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ABSTRACT

We study mode competition in optically pumped lasers with one
active laser line. The stability of single mode operation under one
mode pumping (both fields arbitrarily intense) is determined by
calculating the saturated laser gain using either a mono- or ‘bichro—
matic probe. The probe spectra differ dramatically from the single
mode, intense field gain curves occasionally exploited in this context
in earlier works. Some features in the spectra are interpreted with
the dressed atom picture. The mathematically simpler single probe gain
is shown to be a good approximation for large mode spacings. When the
strong field induced Rabi flipping is comparable to the mode spacing,
however, a bichromatic probe containing two frequencies which are
symmetric with respect to the intense mode is usually needed. Typical
mono- and bichromatic probe spectra are discussed and parameter
regions are explored which give stable single-mode operation. The
results are also relevant in general laser instability studies : some
aspects due to the strong field induced coherences will be pointed

out.



I. INTRODUCTION

The coarsest level of oscillation competition in lasers pumped by
off-resonant coherent 1light occurs in line selection between line
center and stimulated Raman emission. On a finer scale several cavity
eigenmodes may appear within the gain bands of the two above mentioned
lines. This is a typical situation for instance in most pulsed far
infrared (FIR) lasers. Usually these types of lasers operate
preferentially on the Raman line which allows their tunability by pump
tuning. In several practical applications (e.g. plasma diagnostics,
high resolution spectroscopy) it is desirable to have single mode

operation in addition to tunability.

One means to explore the parameter regions giving rise to single
mode operation is to use a weak tunable probe and study its stability
in the presence of the presumed arbitrarily intense oscillating
mode. If the probe experiences damping at all its allowed parameter
values, single mode operation is proven to be stable. Otherwise cavity
modes located in the positive probe gain regions are able to grow from

noise,

During the initial growth transient in an unstable situation the
reaction of the unstable modes back onto the established main mode may
be ignored. Hence the study of linearized probe gain spectra provides
valuable insight for instance into the problematics of the low level
line width of FIR lasers [1]. Dispersion must also be considered in

this context in addition to gain. Instabilities in homogeneously



broadened lasers are another possible field of application which is of
great current interest because of its relation to the nonlinear
dynamical effects in lasers, ranging from regular spiking to the onset

of full chaos (see e.g. [2,3]).

Single mode characteristics of FIR and other types of optically
pumped lasers have extensively been studied in the literature (see
e.g. [6]). It is tempting to predict the stability of this mode of
operation from the steady state single mode results, but a correct
treatment must be based on multimode/multiline calculations. In [4-5]
same aspects of line competition have been discussed. In this paper we
mainly concentrate on mode competition inside a line. The results can,
of course, also be applied to line competition within the simplified
three-level scheme used. It is not necessary to assume an off-resonant
pump which is only required for clearly distinguishable line center

and Raman resonances.

The assumption of a single frequency probe at vi is not fully
consistent in the presence of a FIR mode of arbitrary intensity at v,
even in the weak probe limit. The reason is that beating of the probe
with the strong mode creates a polarization at a frequency 2vgy-v,,
i.e. symmetrically to v; with respect to vg. This polarization
generates an EM field which in turn reacts back via the same mechanism
onto the original probe at v;. In an exact approach one must employ a
bichromatic probe which possesses two  frequencies located
symmetrically with respect to the main mode. Naturally this situation

implies slightly more complicated calculations (e.g., two probe



amplitudes occur). Hence it 1is of interest to investigate the

conditions for which the single probe approach is adequate.

The bichromatic probe approach has strongly been inspired by the
papers [7-8]. Their formalisms can easily be extended to our three—
level system. The mathematical tools required are directly obtainable
from the general multimode theory of FIR lasers outlined in [10].
Similarily to [7] we are able to determine the first instability
threshold of the full Hopf hierarchy [2]. The instability study is not
the primary goal of this paper, but it is of interest to note that the
present model takes into account all relevant oocherence processes.
Hence it is well suited to studying several instability questions in
FIR lasers which are perhaps the most promising testbeds of some

problems in nonlinear laser dynamics [9].

In section II we shall introduce the theoretical model and the
notation in addition to reviewing some basic single mode operation
characteristics. In section III we shall calculate the small signal
gain spectra in the presence of an intense single mode pump and one
arbitrary FIR mode. Both single frequency and bichromatic probes are
discussed. Representative probe spectra are analyzed and the validity
of the single frequency probe approach will briefly be studied.
Section IV is devoted to an exploration of parameter regions where
single mode FIR operation is to be expected. Finally section V gives a

summary and a discussion of the results.



II. MODEL SYSTEM

A. General Equations

In many cases the simple three-level system shown in Fig. 1
provides an accurate enough approximation for calculating the FIR
gain. However, the degeneracy of real molecular levels and the
possibility that other levels may also be active (cf. e.g. [5,11]) has
to be kept in mind. The classical EM field is composed of a single
mode pump (at a frequency Q), coupling to the transition 1 « 2 only,
one arbitrarily intense FIR mode (frequency vg), and one or two weak
FIR side modes (frequencies vi and v.;) acting as probes. The FIR
fields are assumed to be coupled only to the transition 2 - 3. To
lowest order in the probe amplitudes a probe interaction appears only
when the probes are at symmetrical frequencies around vg. Sometimes a
single probe approach is sufficient (to be discussed more explicitely
in section III), but in general one should employ a bichromatic
probe. The reason is that after a certain distance of propagation in
thick samples an external probe inevitably creates a symmetric side
band polarization which induces the corresponding field component

pair.

The polarization of the active three-level medium is calculated
by semiclassical theory. The existence of three FIR modes calls for
numerical techniques developped for multimode or standing wave
lasers. We shall employ here the Fourier expansion method of [10].
Also the notation and the method of solution are adapted from that

source. Because here we are only interested in the linear response to



the probe fields (the pump and one FIR mode remain arbitrary) the
infinite Fourier series truncate to a reasonably simple closed set of
coupled equations which can also be derived directly without resorting
to the full complexity of ref. [10] (see Appendix A). The main
approximations of the model include the rotating wave approximation,
the assumption of slowly varying field ammplitudes of co-running
waves, the neglect of longitudinal and transverse amplitude variations
(c.f. the destruction of instabilities by transverse mode structure
[12]), utterly simplified collisional and pumping processes, and the
approximations connected with the adopted level scheme (neglect of
degeneracy, simplified form of the Stark shifts, etc.). Many of these
effects can be taken into account, but at the expense of largely

increased complexity.

Within the rotating wave approximation (the fast frequency
removed is Q in the case of 1 = 2 elements and vo for the 2 « 3
transition) the slowly varying density matrix elements pij obey the

equations of motion
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The complex pump field amplitude Ey which also contains the
phase appears in the flipping rate a=u21Ep/2ﬁ’ where p,; 1is the
dipole matrix element. The pump detuning enters the factor Ayl = wy =R
where wy) is the molecular transition frequency. In the present case

the FIR field is composed of three components :

B = Bo+p e 101t4p_ o106t (II1.7)

where B, is the flipping rate Bo = wp3Eq/2H, due to the arbitrarily
intense center mode and B+1 represent the corresponding probe
quantities. The detuning factor A, = wp3-vo depends on the center
mode frequency. The remaining explicit time dependence resides in the
exponentials varying at the beat frequencies 8+1=V+1~vg. As
discussed above we only have to consider either a single frequency
probe, i.e. B_;=0, or a bichromatic probe where 81==6_1. In both cases
we shall drop the index 1 from the beat frequencies for brevity (i.e.

6=V1—V0 and V_1=V0-6) .

Collisional relaxation is taken into account by the damping rates
Yij (Ti=yij) which in the following are generally assumed to
be equal just for mathematical simplicity. Note that keeping the
Yij's unequal sometimes facilitates the tracing of the origin of
various characteristic spectral features and also provides a crude
means to simulate field incoherence effects. We will also usually
assume that only the lowest level is thermally populated (n20=n30=0).

This assumption is trivially relaxed.

The general stationary solution of Egs. (IX.1)-(II.6) can be

expressed as a Fourier expansion zpij(m)e‘xp(-imﬁt) (one-dimensional



when &.; is a multiple of 81) where the expansion coefficents can be
obtained by the methods based on matrix continued fractions [10]. The
pump and FIR gain factors are related to py; (1) and p23(1) by

Gy = 5 In (5 (0) /)

6, = 32 3 (50 LU/

(L=0,2£1)

respectively. In the single mode case in the general Fourier series

only the components with 1=0 are non-vanishing and we recover the
familiar single mode intense field FIR results (see e.g. [6]; some
characteristics will be briefly reviewed in the next section). The
main topic in this paper is, however, the weak probe response for
which also p23(£1) are non-vanishing (the truncation of the Fourier

expansion is described in more detail in appendix A).

B. Single-mode Operation Characteristics

Formulas for obtaining the exact single mode response are given
in Appendix A (Egs (A9)-(A13)). As long as all the FIR modes remain
weak, their mutual interaction is negligible and the gain spectrum is

_glvenby —— —
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assuming negligible thermal population of the levels 2 and 3. When we

(II1.10)

have (n02 - n03)¢0 a linear term is introduced into the gain which,



however, is dominated by the non-linear part (II.10) already at modest

values of ,oz 2, The gain spectrum obtained by varying Ar3 (note that

A3z} = Ap;-Ay3) decamposes into two resonances centered at Ap3=wy

2l
wp =l 2y * Ll &k |%*] ax

The two peaks are resolved if their separation exceeds their width Y.
For equal relaxation rates and negligible Doppler broadening (easy to

include; e.g. Ay; » Ay;~Kv), the heights of the two peaks are equal.

One way to interpret (II.10) - (II.11) is based on the dressed
atom formalism (for details see e.g. [13] and original references
therein). The pump field part of the interaction is diagonalized and
the ensuing eigenvalues correspond to (IT.11). For a resonant pump

A1=0, the spectrum (II.10) exhibits symmetric AC Stark splitting with

peaks at A23 = tq.

For a detuned pump (take e.q. A21>>|a|,y), the maxima of (II.10)
lie at wy ~ a? / Ay; and wo = —Ay; - «? / Ay) corresponding to AC
Stark shifted line center (or laser like) and Raman emission resonance
frequencies, respectively. The terminology - line center and Raman
resonance - refers to the bare atom picture and is strictly
justifiable only in the weak pump limit. To further elucidate this

point we solve p,3 in the steady state from (II.2) and get

5,23—_'[4:/3(?“—533)-‘{0(3;]/“{13*'i Ass) (11.12)
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where the first term in the brackets closely resembles a laser like
contribution. In our case the population inversion p22-p33 1is only

created by the pump :

2. .° / 3 (I1.13)
- =
$az ™ $as 247N, [ 84,
The result is valid for |A21 |>>y>,oc|. The second term in (II.12)
represents pure quadruple coherence effects and reduces in the same

limit as (II.13) to

-1
a0 = "°(/3 /Aq_., “‘34 4 (A,_.,—An)] (II.14)

This expression combined with ( II.12) yields the familiar formula for
the gain of stimulated Raman emission (see e.g. [14], Cpts.7 - 8). The
contributions (II.13) and (II.14) are responsible for the line center

and Raman resonance, respectively.

The dressed atom formalism is expedient in describing the probe
behavior as long as the matter-field interaction contains one strong
and one weak part. Hence the method is for instance well suited for
the analysis of the probe gain G(B+1) 1in the presence of an
arbitrary B; and «, but is of little use in calculating the gain G(B;)
in the region where saturation due to By becomes important. For this
reason we do not attempt to label various features of the strong
signal gain spectra. The analysis can be based on the rather

exhaustive strong signal calculations given e.q. by Panock and Temkin

[6].



- 11 -

For the readers' convenience we have reproduced a couple of
intense field spectra in Figs. 2 and 3. When the pump is resonant
(Fig.2), the AC Stark splitting disappears as Bop 1s increased and a
strongly saturated singly peaked spectrum results. This phenomenon is
usually referred to as power broadening, but actually it is caused by
Rabi flipping i.e. its origin is purely dynamic and not an incoherent
relaxation. At exact resonance, Apy1=Ay3=0, the flipping frequency
equals (a2+502)l/2 which shows that when Bo» the broadening due to
Bo dominates and exactely as in two-level systems the spectrum does

show only a single peak.

In the case of off-resonant pumping, Fig.3, the two peaks -
Raman and line center - show different saturation behavior. The line
center gain is bleached much faster as B, is increased. Near the line
center the dimensionless saturation parameter is proportional to
602/y2 ; near the Raman resonance the corresponding quantity is of the
order Bo2a2/A21272 which for large pump detunings can be very small
(this feature allows to get higher FIR output powers with off-resonant
pumping). For very large values of Bo the two peaks merge together
resulting in a skewed singly peaked spectrum. The situation resembles

the resonant case (Fig.2), the more the larger By is.

In a self-consistent treatment of an oscillator or an amplifying
medium the intensity of the main FIR mode must be determined from its
gain. Frequently it is necessary to also consider dispersion. In this
paper, however, we will treat both Bo and vy as free parameters (for
an outline of a fully consistent calculation see e.g. cpt. 3 of

[15]). Another feature of G(Bg) worth mentioning is that for a range
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of fixed values of A3 it does not behave monotonically. This enables

the occurence of bistability and possible onset of bifurcations.

ITI. PROBE RESPONSE

A. Single-Mode Probe

We shall first neglect the component 3_l'in (I1.7). In the case
of a weak probe B; one only has to take into account the components
Pij (m) with |m|<1 in the Fourier-series solution of (II.1)-(II.6)
to obtain the material response to order O(B;). The exact two-mode
solution valid for arbitrary Bo and B; is obtainable from the results
of [10] by changing the level indices 1223 and the fields ag»B in
addition to the trivial changes in the zero-field level populations
caused by the interchanging of the levels 1 and 3. The coefficients
pij(0) provide the single-mode solution discussed in the previous
section (valid for B;+0). The first order temms form a set of eight
coupled algebraic equations; note that only the population differences
Dij(m)=pj;j(m)-p5; (m)=Dj§*(-m) are required. Generally the
solution has to be done numerically, but in some limiting cases
astonishingly simple analytical results are obtainable as shown e.g.
in [4] where a detuned pump is assumed. The numerical solution is
easily performed and it includes, of course, the intense field effects
and is valid for arbitrary detunings within the rotating wave
approximation and the validity limits of the simple three-level
system. The basic formulas needed are given in Appendix A, Egs.

(A14)-(A21) (note that here we put g-;=0).
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Once the coefficient py3(1) is known the probe response is

calculated from the non-linear susceptibility y,

7( = _Mnll 313(4) (III.1)
T ke, [

The probe gain (see (II.9)) and dispersion are proportional to Im(y;)
and Re(x;), respectively. The corresponding properties of the pump and
the main FIR mode B, are contained in the coefficients p21(0) and

p23(0).

According to (A19) p23(1) is composed of three terms

§23 (1) = 4 gy (4)
LB D (0) 4. D, (1) - 0 (-1)]

where d_,3(1) = [y+i(wp3—v))]=} (cf. (A8)). The First term is

(ITI.2)

proportional to the DC population difference [p,,(0) - p33(0)] and
represents a typical laser 1like contribution (note that the
terminology is not completely unambiguous). It is worth emphasizing
that it contains full saturation due to a and B, which is also true
for the other terms. In the case of an off resonant pump this
contribution gives the dominant part of the line center resonance
(cf. the discussion in connection with Eq. (II.12)). The third term
depending on the gquadrupole coherence p 31 1s responsible for the
two-photon transition 1 + (Q+v;) +» 3 (Raman resonance in the case of
detuned pump) exactly as in the single mode case, Eq. (II.12) (in
addition it cancels a part of the line center contribution due to

D;3(0)). The second term contains novel effects - population
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pulsations which are due to mode beating (notice that some beat
phenomena enter also via the pj3;*(-1) term). These population
pulsations are exactly analogous to those discussed by Hendow and
Sargent [7] in a two-level system (levels 2 and 3 included only). The
novel features here are due to the third level 1 which renders

possible e.g. the appearence of the quadrupole coherence p3; .

In Section III.C we shall analyze some representative single mode
spectra obtained numerically. Reasonably simple analytical formulas
for the probe gain can be derived for instance in the weak pumping
limit i.e., when either the pump field is strongly detuned or when its
intensity is small enough. Equations valid to order O(a?) and which
also contain all the asymptotic terms to order O(A21‘2) are given by

(A22)-(A27).

As a special case we have calculated the probe response near the
line center when the pump is detuned (IA21| » a,Bg,y) and the main FIR
mode operates on the Raman resonance. To order 0(A, 1‘2) we get from

(A28)

§as3 (1) = Ajﬁ« "[:23(4) °<2”°4 /A; '
Ja-pijei(aryd,, (1)]

where the Lorentzians are generally defined as (cf. (A8)) :

(I11.3)

"‘“.}' (")"[sz '*'A’,(Aid,—kg)]_’, (III.4)
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Because we have assumed the main mode at Raman resonance, i.e.,
A23=A21,&23(1) and &_21(1) both are resonant when 8=A,;, i.e. when the
probe is near the line center. Equation (III.3) does not limit the
magnitude of Bg/y. The quenching of the line center gain as predicted

already in [4] is clearly evidenced by (IIL.3).

If the main FIR mode is at the line center and probing takes
Place near the Raman resonance, the single probe gain is obtained from

(A29) (validity limitations as in (III.3)

«
' dz": cLa (4) .
823 ("4> = 4./3.,, Az 4+/32_ &::{4) i;“) (III.5)

For A)>0 one must have v;<vy to hit the Raman resonance. One can keep

the mode separation 6 positive but then the mode B-1, instead of B,
gives the resonant contribution. According to (I11.5), the probe
resonance appears at v.)=vg-A,;. When 602 is increased the initial
Lorentzian shape deforms into the characteristic split structure of

three-level resonances.

Slightly more general expressions corresponding to Egs. (III.3)
and (III.5) are given by (A28) and (A29). For instance in these
equations the Yij's have been kept distinct which aids in tracing
the various contributions. When the probing takes place near the main
FIR mode, the accuracy of the single mode approach decreases (cf.
(A30) where all FIR modes are assumed near line-center or (A32)-(A33)
which is valid for a weak resonant pump and for a resonant Bg). An
exception is when the FIR modes are close to the Raman resonance and a

detuned pump is used. To order O(p,;~?) the coupling between the

FIR-field components completely disappears as is evident from (A31).
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Note, however that the accuracy of (A31) is rather limited and already

modest values of B; can saturate the gain visibly (cf. Fig.4).

B. Bichramatic Mode

Already in the single probe treatment there appears to order
O(By) a term p,3(-1) giving rise to a polarization at the frequency
v-1=vg=(v1-vg). This polarization generates a field B-1 which in a
general case should be taken into account together with g,.
(Conditions for the validity of the single probe approach will be
discussed at the end of this section.) The field B-1 reacts back onto
B1, because of symmetry, and therefore the evolution of By and B~} are
interdependent.* One has a bichromatic probe (B,/B-; arbitrary) or for
some cases a bichromatic eigenmode of the system (B1/B-; fixed by the

eigenvalue equation, see (III.11), and for more details Appendix B).

The bichromatic probe response is obtained by a simple extension
of the single probe theory (all the necessary terms are already
contained in the formulas of Appendix A). Instead of (III.1) we now
must evaluate the polarization amplitudes from the effective

susceptibilities

* Note that the terms p21(¥1) create pump sidebands at frequencies
Q¥(vg-v;). This process represents coherent pump scattering from the
medium modulated at the beat frequency vi-vg. It turns out, however,

that generally the pump sidebands will be very efficiently absorbed

and they need not to be considered at all.
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Y(v_ﬁ) = ;\/_1 +3{._1/34*//$_4 (III.6)
Y(v,,) = )(4 +9€4ﬁ__f/ﬁ4 | (III.7)

where the self terms x+) are as in the single probe case (cf.
(III.1)) and formal expressions for the coupling terms K+] are given
in Appendix B, Egs. (B5) and (B7), respectively. Again we would like
to point out that the susceptibilities (ITII.6) and (III.7) contain

full saturation due to ¢ and B,.

Within the slowly varying envelope approximation, the field

amplitudes in a resonant cavity are given by (see e.g. [15] cpt.3)

V

pn =[—Qchzn”: (vcn B Vn)"'q/zifuh /Y,,,]/}h (II1.8)

where the first term on the RHS describes cavity losses, Ven 1s the

cold cavity eigenfrequency of mode n, and the last term is the
material contribution. Equation (III.8) is written for a ring cavity
for the sake of discussion; the CW amplifier case is campletely
analogous (change d/dt to cd/dz where c is the speed of light). Self
consistency requires that also the main FIR mode obeys (III1.8) which
determines By and vgy. We assume that the main mode has practically

reached steady state before the probe modes start to develop.

The single mode solution is stable if all side mode fluctuations

are damped. According to (III1.6)—(III.7) the weak side modes satisfy

pairwise the equations
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frem i i) i I,

+72 4 1)36

3 = [-2 -4’(v,=1 ) ’/o.tv X123,
f 2Q +/“,v%/3 fa o

wnere we have put vp=vy in all multiplicative terms. The present

(II1.9)

situation closely resembles that described in [7-8]. The modes

{B1,8-1} grow and decay together and exhibit an eigenmode pattern.

The characteristic roots of (III.9)-(III.10) are given by

As = =g A LS e I an ()
- !
2 [T, o+ )i (- o7, A

where the cold cavity mode spacing Vel=Ved = ve0~Ve-1 1S
denoted by 8., and where the oscillation frequency of the center mode

is obtained from the condition

Yy -y = - -%: Re (;\/(v°>)> (II1.12)

° <o

The two roots (III.11) are the complex eigenfrequencies of the
bichromatic mode each one giving rise to a corresponding eigermode.
For a special initial value combination {g,(0), B-1(0)} which happens
to match one of the eigemmodes, only one of the exponentials will
appear during the temporal evolution of {By(t), B_j(t)}. If both of
the roots A+ have negative real parts, any initial fluctuation will
damp out and the assumed single mode operation is stable. Otherwise

fluctuations at the assumed frequencies v; and y-; start to grow at

linearized growth rates determined by the real parts of (III.11) and
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with a frequency shift proportional to Re x(v+1). Both eigenmodes
may grow i.e. Re(A4)>0, but if one of them has a much larger growth
rate or the other one decays, any initial combination of probe mode
amplitudes will asymptotically approach the eigenmode structure with

the larger growth rate.

Undoubtedly the bichromatic mode treatment is more complicated
than the single probe theory and hence it is of interest to study
under which conditions the latter proves to be sufficiently accurate.
One may also ask if single mode stability analysis gives conservative
estimates compared to those performed with bichromatic modes. In other
words : does the symmetric probe wave pair aid a weakly damped single
mode above oscillation threshold, if the mode is close to it? This is
not to be expected if both v; and v.; lie in the stable region
according to the single mode theory. This intuitive statement has to

be verified by calculations (next section).

Clearly a single mode approach is adequate if the coupling term
VOZK"lKl* can be neglected in (III.11) or in a thin sample where only
Bp and B; are present at the input plane. Throughout the thin sample
B-1 will remain small compared to the external fields and can be
ignored. In the case of an off-resonant pump, which is usually
encountered in FIR lasers, one is often considering line interaction
effects i.e. the influence of intense Raman oscillation on the line
center gain or vice versa. Then the corresponding probe pair v-; of
the line center mode v; ~ w,3, for example, is far from any atomic
resonance (main mode at Raman) and remains negligible (to order

o( A21-2)). Generally the probe coupling is roughly measured by the



- 20 -

magnitude of By/8 which disappears for & » ». The coupling may also be
ignored if the relative phase angles between Bo and B4+q fluctuate
rapidly (recall from Appendix B the phase dependence k+1 ~BgBg ©of
the cross-coupling coefficients) : a Iﬁeasure of the interaction
strength in this case would be Bgteon where togy stands for a
characteristic phase correlation time. A proper quantitative treatment

of this situation is beyond the scope of this paper.

C. Representative Gain Spectra

Let us start the discussion by considering single probe gain
spectra for a detuned pump and the main FIR mode at the Raman
resonance. Fig. 4 shows a typical example with Dy; = Ay3 = -4y. The
abcissa is the probe separation from the main FIR mode in units of Y:
the value 0 corresponds therefore to Raman resonance and -4 to the
position of the line center. The assumed pump amplitude implies that
a/y = 0.1. In a detuned case (as discussed here) the magnitude of the
pump amplitude is not very crucial : an increase in « first introduces
visible AC Stark shifts to the Raman and line center resonance
positions and once these shifts become comparable with the detunings
the spectra start to resemble those observed for a resonant pump (see
Fig. 8). In the gain curves of Fig.4 the main FIR mode amplitude Bo/Y
increases successively from 0.1 to 5.0. The probe amplitude is kept at

Bl = 0.1 Yo

At small FIR intensities (curve By = 0.1y of Fig.4) the FIR mode
interaction is negligible; the gain spectrum reduces to that of

Eq. (II.10). Due to a detuned pump the slightly AC Stark shifted Raman
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and line center resonances are easily recognizable . The shifts are
primarily caused by the pump. When By is increased the gain near the
line center gets suppressed rather soon, whereas the behaviour near
the Raman resonance is much less affected (a considerably larger value
of Bg 1is required to invert the gain). These features are
quantitatively predictable by the formulas (A28) and (A31) within
their validity range. From the figure we also note that the simple
small signal spectrum becomes heavily distorted and new structures
appear as B, grows (we shall briefly return to these features at the

end of this section).

The single probe approach should be accurate enowh in Fig. 4
near the line center (i.e. the region around -4) because there the
probe mode separation would be |v1 = v.; | =8y. This is large enough to
validate the neglect of B.) at least for small and intermediate values
of By (note that for By~ 5y this is not obvious). The single probe
approach should also be reasonably accurate to describe the gain
spectrum near the Raman resonance, at least for values of Bo/y <1,

because the pump is strongly detuned.

Figure 5 displays the two growth rates Re{?\t} (see
Eq. (III.11)) resulting from a calculation employing a bichromatic
probe. The parameters correspond to Fig. 4. The gain curves are now
fully symmetric with respect to the Raman resonance (point 0), because

for each probe frequency vy there exists the symmetric pair

V-1 =2vg-v;. For this reason only negative values of & are displayed.
Notice, however, that the actual mode evolution will depend on the

eigenmode pattern and its connection to the input values
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{ B1(0) ,6_1(0)}. More details concerning the eigenvectors are described
in Appendix B. It is also worth mentioning that the branch boundary of
the square root of the complex quantities in Eq. (III.11) sametimes
introduces a discontinuous change from Ay to M. and vice versa as §
is varied. In the figures we have eliminated this by continuation.
Thus it is no longer possible to make a one-to—one correspondence
between the indices of A+ in the figures and the signs appearing on

the RHS of (III.11).

For small values of B;, Re{A+} shows gain in Fig. 5 at both the
line center and the Raman resonance. Exactly as in Fig. 4 the line
center gain is suppressed as B, is increased; the same happens also
near the Raman resonance but at higher main FIR mode intensities. The
other growth rate Re{A_}, however, seems to remain positive near the
Raman resonance (note the rapid suppression near the line center).
This implies that in the case of several cavity modes in the Raman
region all of them are able to grow. This is in qualitative accordance
with the single probe predictions which also indicate gain near the
Raman resonance except for Bg/y>1 where the single probe model is

expected to fail.

If the pump intensity is increased the growth rates Re{xi} show
more distinct changes than could be anticipated from the single probe
results, implying that also the magnitude of o« is of central
importance in addition to B, as regards mode interaction (recall the
coupling via P13 coherences). Fig. 6 shows Re{A:+} for a = 3y. Due to
power shifts the Raman and line center peaks are pushed to about 1.6 Y

and -5.6 y in the single probe spectra (curves not shown). The
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bichromatic modes have growth rate maxima at +1.5y and *5.5y i.e.
still in good agreement with the single probe model. According to
Fig. 5 Re(A4) contains both the line center and the Raman maxima at
weak pump intensities, whereas Re(A.) only shows a prominent Raman
gain peak. From Fig. 6 it is apparent that for high pump intensities
Re(A-.) dominantly displays "line center resonance structure" (the
resonance is heavily modified because a = 3y cf. the discussion in
connection with Eq.(II.12)) whereas Re(A4) seems to repeat the "Raman
resonance". Both growth rates turn negative or get at least very
strongly saturated for large enough values of Bo. It is also worth
noting that Re(A;) shows a multipeaked structure for large B,. For
instance there appears a shallow but clearly distinguishable extremum

at zero probe detuning.

Figures 7 and 8 show the single mode probe spectra for resonant
pumps of intensities a/y = 0.1 and 3.0, respectively. For a weak punmp
(Fig. 7), the AC Stark splitting is unresolved. As By 1s increased the
gain spectrum becomes first inverted in the central region and
gradually evolves into a two peaked absorption spectrum characterized
by the ac Stark splitting due to the main FIR mode. At higher pump
levels, Fig. 8, the AC Stark splitting due to « is initially clearly
visible and higher values of B;, as compared to Fig. 7, are required
to suppress the gain and turn the spectrum into an AC Stark split (due
to By) absorption spectrum (the peaks actually occur at i(a2+ﬁoz)1/ 2

as shown below).

Figures 9 and 10 display the growth rates Re(A+) corresponding

to the single probe cases of Figs. 7 and 8, respectively. For a weak
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pump, Fig. 9, both Re(A4) and Re(A_) imply appreciable gain near
resonant probe tuning. The gain Re(A4+) becomes heavily saturated near
A3 =~ 0 and is inverted in the wings where instead Re(A-) seems to
still provide some amplification (near the line center Re(A-) gets
inverted). The eigenvalue A_ more clearly repeats the AC Stark split

absorption similar to the one appearing in Fig.7.

AC Stark splitting is more pronounced for larger pump
intensities, Fig.10. The eigenvalues are nearly degenerate for small
Bor but small differences in them develop at higher values of B,. As
Bo 1s increased the original gain maxima at *« get pushed around and
inverted. Some amplification is still retained both near the line
center and far in the wings. Again Re(\A_) contributes more to the wing
amplification and Re(\4) more to the line center gain. Note that this
dominance of Ay or A. determines the eigenmode towards which the probe

pattern evolves in the respective frequency range.

The previous figures generally display only the part of the probe
spectrum where significant gain or absorption is present. As already
mentioned, there appears interesting small scale structure within the
figures and also outside the drawn parts. Furthermore we have
discussed only two representative combinations of detunings :
Apy = Bp3 = -4y and A); = Ay3 = 0. To obtain an overview of the
important tuning regions it is expedient to study the dressed level

positions which are given by the roots wj of the equation [13]

Lu(w+A24)<w+A,,_3)—/3:(w"‘A24> (III.13)

_o(?-(w "'Aza)"‘ o)
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Probe resonances (both single mode and bichromatic probes) are
expected at wp3 - vy} = t(wj - wj). A particularly important
case is the Raman resonance, A, = A3 = A, where the roots of

(III.12) are given by :

W,,,_ — ‘4/1.Ai<1/q A1+°(1+/3,2)I/L
wy; = T A4

(IIT.14)

Some other special cases where the solution of the cubic equation
(III.13) is very simple have been listed in [13]. The dressed atom
approach readily gives the resonance positions, but more detailed
calculations are needed to discuss their actual shape i.e. whethef a
bump, dip or dispersive curve is manifested. The latter problem is met
also in the two probe configurations considered here because in the
bichromatic case the interference between the probe components can

influence the spectral shape.

To demonstrate the usefulness of Eq. (IITI.13) we analyse the
examples shown in Fig. 11. For instance in Fig. 1la we have
wj/y~=15.9,-6.3 and 12.2 which predict resonances at probe detunings
0, 9.6, *18.5 and *28.1. Most of these are recognizable from the
spectrum. In Fig. 11b we have detuned the pump to match Aoz = 10y. The
roots are now =19.0, -10.0 and 9.0, giving resonances at 0, 9.0,
+19.0, *27.9. The resonance structure at detunings -9.0 and 19.0 is
not visible demonstrating the applicability restrictions of (II1.13)
discussed above. All other resonances are easily recognizable from the
figure. Finally in Fig. 11c, full resonance is assumed i.e.

Ap; = A3 = 0 (note the simple form (III.14) now attains :

1/2

W ,2= i(a2+602) and wg = 0. The expected resonances are at 0,
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t9.4 and +18.8 whereby the outer ones manifest themselves as
dispersive features according to Fig. 11c. It is worth repeating that
the resonance positions are unaffected by the assumed probe
configuration. The dressed levels, Egq. (III.13), are entirely

determined by the intense field parameters.

IV REGIONS OF SINGLE MODE STABILITY

As discussed earlier, single mode laser operation is unstable if
a cavity side mode sees gain in the presence of the oscillating main
mode. Side modes separated from the main mode by the intermode
frequency & then develop with two individual slightly shifted
wavelengths or sometimes exactly at the same wavelength as the main
mode. The latter special case occurs if anomalous dispersion due to
the main mode compensates the side-mode frequency offsets (for more
details on this subject the reader should consult [7]). The condition
for positive gain simply implies that in (III.11) we must have
Re(A+)>0 for at least one of the caracteristic roots for either type
of sidemode instability to occur. In the case of the one wavelength
instability an additional condition, Im (A+) = 0, has to be met so
that frequency shifts will be eliminated. The graphic method proposed

by Hendow and Sargent [7] can be used to test the two conditions.

The anomalous dispersion which favours the one wavelength
instability is related to the gain spectrum consisting of two peaks
positioned symmetrically around the single mode oscillation. The shape

of the dispersion curves can be deduced qualitatively from the gain
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curves in analogy to the application of the Kramers - Kronig relations
in the linear response theory. Although generally we have not shown
the curves Im(A+), (an example is shown in Fig. 1la) we want to
point out that dispersion is trivial to take into account in numerical

work.

The onset of instability can be analysed by means of contour line
plots of the gain as function of some of the variable parameters. The
space of free parameters «, By, Ay, Ay3 is four dimensional and hence
will not be scanned extensively. With the contour lines in the (Bgrvy)
plane as shown in Fig. 12 the stability regions, defined by

(C=y,3tieg/na3%n; ?)

333 fﬁ? (’4)
:]Yh % ’5§ /GL

in the monochromatic case and by the condition Re(A+)<0 in the

} ' —3- (VI.1)

bichromatic case, can easily be found. Fig. 12 represents a typical
case for resonant pumping at medium intensity, whereas Figs 13 and 14
demonstrate the effect of varying the intensity of an off-resonant
pump beam. The hatched region in Fig. 14 is the unstable region for a
cavity where for the sake of discussion we have arbitrarily chosen the
value C/Q = 0.02 for passive losses. The depression created near the
line center by the intense Raman oscillation is quite evident from
Fig.13 as well as the effect of the dynamic Stark shifts (the broken

lines in Figs 12 - 14 represent the resonances predicted by (III1.13)).

Despite the fact that the theory discussed in this section is not

fully self-consistent for the probe modes (dispersion neglected) and



- 28 -

that the temporal evolution has not been studied, it is instructive to
apply it to try to interpret the low-level gain spectrum measured in a
D,0 laser by Woskoboinikow et al. [1]. In that paper the results have
been discussed in terms of the gain spectrum of one intense FIR mode
(the main mode Bj). In the light of the present theory it is not
surprising that the authors found several inconsistencies. The
low-level broadening of the FIR spectrum is mainly due to amplified
spontaneous emission inside the cavity and thus it rather reflects the
gain spectra of weak probes. For an off-resonantly pumped case at
intermediate intensities a symmetrically broadened gain spectrum was
observed which, as noted by the authors, does not agree with theory
predicting an asymmetric broadening towards line-center. The gain of
the intense mode certainly has this asymmetric characteristic, but one
should use instead the bichromatic probe gain spectra which
apparently are symmetric, as demonstrated above. A quantitative
calculation, however, requires also consideration of the eigenmode
structure before definite conclusions about the symmetry can be made
(notice that both modes will be excited initially because of the
broadband spontaneous source term). It has also been noted in [1] that
the measured Stark broadening was four times larger than predicted.
The authors assumed that hot spots inside the cavity are responsible
for this behaviour. However, according to BEq. (III.14) the
displacement of the peaks by the dynamic Stark effect is a function of
(oc2 + 502) if Ay} = Ay3. Hence both the punp and the intense FIR field
act in the same way and, perhaps, it is rot necessary to invoke hot

spots to explain the observed shifts.

An interesting observation in this context is the fact that our

theory predicts negative or at least greatly reduced probe gain
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practically everywhere for sufficiently intense FIR fields. It should
be possible to reduce significantly the low level linewidth by
operating in this regime. This has not to our knowledge been tested
experimentally for the simple reason that the output coupling would

have to be far from optimum to reach such a highly saturated regime.

V.SUMMARY AND DISCUSSION

Single mode operation is a prerequisite for a great range of
laser applications. This is also true for optically pumped FIR lasers
which have been developped to produce high power output for specific
applications such as collective Thomson scattering to measure the ion
temperature in fusion plasmas. In this particular context an emission
bandwidth which remains narrow down to very low signal levels is
required to alleviate interference of parasitic stray light with the
spectrally broadened scattered signal of a level of the order of 10-1%
times the incident intensity. If lossy mode-selective elements are to
be avoided in the resonator, single mode pumping has been found to be
essential for the achievement of single mode FIR operation. Pulsed FIR
lasers are often pumped off-resonantly and hence capable of emitting
radiation on line center or at the Raman shifted frequency. In a
previous paper [4] we have shown that line center emission is usually
efficiently suppressed already by a moderately intense Raman field.
This is certainly the case in three level systems, whereas a more
complicated situation arises if additional levels are optically

coupled with the pump or FIR fields [5].



-30 -

For high-power applications long resonators with closely spaced
axial modes are often used. This has given the main impetus for the
calculations of the present paper where the competition of modes
within the gain bands of individual lines and the stability of single

mode operation are the central theme.

Single mode theories which are reviewed in chapter II have
occasionally been used in the past to interpret experimental results
on stability and mode competition. The inadequacy of this approach is
clearly demonstrated in chapter III which discusses representative
gain spectra for single mode and bichramatic probes. In both
approaches, the probe spectra have completely different behaviour from
that of the main mode already at moderate intensities o2 and 502. It
has been found that the simpler single mode probe approach is adequate
to investigate line competition effects or the competition of modes
which are sufficiently off-set from the main FIR mode. Bichromatic
probe modes, however, are usually required to study the interaction of
modes within the same line. Exceptions to this include for instance
Raman modes for a strongly detuned pump and a case where the pump
phase varies rapidly enough to cause the decoupling of the bichromatic

mode components.

The dressed atom formalism is shown to be very useful for
predicting resonances in the probe spectra. Particularly simple
expressions are obtained for the Raman resonances which are often
encountered in practice. In a most general case the probe spectra

display seven resonance positions.
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In Chapter IV regions of stable single mode operation have been
exemplified. Even without extensive calculations the present theory
enabled us to speculate about two previously unexplained observations
concerning the low-level linewidth of a D,0 laser. A proposition to
reduce this Ilow-level bandwidth has been made. Clearly further
investigations and parameter explorations are needed to understand all

the details of single mode stability.

The present theoretical model contains several simplifying
approximation which must be reconsidered when applying the results to
specific experiments. In an attempt to simulate the behaviour of an
off-resonantly pumped D,0 laser at 385um used in our laboratory, we
coupled our stability analysis code to a code based on rate type
equations which was developped to predict the pulse shape and
saturation behavior of the laser [16]. Based on the values of «(t),
Bo(t), and the equilibrium populations calculated by the rate equation
code, the tendency for multimode operation was obtained for every
chosen timestep. For the case of the ring laser developped at UCLA
[17] or the Fabry-Perot system in our laboratory the numerical results
predict a tendency for multimode operation at high pressures (> 5
torr) because of the decreasing ratio of Bo/@ and the increasing
homogeneous line width. This contradicts experimental findings where
single mode operation becomes easier to achieve at higher pressures.
Evidently certain assumptions of our model are too restrictive. The
neglect of transverse or axial effects (cf. [12]) or degeneracy and/or
the grossly oversimplified collisional picture may be responsible for
this. It is also important to recall that the present calculation
assumes adiabaticity i.e. the polarization is expected to have reached

a steady state (cf. the clearly different temporal behavior of Raman
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and line center signals occuring in the optical region [18]). The
influence of inhomogeneous broadening, on the other hand is not of

significance since this effect was included in our simulations.

Although the present treatment is mainly devoted to studying
single mode stability and not to an investigation of the behavior of
laser instabilities, we shall finally briefly comment on one question
belonging to the latter category : what are the basic differences
between a three-level system pumped with a coherent optical source as
discussed in the present paper and an ordinary two-level system where
the population inversion is created by incoherent pumping. A
comparison of spectral shapes shown here and in [7] should provide
some answers and enable the reader to find out the most prominent
features of the two systems. One obvious difference between the two
and three level systems is the quadrupole coherence p13 which vanishes
if the levels 1 and 2 are coupled by an incoherent source. This term
is responsible i.a., for stimulated Raman scattering - no
corresponding resonance appears in two level systems at large
detunings. Another characteristic feature is the AC Stark splitting or
shifting due to the pump. Our model reduces exactly to that of [7] if
we let ¢« » 0 and choose n2° - n3° # 0. Formally the same population
inversion can be created with a pump intensity

o = (0% / (2n)0) . v21T2.

AC Stark effects disappear when we let Y13 Or Aj3 > » i.e., we neglect

the Raman resonance.
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APPENDIX A : Probe response

Inserting the Fourier-expansions Pij = Zpij(m)exp(-imét) into

(II.1) - (I1.6) and assuming in (II.7) that 8, = -6_; = 6, we get

Sanlk )—«L; ;:(E«B)(ﬁk pﬁam(ﬂ)] )
$=t0=7 ; ;> i ) ;) - )’} k

- Jiely -
- Ak% Tt "
(h-akS)e, k) =[ong &, +i[4,, (k)= o(g

‘*L ) ; 23 k“’) /2 7.3(4‘
Py ”p gj )Lt (- )]

(k)]

(a5)

_&kg> (k) =T%n; Sko-w[f (36)
_/3 Sn }5) /34 7.3 <-w1) /ﬁ fn 4 k
AN e (k=)= A0 (17 k)]

where Djj is the population difference

= 0. (k) - it (k) (a7)

and the complex Lorentzians are defined by

(k): [X‘:i-f,{ (A

..-kg)]”1 (28)

4']' Y
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For arbitrary intensities {a, Bi} Egs (Al1)-(A6) form an infinite
set which can be solved e.g. with the technique used in ref. [10]. For

weak B+1 the perturbation method described below is applicable.

When we have B+q = 0 only the Fourier-coefficients with an

index k = 0 are non-vanishing :

£, (0) = 4 &40 (0) [ Dy (0) = fagy (0 o)
o2 (0) = 4 &y () DN(O)’d.Sv;‘:(o)] e

(0) =44, (o [‘an (0) /3 (0)]
r’Du( 0) =

]

“T0s <43 (4% (o) ”]m(P 6. (8) o

D, (0)=-2Tm (& 521(0)) “43m (B, (0)) @3

Just for the simplicity of notation we have assumed ry =r

(i =1, 2, 3) and n,%=ny%=0 in (A12)-(a13).

The first order terms in Bi1 are those with an index k = +1 :

§24 (") = ‘{:v (4) [0( Dm (4)‘/305’34 (’1) -ﬁ,ﬂ 5931 (O)] (A14)
S)?A (" = iigq )E’(Xza /3 521 /3 ‘S’“ (A15)
S’z: (‘4)=‘/C &23(‘1)[/% D.s (4)+/3_4 Dis (o)-o( 3 (,,)J (A16)
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f; (—-4) ioQ )[o( D'm )
- sa« “ [ Ss«

8:1 (-1) = %’L ‘(**.31 [°( ( )} (A18)
B - 2q (O

©23 (1) =« ‘523(4 [ﬂpDng (A19)

/3 Dﬂ(o) 0(§31( 4>]
(r’-ié) (1) =24 [0( } o(gt* (-4)220)
+4’[/3 5’13 4) /)5’23 /3 523 (O ﬁ fzg O)J

(l —45) 13(4)"'4[0(521 (1)~ j“( 4)]

(A17)

(A21)
+2"‘L/3 §a3 /jg,u( 1 / 523 (0)
+/3 4?13
Note that we have Dij(—k) = Dij*(k)- The 2zeroth order solution

given by (A9)-(A13) appears above in the inhomogeneous terms.
Generally it is preferable to solve (A14)-(A21) numerically. Only in
some particular cases reasonably simple and informative expressions
for py3(+1) are obtainable : e.g. when the pump is strongly detuned

(cf. [4-5]) or when all the FIR-modes are weak (cf. Eq. (II.10]).

Many interesting features of ‘the system can be predicted by a
weak pumping model which is valid when either « is small or Ayy is

large. To order O(oc2) we get from (A9)-(A21)
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In (A22)-(A24) we have written BoBo explicitly to distinguish it

from 8o? = |Bg|?. The source terms needed in (A22)-(A24) read

G2 (0) =~z£o(o(u(o>nf/[4+/2,}oc”(0)0(31 (0)] (a2

Dy (0) = 27 ”«/U’**/ﬁ‘ﬁe% 7.3<°>}]
'RQ{ (0) 11~ 2/3 £ (0) £, (0)]/ w0
[4% £20(0) 5, (0)]

2 (0) 2 o)[D (0) o)
A *&fo) L5 (0)nt /110 B2 (0) 45 (9] ]
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Considerable further simplification occurs when some of the fields are
detuned. Note that all terms to order 0(A, 1'2) are present in

(A22)-(A27). Some example cases are worked out below.

Let us first assume a detuned pump (A,; = A) and the main
FIR-mode at Raman resonance (A,3 = A). If the probe is near the
line-center i.e. §=A the near resonant Lorentzians in (A22)-(A27) are
L2101, £23(1) and £53,(0). Since py3(0) and Dy (0) are of the order
O(A'Z) and py; (0) of the order O(A‘l) one obtains to order O(A‘z) from

(A22)-(A27).

23(4 = O(ZH,?/A'L (528
el /w (ko (0)]

From (A28) one easily derives with the aid of (II.9) the probe gain.
The result is a slightly generalized form of that given in [4]
(recall, however, the limit B1>0 assumed here). As now po3(-1) is of

the order O ('A21‘3|) a single mode probe is sufficient.

If the main mode is at line center and the probing takes place
near the Raman resonance the ILorentzians close to resonance are

L21(1), L23(0) and &s1(1). The probe gain is now obtained from (A23) :
S

523(-—4)2 . O(zho/Az'o(; (4) (A29)
[ 44 BRE (1) &5 ()]

which is in full agreement with [4]. (Notice that because one usually

implicitly chooses 6>0 and A>0, the indexing of the probe changes from
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B1 to B-; when the probe frequency becomes smaller than that of the
main mode. The situation reverses for A<0. One could equally well let
& be negative in which case the probe gain would follow from (A22)

with {3,%(-1) being a resonant Lorentzian for &x-A.)

If the probes are under the same line as the main mode usually
both 8; and B.; contribute. When all the FIR modes are near the
line-center, i.e. the ILorenzians &23(k) (k=0,£1) are the resonant

ones, we get for off-resonant pumping (notice that |6|<< A)

(4)= '*:o(ln:(zxu/r"’!) La3(1)
§ 0V B A (420) Re £ (0)
(A30)

{p-2 P B [fas (1) + L35 ()14 A% [htt (= 1) + £, ()]
i M=d8+ 285 (Lo (1) + &5 (-]

The expression for p23(-1) 1is obtained from above by
interchanging the indices +1 « -1 in the flipping frequencies 8; and
by replacing 6 by - &§. Notice in (A30) the full saturation due to the
main mode and the probe coupling introduced by the term proportional
to BoBoB:- The only trace of the pj,-coherence is the factor -1 in

the term (2y,;/T-1).

If all the FIR modes are near the Raman resonance we get for off -~

resonant pumping

523(.4: A> = £d*n? /A ./3:” o(:: (1) (a31)
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To order O(A‘z) the modes do not interact at all. Furthermore, the
main mode does not introduce any saturation. We point out, however,
that this approximation has a rather limited validity range as is

evidenced, e.g. by Fig. 5.

As a final example we consider the case where both the pump and

the main FIR mode are tuned to exact resonance. To order O(a2) we get

£ L2z (4)0(2 Na

fzs (") = Yag Vo + ﬁoﬁ (A32)

{ 2 oy &3, — /3 ﬁ /3/3 '*ﬂ4/3)9€(")
/2'1 F(YB'*‘Lf’ﬁ [ - A,g'f"'f"/} oCo.'a 4)

0[34 (")

AT LA P )

where « (1) is defined as

?((4> - 40(23 (4)—2(!—'+ 2X3‘1)(4+X23°C13(4))/<Fyz3+%°1)

..]:o(:u(”) +2°(23(1)]['4 + 3‘31 o(:;,, (4)]/ (A33)
(4l da (1) &, (1))

In (A32) the first term in the traces arises from D,3(0), the second

one from D,,(1) and the last one from the quadrupole coherence p31

(cf., (A22)). We obtain an expression for P23(-1) by interchanging the

indices 1 . -1 and replacing g§ by -5« In the limit y31 * ®
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(A32)-(A33) reproduce the probe gain in a two-level system with an

effective upper level population 2a2nl°/y21I‘ :

_ 24'.0(2?7: c£23(4) )
5323(4) - XQ‘,P(""‘%P:/J‘HP) {/34

Sl i o )1 s ) -4 42 £ ()] ]

This expression is the same as the one given in [7].

(R34)
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APPENDIX B : Bichromatic probing

Let us define a vector R whose components R(i) for 1 = 1 to 8 are
P23(M s p21*(-1)y 031" (=1)s p23*(=1), p21(1), p31(1), Dy (1) and

D23(1) in respective order. Egs (A14)-(A21) can then be rewritten in

the compact form

AR - piS e S

Where the 8 x 8 matrix A and the source vectors .&‘;1 are easily

obtainable from the original equations. After inverting (B1) we get

the expressions

a3 (1) = A-q[ﬂ S, )+ﬂ: 5_’:“()-'] (82)

8

o (- %) = Z [/3 S L Sop (k)] B

for the off-diagonal density matrix elements po3(x1) required when

calculating the polarization at the probe frequencies. From (III.1),

(IIT.6)~(III.7) and (B2)-(B3) we get

(1o [7 1 €) 2 A S, (K) (o4
(Il 5 EO)ZA;: s_“; (k) (25
=-(‘/ zal/ﬁf) ( k) (B6)
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_1=—({/\4nl/‘hi)2( ) Sa (k) (B7)

The general analytical formulas for X+1 and «4+1 are too
complicated to be reproduced here. The self-terms Xx+1 depend only on
the strong mode intensities a2(5la{2), 802 and their detunings ; the

coupling coefficients k41 have the functional shape 5030f11(052:

52, Ajj) where fiq again depend only on the field intensities and

detunings.

As an analytical example we study the weak pumping limit
described by Egs (A22)-(A24). For simplicity we solve the coupling
terms only to the lowest non-vanishing order in Bo. From (A22) we see
that besides the population beat term Dy3(1) also the quadrupole
coherence f31 introduces mode couplings - this is an additional
complication of the three-level system as compared to the two-level
case of [7] A straightforward solution of (A22)—-(A24) gives to order

0(a?B4?)

Bas (1) = g (1), = A1 oo Ao L30T 4 Lo (1)
{oc:; (0)0(_; (O)o(; (—4) 0[3’: (4) (B8)
+ L5 (0) L3 (o) St (ff)fi‘é“(o)

+ Loy (0) &y, (1) S2ET2ER LY

[ Re daq (0)T[ &2z (1) + £a3 (0)] }
C(r-45)

+4
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where py3(1)gp is the single-probe contribution. The expression for
p23(-1) is obtainable from (B8) by an interchange of the indices 1 and
-1 and by replacing & by -8. The two-level case is found by letting
the Lorentzian.&%l + 0, so that just the last term in the braces in
(B8) survives. As mentioned previously the coupling term depends on
the relative phase via the factor Biﬁsoﬁo. Resonances occuring in the

cross coupling terms can be deduced from the Lorentzians in (B8).

According to (III.9)-(III.10) the two probe amplitudes B4

evolve according to

X
= B9
Pot T on Leat S [ =
X
/34 = 24/34 T, [3] (B10)

where
\jg ] {
- o T e - +* - \
3*4— 5 A(VC'M v“) 2 4 p,,)(_,” (B11)
{ r
C_“ —-—iavotx“ (B12)

Using Laplace transforms, we get with the initial values {B1(0),

B-1(0)}

/34(5)"‘[( J (0)1‘(‘./3 (O]/D (B13)
/3-: (5)"’[ S‘Ja)/g_’:(O)+C:/B,,(O)J/D(S) (B14)
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where

D(s) = (S=g(s=35) ~cacd

The characteristic roots, D(Sy,5) = 0, determine the temporal
evolution of the system., Note that the sign of Im(S; ,o) depends on the
choice of the combination {Bl,Bji} - in the case {B1*/8-1} we would
have obtained the characteristic equation D*(S) = 0. When fixing the
sign of the square root of the complex expression in either (III.11)
or when solving S;,, from (B15) one must use the branches which
reproduce the correct roots in the limit Cy > 0, i.e. S » g; and

*
52 > g-;.

Inversion of (B13)-(B14) yields

/3» (t) = j )+c /3%(

-[(S, - 2 /3 +c,,/2* o)] eS‘t}/(Sq-
AL ) ={[(S.- - 94) 33(0) )+ J (B17)
“L(S.- g p (o) ey (9] ] /(Sa-5)

With the particular initial values

(B16)

e (0)//3-’: (0) = -c'q/(S,.—J_": ) g
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both B;(t) and Bf{(t) evolve as exp(S);t) and their amplitude ratio
remains at the constant value of (B18) - only one eigenmode of the

system is excited. With the choice

/7 (0) /A7 (o) =G/ (8- (B19)

the second eigenmode corresponding to S, would be excited. For an
. * . .
arbitrary set {g;(0) 8-1(0)} both eigenmodes are present in the

proportions given by (B16)~(B17).

The apparent evolution of the probe will deperd on the inital
values in addition to their growth rates. For instance, for 8-;(0) = 0

we get

/34 () =ﬁ4 (0) { ot %:—}35- (e’.s'i— es‘t)} (B20)

/3—:\; ({:):/24 (0) C: (Q_Sqt 3 eSq.t) / (5,, - Sz) (B21)

For a weak coupling |c3f | and |82—g-_).‘1| are both small implying that

the dominant term is g, (0) expS)t provided that Re S;»Re S,. If Re
Sp>Re  S; the initial single probe character will change to a
bichromatic one after a few exponentiation periods 1/Re Sy. The
initial behavior has to be kept in mind when using the gain curves for

bichromatic modes in section III.



FIGURE

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5
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CAPTIONS

The three-level system considered. The pump o and the main FIR
mode By may be arbitrarily intense. The probe fields B, (with a
frequency vy=vg+6) and B_j(v-;=vg-5) are assumed weak; vq is

the frequency of 8.

Typical single mode gain spectra for a resonant pump (A;=0,
a=5y) ard By/y=1, 2, 5 and 10 for curves 1 to 4. The plotted
quantity is Im(p23(0)/n1°) which 1is proportional to the

instantaneous growth rate |B 0 \NG( Bo) |30

As Fig. 2 but with a detuned pump (A21=5y, a=5y). The Raman
resonance at Ap3=A;; and the line center at A,3=0 are shifted

and get heavily distorted at high intensities.

Single probe gain Im(yp23(1)/n1051) for a detuned pump
(A3)/vy=-4 and «/y=0.1) with the main FIR mode at Raman
resonance i.e. A3/y=-4. The amplitude values Bo/y are 0.1,
0.5, 0.75, 1., 1.5, 2., 3., 5. for the curves 1 to 8. The
abscissa is the distance of the probe from the main mode in
units y, hence -4 is the line center position and 0 the Raman

resonance.

Growth rates Re(\t) for a bichromatic probe (the intense field
parameters are as in Fig. 4). We have chosen v 1 to match
Fig. 4. Since the probe component V_1 is symmetric with VY,

with respect to the position of the main mode, the gain curves



Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig.10

Fig.11

Fig.12

are also fully symmetric. The actual field pattern must be

calculated as outlined in Appendix B.

As Fig. 5 but with a strong pump : a/y=3

Single probe gain for a resonant pump (a/y=0.1) and a resonant
main FIR mode. Curve parameters : Bo/y=0.1, 0.5, 0.75, 1, 1.5,

2, 3, 5 (as in Fig. 4) for curves 1 to 8; B1=0.1y.

As in Fig. 7 but with an intense pump, a/y=3.

Growth rates for a bichromatic probe corresponding to the

parameters of Fig. 7.

As Fig. 9 but with an intense pump o/y=3.

Representative resonance structure of the single probe gain
under intense field conditions. In Fig. 11a we have parameters
81=0, Ay3/y=10, a/y=11, By/y=7 and B;/y=0.1. The top part
shows the gain and the bottom part the dispersion. The broken
lines denote resonance positions predicted by the dressed atom
model. In Fig. 11b (dispersion omitted) we have Ay1=A53=10y and
the rest of the parameters as in Fig. 1la. In Fig. 11c,

A21=A23=0, (l/'Y=8 and Bo/‘Y’—'S.

Contour plots of the single mode probe gain on the (By, wy3-v;)
plane for A;;=A;3=0 and a=3y. The + signs indicate regions of

gain and absorption. The curves are shown in steps of 2.4X10‘3.
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The broken lines indicate the resonances predicted by the

dressed atom model.
Fig.13 As Fig.12 but for A, =Ay3=10y. Step = 10~3.
Fig.14 As Fig. 13 but with an increased value of a/y=10. The hatched

region displays stable single mode operation for the case of

cavity losses C/Q=0.02. (cf. Eg. (IV.1)).
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