xy are piecewise constant and L 21
bilinear so that ky and VN are both piecewise constant and con-
Sequently Pltand? # 0. In Fig. 1, the quantities AP, At at t = 0 are
shown as functlons of Aky « Ak, = h? for the case i = -4, V2 = 8,
Vy = 5 with 48 x 20 points in the ¥ mesh and one cell in k. As
expected AP decreases as h? » 0, whereas A'? tends to a non-zero limit
from below. This apparently strange behaviour is caused by the factor
VyN—V) whose 31gn is very sensitive to the location of the inte-
gration points kg in the domain. If two different kg are mapped
symmetrically with respect to the mid-point of the interacting
vy—cell, the1r contributions will exactly cancel one another.
Normally kg runs over a discrete set of uniformely distributed
points, so that when h? increases many quasi-cancellations will
occur. When h? - 0, all ‘12'9 will be mapped on the same half-side of
the vy-cell and their contributions must necessarily cumulate, lead-
ing to a hlgher error. This explanation is confirmed also by Fig. 2,
where A‘Z and AP are shown as functions of Avyay for a fixed value of
Aky = Ak, = 2 x 107*. The tendency of A% to decrease with AvjAy, is
a consequence of the fact that the single kg contribution is roughly
proportional to Avy. The superimposed humped structure stems from
the effects discussed above. The most effective remedy is therefore a
rigid translation of the vy—9rid which brmgs the mid-point vj4q /2
as close as possible to vg = k‘}l + wcek ny,* For the present case
(vg = 5.225) by shifting the mesh from (- 4 /8) to (-3.9, 8.1) with
48 x 20 points one obtains a reduction of AE of about three orders!
Of course, the case just illustrated is a pedagogical one and in
general it is very difficult to tailor the mesh in an optimal way for
a realistic E domain. This means that there is a certain amount of
non-conservation from the very beginning. Unfortunately, this situa-
tion worsens as the code evolves since at any time step further errors
are introduced. This is clearly shown in Fig. 3, where the evolution
of |AP| and |A%]| is plotted for a realistic case: Vi = -4, V, = 16,
Vo =15, K1 = .04, K2 = .4, K3 = .04, Ky = .2 with a 60 x 40 x 30 x 15
mesh. From this figure we see that the relative nonconservation



increases with time. Unfortunately, iterating does not seem to help.

At present we are trying to improve this situation.
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Figure Captions:

Fig. 1:

Fig. 2:

Fig. 3:

The relative momentum and energy non conservation rates,
IAP/PI and IA%/'Z’ at t = 0, as functions of Akjak, for
Avy = Av; = 0.25.

The relative momentum and energy non conservation rates,
lAP/Pl and ‘A't/%l at t = 0, as functions of AvjAv, for
Aky = Ak, =2 x 1074,

The time evolution of the momentum and the energy non
conservation &P,A‘?.' for the case V) = -4, V, = 16, V, = 15,
K; = 0.04, K, = 0.4, K3 = 0.04, K, = 0.2 with 60 intervals

in vy, 40 in v, , 30 in kj and 15 in k, .
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