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ABSTRACT

A positive-definite local power absorption density for standing

waves in stable plasmas is described.

1. INTRODUCTION

An important goal of the theory of RF heating of plasmas is the
prediction of power deposition profiles. The fusion engineers need
these profiles as an input to their transport codes. They are then

able to interpret experimental data and to extrapolate to future

machines.

In toroidal machines where the heating power must be transported
perpendicularly to the confining magnetic field one seeks to compute

the absorbed power density as a function of the minor radius. In a



situation where the wave is weakly damped by a stable plasma and yet
totally absorbed in a single pass, no question arises as to how the
time-averaged local energy absorption should be defined.l If, however,
the wave is not absorbed in a single pass, as it frequently happens,
and standing waves are formed in the plasma cavity or in parts of it,

one might get time-averaged power deposition profiles which locally

assume negative values.?

Should we, under such circumstances, expect local plasma
cooling? Of course not! We just did not ask a precise question. We
ignored the fact that the particles gyrate around the magnetic field
lines. A gyrating particle interacts with the wave field at different

spatial positions and we have therefore to be careful with what we

mean by "local". There is no problem with a weakly damped propagating
wave where a time average automatically yields a space average, too.
This is not true for a standing wave where a particle with a finite
Larmor radius sees a wave envelope with a non-negligible spatial
variation. In order to decide whether a wave heats or cools the plasma
one has to determine the energy gained by the particles.3'* If we
identify the particles by their initial positions at a given time, say
t = 0, we can associate the energy absorbed by these particles with
their initial positions and in this way the positive-definite local

power density is obtained.3'™

2.  PHYSICAL MODEL

To be more specific, let us assume a plane plasma slab confined

in X € X < Xy by a magnetic field B = B&;, B = const. The



particle densities ny(x) and temperature Ty (x) are in general
functions of x. For a wave field of the fom ReE?x)
exp| i(kyy + kzz-wt)] the linear wave equation for such a plasma,
correct to second order in the Larmor radius and to first order in the

scale length of the equilibrium gradients (i.e. ony,/d3x and dT. /dx)

has the form®

Ba .

rotrot £ = ($+ % %B++———a—-) E. (M)

Here the operators d/dx act on everything to their right. The particle
dielectric tensors ?, ?, Eﬁ- and ? satisfy certain symmetry relations.
Their elements are expressible in terms of equilibrium quantities like
the plasma frequencies wpgr the cyclotron frequencies wgy, the
thermal velocities vy, and the plasma dispersion functions for the
cyclotron harmonics 0, +1 and+2. Given the wave equation (1), one may

derive a conservation equation of the form

oM +d s -y (2)

dx
where
(1) >% > 3 > % 3 gh
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Q =M[E sy « E+E 030‘8;(-—dx0B oE—dxoao-d—]



3. RESULTS

In the case of a propagating wave, eq. (2) can be interpreted as
the energy conservation law: Q(1) is the power density and s(h) is

the total (Poynting + kinetic) energy flux. The case of a standing

Take a standing, low-frequency (w & wci), fast magnetosonic

wave in a homogeneous plasma
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and compute Qf{1). One finds

2

W »
0" = jm 22| Bl (k*)2 (3cos?kx - 2sin’kx).
kzvthe ®

Here Z is the plasma dispersion function as defined by Shafranov.® The
integral of -Q(1) over the whole plasma volume is positive, as it
should be for a stable plasma, but the local values can have either
sign. We have found" that the local power absorption related to the

initial locations of the absorbing particles takes the form

It can be shown that Q(2) is positive-definite as long as the finite

Larmor radius expansion holds. Most important, the difference between



of1) and 0(2) can only be brought into form (3), if equilibrium

gradients are included in the dielectric tensor.

Specifically in the Alfvén Wave Range of Frequency (AWRF) we have

found that the term®

W d 2
5 — [we {1-2(
C wcekz dx = pe

W

|kz|vthe

)}]

has to be included in Yyz- A typical result for Alfvén Wave Heating

is shown in Fig. 1. In this frequency range the flux in Eq. (3) takes

the form™'®

da
(1) _ &(2) _ + * d 2 _1 Tzz 2
S sl = Im[ZBzy Re(EE,) + «,, 3% 1B,|* - 5= [E,|°]

In cases where the equilibrium temperature is small at the plasma
boundary, S(1)-s(2) is exponentially small there and we should

have

X X
r (M. _ r _(2)
fxx Q''ax = f"x Q'“’'ax

This is perfectly the case in Fig. 1.
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Fig. 1. First and second order power densities, Q(1), 0(2) and fluxes,

S“), 5(2), as a function of position as obtained from a numerical
solution’ of the wave equation (1) in the AWRF. Shown is an Alfvén
Wave Heating relevant case where a fast magnetosonic surface wave mode
converts into a kinetic Alfvén wave at x = +8.6 cm.
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ABSTRACT
A toroidal global wave code has been developed for the study of

l The code takes into account the full

ICRF heating in tokamak plasmas.
geometry of the equilibrium and is suitable for the investigation of
mode conversion scenarios. The influence of the existence of global

waves 1is examined here.

INTRODUCTION

A global wave calculation implies the resolution of the relevant
system of partial differential equations in a well-defined geometry in
a bounded damain. Let us consider a toroidal plasma in an axisymmetric
equilibrium surrounded by a vacuum region containing an antenna and
enclosed by a conducting shell. The equations for the rf field can be

written as

rot rot E - w?/c? ¢ E = 0, (1)



where ¢ is the dielectric tensor operator. We use the cold plasma
model with vanishing electron inertia. In this approximation we write

in the local magnetic coordinate system e = Bo/Bor

ne

oy <V/|V¥|s ea = &g x en:

€ €
NN "N& J B
€ = + —g 0 rot
= ENI. ENN Bo
e = c? Z fi e = ic2 fiw/ ©oi
NN 2 2/, 2 - 2 2,2
Cp i 1-w /wCl Ng Cp i 1-w /w01
n.m (2)
C = N . =
A O I“l'O. J3J 1 z n.m.
] ' J 3]
]

The antenna is modelled by an infinitely thin sheet on which the
rf current is prescribed. Before solving eq. (1) we first write it in
a variational form in toroidal magnetic coordinates. We use appro—
priate boundary conditions at the plasma-vacuun interface, at the
antenna and on the shell. The variational form is then discretized on
a general irregular mesh and solved using finite hybrid elements. For
more details, see Ref. [1]. A great advantage of the finite element
method is that no WKB approximation is made. Moreover, we can try to
get as close as possible to the exact solution by making convergence

studies and thus measure the accuracy of the result.

The operator defined by egs. (1) and (2) is non-compact due to

the presence of singularities at the Alfvén and ion-ion hybrid reso-

nances. The relation defining the resonances is &yy - kuz = 0,
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where, in toroidal geometry, kj? is a differential operator. A
consequence is that the resonances coincide with magnetic surfaces.!'?
To turn around the singularities we add an imaginary part to the
dielectric tensor, either directly to eyy (eny + 18) or by re-

placing w by w(1 + iv).

RESULTS

In the traditional theoretical picture of ICRF heating it is
often argued that it is necessary to use a scenario in which the
single-pass absorption is large. In this paper we intend to moderate
this belief by showing a striking counter-example.

Let us consider a JET plasma (aspect ratio 2.4, QP =1, g3
= 2.2, elongation 1.68, B, = 3.4 T, Ry = 3m, ng = 3.242 10'%m3)
containing a mixture of deuterium and hydrogen with ng/ne = 30%.
The basic theories predict for this case that a wave incident from the
Low Field Side (LFS) is almost 100% reflected, but a wave coming from
the High Field Side (HFS) is absorbed at the ion-ion hybrid resonance
with almost 100% single-pass absorption. An approach like ray-tracing®
would clearly discard the LFS antenna in favour of the HFS. Using the
global approach, our conclusion will be opposite.

Since global modes can be excited as soon as the absorption is
less than 100%, a LFS antenna can excite them but not a HFS. The
results of our code confimm this fact. The total power as a function
of the frequency for one toroidal wavenumber (n = -15) is shown in
Fig. 1. For the LFS antenna we find sharp peaks that we identify as
global eigemmodes of the fast wave. Notice that the main peaks are

surrounded by smaller "satellite" peaks. These peaks are a result of
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the coupling due to the toroidal geametry: the modes have the same
radial wave structure as the main peaks but a different poloidal
structure. If we perform the same calculation in a 1-D slab model we
find only the main peaks.* Thus in toroidal geometry the global modes
are more densely packed than in the 1-D model and the average coupling
of the LFS antenna is in this case as good as for any other scenario

having a good single-pass absorption.

In Fig. 2 we show a contour plot of the anplitude of the wave
left-hand polarization, |E+| » for a frequency of 42.85 MHz corre-
sponding to a main peak of Fig. 1. As expected strong reflection
occurs and the wave field is confined between the IFS edge and the

middle of the plasma.

The results for the HFS antenna look quite different. First of
all, as expected no global mode is excited. Secondly, the coupling is
very low as compared with the IFS antenna (see dashed 1line in
Fig. 1). This surprising result is an effect of the toroidal geome—
try. The fast wave is evanescent near the plasma boundary due to the
low density in these regions. However, it is more evanescent on the
HFS than on the LFS. If we analyse the dispersion relation of the fast
wave and approximate the parallel wavenumber by n/r, which is 2.4
times larger on the HFS than on the IFS, we see that the region of
evanescence extends over 23 cm on the HFS and 1 cm on the LFS. This
strong evanescence can be visualized on a plot of the wave left-hand
polarization (Fig. 3). The amplitude of the wave is reduced by a

factor of about 6 through the evanescence and thus the total power by
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a factor of about 36. Since there is no reflection but all the incom-
ing power is single-pass absorbed at the ion-ion hybrid resonance,
there is no possibility for the wave to build up an eigenmode and

hence the coupling is weak.

CONCLUSION
We have shown that in some cases the global approach brings a new
theoretical picture of ICRF heating. We have also shown that the

toroidal effects play an important role.
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Fig. 1: Power vs frequency for
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Fig. 2:  Wavefield |E | for IFS,
£f = 42.85 Mz

Fig. 3:

Wavefield [E | for HFS, £ = 42 Mz
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ABSTRACT

A global wave code for ICRF heating in slab geometry is used to
compute the power absorbed by the plasma for high field side (HFS) and
low field side (LFS) antennae. The study is made for a typical JET
plasma. It is shown that LFS is at least as good as HFS due to the
existence of global modes and that it should be much better in

toroidal geometry.

INTRODUCTION

Performing a global wave calculation means that one resolves the
equations in the plasma and vacuum with boundary conditions on the
interfaces plasma-vacuum, vacuum-antenna-vacuum and vacuum—conducting
shell.l These equations, assuming an exp(-iwt) time-dependence, taking
the cold plasma model and neglecting the mass of electrons are written

as follows:
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Vx(YxE)-eE=0, (1)
where
€ €
€ = L Xy ’
= —sxy €
2
€ = z wpl wz
4 2 2 _ 2 4
g C wCR, w
2 2
W w w w W
€ = - i _.E_ + 1 z .L’Q' cz’
2 2 2 2 *
Xy I“’ce‘c L ¢ wck—w

The summation extends over all ion species 1, wpg and wgg
being the plasma and ion cyclotron frequencies. The generalized equa-
tions containing the hot plasma model are discussed in reference [1].
The boundary conditions are obtained by means of Maxwell's equations
in the vacuum neglecting the displacement current and assuming the
prescribed current to be localized on an infinitely thin sheet. The

shell is supposed to have zero resistivity.

The plasma is situated in the domain ¥pl ¢ X < Xpr and is
inhomogeneous along x. The conductive shell is localized at x = Xg]
and X = ZXgr. The antenna lies at x = x; with Xpr < X
< Xgr. The magnetic field, parallel to =z-direction, varies as
1/(Ry * x) depending on whether the antenna is on the IFS or HFS
respectively. The variational problem, obtained by multiplying equa-
tion (1) with a test function and integrating by part, is solved using

the finite element method.? To get around the singularity at the ion-
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ion hybrid resonance, defined by g - kz2 = 0, we introduce an imag-
inary part in w, w(1+iv), which consequently introduces an imaginary

part in e, .

RESULTS

We shall use the following typical JET parameters for the 1-D
plasma: xpr = “Xpl = 125 an; Xgr = —Xg1 = 137.75 an; x5 =
131.375 am; Ry = 300 an; By = 3.4:10" G; ng = 3.242+10!3 an3;
and a mixture of deuterium and hydrogen with ng/ng = 30%. These

parameters correspond to the ones used in reference [ 3].

The dispersion relation of the fast wave has its cut-off on the
LFS of the ion-ion hybrid resonance. Therefore it is expected that the
wave will be totally reflected and no energy will be transferred from
the wave to the plasma. On the contrary, for the HFS antenna the
resonance occurs before the cut-off and the wave energy is totally
absorbed by the plasma. We have calculated the total power versus the
frequency for k; = 0.05 and ky = 0.01 (Fig. 1). This value of k,
corresponds to a toroidal wavenumber n = 15 on the magnetic axis
(Ro = 300 cm) in toroidal geometry.3 We see that for the HFS the
coupling is about constant, corresponding to the 100% single-pass
absorption mechanism. But for the LFS there are sharp peaks due to the
existence of eigemmodes. The wave reflected by the cut-off can build
up a standing wave and the coupling is large. The global waves cannot

be excited with a HFS antenna, as can be seen in Fig. 1.



- 17 -

If we make the same study in toroidal geometry using the code
LION'*, we see that there are more peaks for LFS due to toroidal
coupling of modes having different poloidal structures and that the
total power for HFS is much lower than for LFS.? Thus there is a much
larger difference between IFS and HFS in toroidal geometry than in a

slab. We shall show that this is a toroidal effect.

Let us analyse the dispersion relation of the fast wave obtained

in the WKB approximation valid outside the ion-ion hybrid resonance:

Kx) = REL (2)
g(x)
where
h(z) = ¢ - ki + 8)2<y /ep ¢ 9(x) = (e:,,-k2z)/sF '
Ep = e‘_—kf,—ki .

Figure 2 shows the wavenumber kF2 versus x near the plasma boundary
for w = 43.5 MHz. We see that in slab geametry (continuous line) sz
is negative within 10 cm on the HFS and 3 cm on the LFS. Thus there is
a short domain of evanescence as the wave enters into the plasma. As
lkFl is small the asymmetry between both sides is small and the

average total power tranamitted to the plasma in the frequency range
considered is about the same for HFS and LFS antennae. For the former
the good coupling is due to single-pass absorption while for the

latter due to global waves.
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In toroidal geometry we can approximate k, by n/r, n being the
toroidal wavenumber. The variation of the parallel wavenumber enhances
the asymmetry of the dispersion relation between HFS and LFS. This is
shown in Fig. 2 (dotted line) where we see that the evanescence region

extends up to 23 am for HFS and only 1 cm for LFS.

Thus, for the HFS the evanescence domain is about 2.5 times
larger in toroidal geometry than in 1-D geometry and moreover |kF|
is about 3 times larger. This vyields a factor of about 6 for the
amplitude of the fields. As the power is proportional to |E.|.|2 ¢ the
total power in toroidal geametry for HFS should be about 40 times
lower than for slab geometry, which is exactly the case shown in
Ref. [3]. We have checked this using our 1-D code by taking k, =

n/(Ro+xp1) = 0.09 for HFS. The power drops to 0.4 at 43.5 MHz.

CONCLUSIN

We have calculated, in a slab geometry for typical JET plasma
parameters, the total power transmitted to the plasma from HFS and LFS
antennae. We have shown that, in spite of what could be deduced from
the single-pass absorption, LFS is at least as good as HFS on the

average due to the existence of global modes.

Finally, by analysing the dispersion relation of the fast wave we
have shown that in a tokamak the toroidal effect considered should not
change the coupling for the LFS but lowers it dramatically for the HFS

antenna,
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