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Abstract

The ideal MHD stability of cylindrical equilibria with mass flows
is investigated analytically and numerically. The flows modify the
local (Suydam) criterion for instability at the resonant surfaces
where f-g = 0. Sheared flows below the propagation speed for the slow
wave are found to be destabilizing for the Suydam modes. At a critical
velocity, where the shear of the flow exactly balances the propagation
of the slow wave along the sheared magnetic field, and the X8 = 0
surface is at the edge of a slow wave continuum, there is instability
regardless of the pressure gradient. Above the critical velocity, the
RE = 0 surface is stable, but an infinite sequence of unstable modes
still exists with frequencies accumulating toward the edge of the slow
wave continuum at nonzero Doppler shifted frequency. The stability of
the infinite sequences becomes a nonlocal problem whenever the
accumulation frequency overlaps with a continuum at some other radial
location.
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I. Introduction

In tokamak experiments with strong neutral beam injection, equi-
librium mass flows can become substantial. For example, flows of the
order of the sound speed have been measured in pox! and in ISX-B.2 So
far, with few exceptions, MHD stability theory has been concerned with
static equilibria, and the knowledge of MHD stability for equilibria
with flows is rather incomplete. As is well known, mass flows render
the linearized MHD equations non-selfadjoint and the energy principle
no longer gives a simple, sufficient condition for instability. Thus,
the stability considerations become considerably more involved than in
the selfadjoint static case. Previous stability studies of equilibria
with flows have treated the effects of rigid toroidal rotation on
ideal ballooning modes3 '™ and of shear flow on resistive tearing
modes.> ™’ It has been pointed out®'? that in toroidal systems,
equilibrium flows can lead, under certain conditions, to an unstable

continuous spectrum.

In the present work, we study, analytically and numerically, the
ideal MHD stability of circular cylinder equilibria with sheared flows
in the azimuthal and axial directions. We are concerned with the so
called local instabilities and first derive a modified Suydam
criterion for instabilities driven by the local pressure gradient and
flow at the resonant surface where *F = kB = 0. The modified
Suydam criterion shows that sheared flows below the slow wave speed
are destabilizing. At a critical velocity, where the shear of the
convection precisely balances the propagation of slow waves on the

sheared magnetic field, the Suydam modes are unstable regardless
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of the pressure gradient. At this critical flow, the k;= 0 surface
is also at the edge of a slow wave continuum. Above the critical
speed, the k= 0 surface is stable but we observe numerically that
one of the two infinite sequences of Suydam modes is picked up by the
edge of the continuum and the unstable modes continuously transform
into discrete (or global) slow modes. This transition is discussed
analytically and is shown to be possible when the edge of the

continuum overlaps in frequency with some continuum at a different

radius.

From analytic arguments and a numerical test case it appears that
the transfer of instability from the Suydam modes to the discrete slow
modes at the critical speed is generic and that, therefore, equilibria
with near- or super-sonic flows will generally be unstable. Our
numerical computations for the case of axial flow show, however, that
the growth rates of the flow driven instabilities can be very small,
in particular, in the supersonic regime. We also find that, although
the flow decreases the maximum stable pressure gradient, it tends to
decrease the growth rate of the most unstable mode for an equilibrium
that is already Suydam unstable in the absence of flows. Furthermore,
the unstable modes in the supersonic regime have a very complicated
structure involving nearly singular behaviour in the vicinity of
continuum resonances. Undoubtedly the stability of such modes is a
delicate subject; even small changes of the modelling equations may
drastically change the picture. Strong candidates for such
modifications are of course finite resistivity, ion viscosity and,
since the slow wave is essentially an ion sound wave along the field
lines, wave-particle resonance. However, as a first step toward a more

complete understanding, we believe that the ideal MHD model is useful.



After completion of this work, we were made aware of previous

analytic work on the same subject, by Hameiri!®

(also briefly
mentioned in Ref. 11). Several of the conclusions of the present
paper, in particular those concerning the modification of the Suydam
criterion, were reached by Hameiri,lo who also carried out a boundary
layer calculation similar to that in Sec. III.B of the present paper.
However, in Ref. 10, the nonlocal aspect of the problem, brought about
by overlap with other continua, is overlooked and the modified Suydam
criterion is presented as a necessary and sufficient condition for
local stability. As we show numerically and analytically, this is not
the case, but, in the presence of flows, nonlocal effects can
influence the stability of the "local" modes. An important
consequence of the nonlocality is the instabil ity of the discrete slow

modes for supercritical flows.

The plan of this paper is as follows. Section II derives the
second order radial eigenvalue problem. In Sec. III we consider, by
an indicial equation plus boundary layer analysis, the different types
of "local" instability that can occur: modified Suydam modes and
discrete slow and Alfvén modes. We also discuss the consequences of
overlap with other continua. Finally, in Sec. IV we present detailed
numerical results for a particular equilibrium profile when the flow
speed and pressure gradient are varied. The test case shows detailed
agreement with the theory and examplifies the importance of overlap
with other continua. This effect results in the stabilization of half
of the Suydam modes for slightly subcritical flows and instability of

the discrete slow modes for supercritical flows.



II. Radial eigenvalue problem in a cylinder

In a pioneering paper on MHD stability in the presence of
equilibrium flows, Frieman and Rotenberg!? showed that the
linearized motion of the Lagrangian displacement (i.e., the
displacement of a fluid element moving with the equilibrium flow)

is described, in Eulerian coordinates, by

2> >
0 25 4 26 3w & = _ yp + Bovd + Qevd
a2 dt
+ V'[pg(zov)\_; - px-;(\-;-V)g] ' (1)

where

> > >

Q = Vx(ExB)

is the perturbed magnetic field,

> > > >

Py = = YP Ve — §+Vp + B*Q

> >
is the perturbed kinetic plus magnetic pressure and p, v, B and p

denote the equilibrium density, flow, magnetic field and pressure
respectively. Specializing to cylindrical geometry and assuming an
exp[ i(wt+mo-kz)] dependence for the cylindrical components of the

displacement, we obtain the following equation of motion



— ow? E = -Vpx + Bevd + DovB

- [e %5 ved + rz —d-(%é)] r

r dr

+ 2iwp fe EXZ ’ (2a)

where

$=w+i-3=w+mv9/r—kv (2b)

z

is the local Doppler shifted frequency and the cap signifies a unit

vector.

Following Appert, Gruber and Vaclavik,13 we derive from (2) a
pair of first order radial differential equations for £, and px.
This may be done, for instance, by projecting (2a) along the field
lines to express V-Z in terms of pxr and £, and eliminating g

e 4
and £, in favour of Ve, px and Ey. Substitution into the

-
definition of V+£ and the radial equation of motion then yields

1
AS = (rF’r)' Ci€,. = CoPx

(3)
AS p,

C3F=r - Clp* r

where prime denotes radial derivative. The coefficients in BEq. (3) are

given by



A = pw? - F2 ,

s = (B®+yp)pw? - YpF? ,

_ ™2 2

Ci = pw°Q/r - 2mST/r ’

C, = p%* - (K2m?/r)s (4a)
C3 = AS C, - 4 ST?/x? + Q?/r2 ,

Ch, =A+ r a_ [(Bz—pvz)/rz]

b dr 6 "'0 '

where we introduced the notations

5]
1}

keB = k,B=mBy/r -kB, , T=FB,-puv,

(4b)

0
]

~2 02 2 ~ 2 _ 2_ 2
pw (Be pve) + p(Bew Fve) (2Be pve)A + ZBGFT R

Equations (3-4) state the eigenvalue problem for the ideal MHD
spectrum  in a circular cylinder with equilibrium flows. The
differential equation (3) 1is identical in form to the static

system,lo'll 113

and the flow only modifies the coefficients. In
particular, axial flows only enter throuwgh the Doppler shift and do
not appear in the equilibrium relation (p + B2/2)' = (pvg - Bg)/r. In
a toroidal system, toroidal flows also give rise to centrifugal forces

which affect both equilibrium and stability.

As in the static case, the radial eigenvalue problem has singu-
larities whenever A = 0 or S = 0, and this can happen only when o is
real. These singularities give rise to four distinct continua, viz.

two Alfvén continua A = 0, or
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w=Q(r) = - kev + KVa (5a)

where v, = B//p is the Alfvén speed, and two slow wave

A
continua S = 0, or
+
w=04r) =-kV kv, o, (5b)
where vg = va[yp/(B?+yp)]1/2 is the propagation speed of slow

waves for ky » w, 1t

Before analyzing Eg. (3) in detail we draw attention to a certain

cancellation occuring when AS = 0. This follows from the factorization

2 _ - _
C1 C2C3 AS (C5 C2C4), (6a)
where Cy can be written
_ 2,2, 2,2 ™2, 02 2.2 22 ~_ 2
Cg = r “(k™4m"/r) [pw” (2Bg-pvy)® - p vy (Byw-Fv,)*]
+ (41%/r%) (pu~k*yp) - (4T/r®)pw? (2B2-pv2) . (6D)
There is considerable simplification when vy = 0
Cy(v,=0) = (4ng2/r2)(p$232 - Fyp) . (6¢)

If the factorization (6a) did not occur, Eq. (3) would have essential

singularities when AS has a zero of quadratic or higher order.



IIT. Analysis of local instabilities and singularities

Iocal conditions for instability can be found by examining the
singularities AS = 0 of Eq. (3). In the selfadjoint static case, w2
must be real and the only singularity that can give rise to
instability is at w = 0 and ky= 0, where both A and S vanish. The
stability criterion was given by Suydam.! For the case of finite mass
flow, a straightforward indicial equation analysis shows that the
Suydam criterion is modified. On a more detailed level, by a boundary
layer analysis, we find that flow gives rise to a qualitative
difference with the selfadjoint static case, viz., the question of
stability for the infinite sequences becomes nonlocal whenever the
accumulation frequency overlaps with a continuum at some other radial
location. In this section we analyze the different singularities of
Eq. (3): the continua, the Suydam surface ky = 0, and the edges of

the continua.

At a continuum singularity r = ¥er AS has a simple zero,
AS(ro) = 0 and (AS)'(rs) +# 0. Expanding (3) to lowest order in x
= I-Ig, substituting £ « xV and using (6) we find the indicial

equation v?

= 0. This implies that the continuum solutions are of the
same nature as in the static casel", r(x) ~ £o log |x| + E40(X)
+ E_o(—-x), where Eor &+ and E_ are constants and o denotes the

Heaviside step function.

III.A The modified Suydam criterion

At the "resonant surface" r = r, where ky= 0, A and S both

vanish quadratically when S(ro) = 0. To lowest order around the
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resonant surface, the coefficients of Eq. (3) behave as

where X = ¥ - ro and the c's can be expressed in terms of
£=F', (7a)

measuring the shear of the magnetic field,

g=vp (ke¥)' = vp 0", (7b)
measuring the shear of the convection, and

V=vovy (7¢)

measuring the azimuthal flow. Setting & = EgxV, px = pox""'l, we

obtain for the characteristic exponent

N 1 _py1/2
v = 2i(4 Do)/ 14

_ _ 2_ 2
D0 = (c2c3 Cy cocll)/c0 .

In section III.B we find that unless the Suydam frequency
wg = - (-]-c'-.\-r') (rg) overlaps with a continuum at some other radial
location, a complex characteristic exponent v implies the existence of
two infinite sequences of instabilities. Asymptotically, the
eigenfrequencies of these modes converge geometrically toward the

marginal point, ® = 0 at ky = 0 and the limiting solution for &,
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has an infinite number of oscillations in the vicinity of the resonant
surface. The local criterion for instability, corresponding to

Suydam's criterion in the static case, can be written

where

2 2 , B2
D0=(_g—§——1— {_2[_1_(pl+y_)+§ V(Y.)l +g__Z_MV]
7z r r B2 r

q'By/ 1-M? ™d By
4 2
+—2  (v-MB,)
1 1-g [(v-iB,)2 + M2 (B2-v2)]?} . (8b)
r?82 (1-M2) (B-M2) 0 ©
In Eq. (8b) we introduced
B = v/ (B3yp) = Vo/Vy (9a)

representing the pressure effects (note 0 < B < 1), and the Al fvén

Mach number

M=g/f=vpw'/F . (9b)

In order to relate to toroidal devices, we introduced the safety
factor q = rBy/RBg, where R denotes the major radius, so that at
the resonant surface F' = f = - kBz gq'/q. Furthermore (Bg/r)"' in
C, was eliminated by means of the equilibrium relation. In the case of

purely axial flow, Eq. (8) simplifies considerably
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' 2 BZ
D0=(ﬁ_ 2 (:g +2am__e)> 1 , (8c)
q'B.) 1-M®\ r pg-M? ? 4

Z

which is readily seen to reduce to Suydam's criterion when M = 0.
Equation (8) shows that the flow can play a very significant role for
the stability by making either A"= -2f2(1-M?) or S"= —(B2+yp)f2(B-M?)
small. In these two cases, shear of the convection exactly balances

the propagation of Alfvén or slow waves along the sheared field

> 1 1 ] "
(kev) (k,vy)' , A

It
o
-
=
]
I+
—_
-

(10)
or

(kevr) "

il
I+
I+

1/2 (1)

(kyv)' + S5=0 , M=zp/",

In contrast with the static case, the inertial terms now have an
effect on the stability as expressed by the appearence of M = /p?u"/F'
in the stability criterion (8). The same effect is manifest in (10)

and (11) as the balance between convection and wave propagation.

In tokamaks, where vg/va = p1/2 is small, the resonance
with the slow wave (11) is met with much weaker flows than that with
the Alfvén wave (10), and the region around the critical speed M
= + g1/2 is the subject of main interest for the present paper. We
emphasize that in the incompressible limit y +» «, vg » va and the

critical speed (11) is artificially raised from the sound speed to the
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Alfvén speed. Thus the assumption of incompressibility, which is
usually justified at marginal stability in the static case, is not

appropriate here.

The criterion (8c) shows that subcritical (M2<B) axial flows
decrease the maximum pressure gradient that can be stably confined,
while the general case with azimuthal flows (8b) is less clear—cut.
However, for flows slightly below the critical speed M = BV 2,
Eq. (8b) indicates instability independent of the pressure gradient.
Similar to the original Suydam criterion, the modified form (8) does
not depend on the absolute magnitude of k and m, only on the ratio
kry/m. Thus, the local stability criterion applies to modes of
arbitrarily short wavelength so that kry/m can be treated as a
continuous variable and the stability criterion must be considered

everywhere, not only at certain low order rational surfaces.

III.B Iocation of unstable roots in the complex plane

Interesting information concerning the existence and location of
point eigenvalues in the complex w-plane can be obtained from a
boundary layer analysis, slightly modified from that given by

Greene!®'17

in the static case. For this purpose, it is more
convenient to work with the second order, so called Hain—Lijst18
equation for {, readily derived from (3) and (6)

aas a_ _[d(c1) S S

dr rC, dr °F Ty dmemo (12)
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As pointed out by Appert et al.,!3 the singularity C, = 0 (but AS # 0)

is only apparent as it is not a singularity of the original Eq. (3).

To find the scaling relations for the boundary layer, we first
note that when the Doppler shifted frequency is zero at the resonant
surface r = rg, the leading term in AS/rC, is quadratic in x = r-rg,
while that of (C;/rC,)' + C5/xC, - C,/r is constant. This implies that
the lowest order approximation of (12) is invariant under rescaling of
X. Furthermore, around x = 0 and '(B'(ro) = 0, A and S are both
quadratically zero in x as well as in w. Therefore, if we introduce a
finite Doppler shifted frequency ® = -ir at x = 0, rescaling of x
leaves the lowest order equation invariant if I' is scaled the same way
as x. (For the scaling argument to be stricly valid, I must be small
enough to be negligible outside the region where the lowest order

expansion in x is accurate.) Thus, the appropriate scaling is

>
i}

(VpT/f) X = TX ,

(13)

=3
1]

iES(x=O) ’

Pal
where we shall assume Rel' > 0 and where X is a nommalized (dimension-
less) distance to the resonant surface. In the following, we restrict
the analysis to the analytically tractable case of purely axial flows

and obtain the scaled, I'—invariant inner layer equation
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4 [ (1+imx) 2+ x2] Ex
ax dx

4 g2 1 + 2iMX

+ [D0(1-M2) - 7 2 > 2
R°q'? g-M? (1+iMX)2+px2

]Er=0. (14)

Equation (14) shows that within the "inner layer" |X' < 8=1/2, the
finite frequency shift is essential. Furthermore, for large ‘XI , there
exists an "intermediate" region where the frequency shift becomes
negligible, and where the inner layer equation (14) approaches the
small |x| limit of the external (marginal stability, I = 0) equation

dx2

g
ax d—§r+Do§r=0 . (15)

The boundary layer analysis consists of matching the solutions of the
external Eq. (15) for |x| small with those of the complete inner layer
Eq. (14) for |X' large, using (13) to relate x and X, to obtain an

equation for TI.

It follows from Eq. (14) that £, has logarithmic singularities
on the imaginary X-axis
Xae = i(M £ 1)1 '
(16)
i(M + /p)~1 '

Xst

and that one singularity moves to infinity at the critical velocities

M=+ 31/2 and M = * 1. Figure 1 shows the complex x and X planes
lal

and illustrates the fact that if the assumption Rel' > 0 is violated,

the singularities (16) move across the real x-axis and the results
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sl
obtained for Rel' < 0 are not the analytical continuation of those for

lal N
Rel' > 0. Therefore, Rel' > 0 is required for consistency. Needless to
ol
say, the case ReI' < 0 can be treated separately. The result is

unchanged except for a complex conjugation of the eigenfunctions.

As pointed out by Greenel®, Eq. (14) with M = 0 already has
too many singularities to be solved by the well-known hypergeometric
functions and we are led to a less specific analysis based on rather
general arguments. From now on, we assume that the local criterion for
instability (8) is satisfied so that the asymptotic solution of (14)

is oscillatory with a characteristic exponent

1 . 1.,1/2 1
v=-5tis ,s=(D0—Z)/ r Do >z (17)

Under the scaling (13) the inner layer equation is independent of T.
However, the asymptotic dependence for the inner layer solution is
given by the external solution which, when expressed in terms of X,

depends on I' via (13). For ReX large and negative,

= ap(-rX)-1/2+is 4+ o (-px)-1/2-is (18a)

where a;/a. is fixed by the external solution. Similarly, for ReX

large and positive,

= by (rx)=1/2+is 4 b_(Tx)-1/2-1s (18b)
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with by/b. fixed by the external solution. Since the scaled inner
layer equation is independent of I', so is the connection matrix bet-

ween the expansion coefficients for £, in the two asymptotic regions

ReX « -~1/2 and Rex » 8~1/2, Thus

by S upp w2 a, e
L= o ' (19)
b_P—ls Uz] Us o a_I‘-ls

where u;), ujp, up; and uz, only depend on the coefficients of
Eq. (14). The external solution provides the boundary conditions by

determining

Ry = b-l-/b—r R. = a+/a- r (20)

which allows elimination of a, and b, from (19) to give a quadra-

tic equation for r2is

up RyRC? + (Ryugpo=Ru; )¢ = uyp

¢ = 1‘215 . (21)
To be more explicit, we have to pay attention to the fact that

the coefficients of Eg. (21) are not arbitrary. First, by considering

the Wronskian of (14) we have

upgugy = upjupn = 1.

Furthermore, it is readily seen that Eq. (14) has two independent

solutions with the symmetry property £ (-X) g*(X) for X real. This

* * *
leads to the four conditions ujjujsy + |u21|2 = 1, uzjugy + ugouis =0

and 1 <> 2, which, together with the Wronskian condition, imply that
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Re ull = Re ll22 =0 ’
*
o = Un; r (22)
|u21\2 - ujjupg =1 .
If we define
b= (Ry/R)1/2 , (23)

the solution of (21) can be written

Pfls =, = (2uy1) " (RyR_)™1/2
x {upemt = ugope £ [4 4 (upptt + upu)?]1/2) (24)

Because of the multivaluedness of the complex logarithm, the two

solutions for { give rise to two distinct geometrical sequences for T

r{ =1 ep-nmss) (25a)
logg

(o) £ .

= exp( 2is) , (25b)

where n is an integer. For each sequence, increasing n by one gives an
eigenfunction which has one extra period of oscillation around

r = ro.

We eamphasize that the analysis of this Section is only
asymptotic for ‘1‘| small, i.e., Eq. (25) is accurate only when n is
large and positive. The first few eigenfunctions do not usually

satisfy the scaling (25) very well, and, in particular, the maximum



- 19 -
growth rate always occurs for an eigenfunction for which the local
approximation breaks down. Thus, the maximum growth rate cannot be

computed from the local analysis.

ITI.B.1 Selfadjoint case

As is well known, the growth rate in the selfadjoint case M = Vv
= 0 is real. To see that this follows from the general formula (24),
we note that when M = 0, the coefficients of the inner layer equation
(14) are real and consequently uy) = u’:z. Together with the general

condition (22) this implies that

*
Ul = Upo

i sinh p ’

*

26a
Uz) = 4o ( )

eld cosh p ,

]

where p and ¢ are real. With regard to the R-coefficients, it is seen
that in the limit I' » 0, the external equation has real coefficients
(and real, homogeneous boundary conditions). Therefore, if the
external equation is free of singularities, it must have real valued

solutions, thus,

R (260

Substituting (26) into (24) we find that in the static case

argl:t=-7;— log |Ct‘=0 , (27)

Fal
hence T' is real and positive as it should. (Note that Rel' > 0 was
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required for consistency and that for each I' there is a corresponding

eigenvalue -T' with an identical eigenfunction.)

III.B.2 Non-selfadjoint case

When M # 0, the inner layer equation is complex and we have
¥ . .
upp, # u;] so that (26) is no longer valid. Instead, Eq. (27) is

replaced by the weaker relation

2s arg(r4T-) = - log |C4C-| = log |RR-| . (28a)

Let us first assume that the limit frequency wo = -(’13.?;’)(1:0) does
not belong to a continuum at some other radius. In this case, the
external equation is nonsingular and its solution will be real, hence
\R+| = |R_| = 1. Equation (28a) shows that in this case, the two

sequences (25) lie on two lines symmetric about the real r-axis,
arg I'- = - arg T4 . (28b)

Note that if w is an eigenvalue, so is w¥ with the complex conjugate
eigenfunction, and therefore there is symmetry about the real w—-axis
as well, see Fig. 2. [It may be added that for the opposite signs of m
and k, -w and -w* are also eigenvalues, and we can say that the
eigenvalues of the Suydam modes lie on four, asymptotically straight
lines in the complex plane. For vanishing flows, the four lines all
collapse onto the imaginary w-axis.] Finally, if |Re log ct‘ > n/S,

the growth rates do not satisfy the consistency condition Re ? > 0 and

must be rejected, since they do not correspond to integration along

the real r-axis.
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The results discussed so far are in agreement with those of
Hameiri.l!? Assuming that the reality condition (26b) is satisfied,
Hameiri shows that ‘Re log Ci‘ < m/s in the subcritial case, and
concludes that D, > 1/4 is sufficient for instability. However,
in general, when the limit frequency wg belongs to a continuum at some
other radial location, the external solution will be complex and
|R+R_| # 1. As a consequence, the phases of the two sequences are no
longer related as in (28b). More importantly, it is also possible for
one or both of the sequences (25) to be lost by moving off the

physical Riemann sheet.

We conclude that the "local"™ modes can be stabilized by effects
having to do with the global solution and hence the global equilibrium
profiles. To understand better the influence of the external
solution, we first note that R; and R. affect the eigenfunction in the
inner layer directly by providing the boundary condition at infinity.
Since the two asymtotic solutions of the inner 1layer equation
~ x1/2tiS phave the same fall off for large X, a change in the
asymptotic boundary condition will be felt throughout the inner
layer. Thus, in a sense, the term "local" mode is a misnomer. 1In the
static case, although the criterion for the appearence of an infinite
sequence of unstable modes is local, the nonlocal nature of these
modes shows up, for instance, in the slow ~1/X fall off of the two
contributions to the energy density w = (£2/2) (x2|g'|2 - D0|g|2).

Within the inner layer expansion, the contributions to §W from field
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line bending and interchange (each considered separately) are both
divergent at large X. Furthermore, as is well known in the static
case, the external parameters R; and R_ determine the mgnitude, but
not the phase of I'y. In the presence of equilibrium flows, also the

ase of r, is influenced by the external solution, and
stabilization may occur. We emphasize that at marginal stability,
where a mode can be created or annihilated by a small change in the
equilibrium, the mode belongs to a continuum and is therefore
singular. In Sec. IV we show a numerical example where one of the two
Suydam sequences is lost somewhat below the critical speed M = Bl/ 2,
even though the local criterion for instability, Dy > 1/4, is

satisfied.

ITI.C Global slow modes

When the flow approaches the critical speed M = 31/ 2 from
below, the imaginary part of the characteristic exponent v at the
Suydam surface goes to infinity (8). Thus, the marginal solution for
Ey becomes increasingly oscillatory and the asymptotic ratio of
growth rates between successive members of the infinite sequences
approaches unity at the critical speed. The numerical computations
presented in Sec. IV show that, around the critical speed, the growth
rate of the most unstable mode remains finite and well behaved while
the growth rates of the higher order, and less unstable, modes

increase.
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Although the modified Suydam criterion indicates that the-i:g'= 0
surface is stable for flows just above the critical speed (Dg +» - =),
we find numerically that there is still instability for supercritical
flows. However, the infinite sequence of unstable modes is now
connected with the edge of the slow wave continuum, which passes
through the resonant surface k; = 0 precisely at the critical speed,
as expressed by Eq. (11). Simply put, the infinite sequence whose
frequencies accumulate at the Suydam frequency,'g =0 at k; = 0, for
subcritical flows, is captured by the edge of the slow wave continuum,
d@g/dr = 0, at the critical speed when the two points coincide
radially. In this subsection we discuss analytically the stability of

the discrete slow modes.

We now consider the edge of a slow wave continuum, where S(r) is

assumed to have a quadratic zero at nonzero Doppler shifted frequency

S=0, S'=0, S %0, wg#0 . (29)

If we write S as

S = p(B2+Hp) (w?-12) ,
(30)

12 = (kB)%/p ,

the following conditions hold at the edge of a slow wave continuum

A Y X Y

ns=

: : #3000 (29Y)
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ITI.C.1 Indical equation

At an edge of the slow wave continuum r = rg, the eigenvalue

problem (12) has a singularity such that to lowest order in x = r-rg

S = 8"x2/2 ’
A’ Cl' C2, CL}, C5 = constant ’
(C/xCy) " = (ZBg/rz)' = constant ’

where, once gain, vg = 0 has been assumed. Thus, to lowest order in

X, Eg. (12) becomes

d » d -
X E&r TOES O '

where

2 2
D =%Tﬁ_s [2B,(B,/r)* - (2B k/xF)? (B?+yp) + (1-B)F?] . (31)

The condition for oscillatory solutions is
Dg > 1/4 . (32)

If (32) is satisfied, there may exist one or two infinite sequences of
regular eigenfunctions of (12), (discrete slow waves) whose eigen-
frequencies converge geometrically to the edge of the continuum (29).
In the selfadjoint case, the sequences must have purely real eigen-

frequencies. In the non-selfadjoint case, this restriction does not
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apply and, as we show in Sec. III.C.2, the global slow modes can

become unstable.

In contrast with the Suydam parameter Dy, Dg in (31) depends on
the magnitude of m and k. In the limit of short wavelength, the third
term in square brackets in (31) is dominant and the criterion for
discrete slow waves becomes S" > 0. On the other hand, when
|F| is small (as it is near the critical velocity), the second term in
square brackets in (31) is dominant and the condition for the exist-

ence of global slow modes becomes S" < 0.

The case when the edge of the slow wave continuum occurs at
r = 0 (which always gives an at least quadratic zero of S) can be
analyzed much in the same way. Here the lowest order expansion of the

marginal equation (w = wg) reads

(£(rEp) ) + (Dg - m?)Er = 0, (33)

where Dg is given by (31). The condition for discrete slow modes at

the centre of the plasma is obtained from the indicial equation

Dg > m? . (34)
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III.C.2 Inner layer equation

In the Suydam problem, A and S have quadratic zeros in x as well
as w and the radial extent of the inner layer scales linearly with the
frequency shift g(ro). At the edge of a slow wave continuum, S has a
quadratic zero in x but is linear in w. Hence, the frequency shift

must be scaled with the square of the inner layer dimensions. Setting

the appropriate scaling becomes

% = X [4p(132+yp)$sA/s"]V2 = xaV2 | (36)
The scaled inner layer equation,

4 2y & =

X (14X<) ot t Dsgr 0 ’ (37)

is essentially Legendre's equation with the general solution

_ 1, 1is 1 _is 1, 2
emadflgr 5 g7z X))
+a2X2F1(%+i§,%-%;§2—;—X2) .
Here ,F;, 1is the hypergeometric function, s = (Dg-1/4)1/% and

Dg > 1/4 was assumed. Using the hypergeometric transformation!® to
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express £, in terms of ,F; with argument -x~2 we obtain explicitly
the U-matrix connecting the asymptotic form of g, for X » — and

X > 4> as

*
U] T Ugo = i csch =s ’

% .
U1 = Ujg = i coth s elx ’ (38)

r'(is
x=251092+2arg(F(—15T)i—s—)-) ’
where I' now denotes the gamma function. [Note that (38) satisfies (22)
and (23) as it should.] Repeating the same analysis as in the Suydam
case we again obtain the quadratic equation (21) but now { stands for

A,
ALS, The dispersion relation can be written

pi - et (mr) V2 e x s0-AHVEY (39a)
c=7 [(R/R0) /2 + (R/R1) V2] sech ns . (39b)

We see that if
Re| = |R| =1, (40)

A, N
|Als| = 1 and, therefore, A is real and positive. As in the Suydam
case, the asymptotic external equation has real coefficients,

therefore BEq. (40) will be satisfied unless wg falls within some

other continuum.

In most cases, of course, wg will belong also to other conti-

nua. Under such circumstances, to determine Ry and R., a small but
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finite imaginary part has to be assigned to A so that the external
equation can be integrated on the real r-axis past the points where
wg equals any other continuum frequency. We emphasize that overlap
with a continuum destroys the reality of the external solution, since
near a continuum singularity at some complex radius rg,
£ = o log (r-rg) + E; and unless £y = 0, the solution will be
camplex on the real r-axis. The coefficients Ry and R. characterizing
the external solution are well behaved as A » 0, but in general they
do not satisfy the reality condition (40) and have cuts at Im A = 0.
We conclude that there is once again a consistency requirement,
namely, the imaginary part of A as computed from (39) must be
consistent with the value assumed in determining the external
solution. This consistency requirement is non-local and difficult to
deal with analytically since, depending on the equilibrium, there can
be an arbitrary number of such resonances. However, we know, a priori,
that in the selfadjoint case, A must be real. Then, if wg belongs to
some other continuum, the potential discrete modes will typically be
absorbed into that continuum. In Sec. IV, we show numerical examples
demonstrating that unstable discrete slow modes do occur in the

non-selfadjoint case when the flow exceeds the critical speed, M2 > B.

Under the conditions just dissussed, i.e., Dg > 1/4 and overlap
with another continuum, Eq. (39) can yield one or two sequences of
discrete modes with frequencies accumulating at the continuum edge

2 (M) = (@

exp(-2nn/s) . (41)
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It follows from (39) that arg(A;A-) = s~} log ‘R.,.R_I. The case of no
overlap is special in that arg Ay = arg A~ = 0, and both sequences in
(41) exist and lie on the real w-axis. If overlap with other continua
occurs, then, in general, |R+1L| # 1, and either none, one or both of

the sequences (41) may exist.

When the continuum edge is located at rg = 0, the inner layer
equation is more difficult and appears not to be explicitly solvable.
However, we can still apply the scaling analysis. This case differs
from the previous one where the continuum edge is located at nonzero
radius in that there is only one matching condition. [At the origin
the boundary condition is regularity rather than matching to an
external solution, and the left boundary condition becomes invariant
in the scaled variables.] Consequently, the matching gives a linear
equation for ¢ = '&is and there can be at most one sequence of

discrete modes.

We believe that the points discussed in this paragraph are
significant and of general interest. First, in the presence of
background flows, instability can occur for the discrete slow modes
whose frequencies accumulate at the edge of a continuum with a finite
Doppler shifted frequency. Secondly, the stability considerations for
these modes involves, in a nontrivial way, the properties of the
external solution and hence the global equilibrium profiles.
Therefore, it seems adequate to describe these modes as global rather
than local. Examples of such modes will be given in the numerical

section IV.



[11]

[12]

[14]

[16]

- 43 -

E. Hameiri, J. Math. Phys. 22, 2080 (1981)

E.A. Frieman and M. Rotenberg, Rev. Mod. Phys. 32, 898 (1960)

K. Appert, R. Gruber and J. Vaclavik, Phys. Fluids 17, 1471
(1974)

J.P. Goedbloed, "Lecture notes on ideal Magnetohydrodynamics",

Rijnhuizen Report 83-145, FOM-Rijnhuizen, Netherlands (1983)

B.R. Suydam, in Proceedings of Second International Conference on

the Peaceful Uses of Atomic Energy (Geneva) p. 157 (1958)

J.M. Greene, "Introduction to resistive instabilities",

LRP 114/76, Lausanne, Switzerland (1976)

M.S. Chance, J.M. Greene, R.C. Grimm and J.L. Johnson, Nucl.

Fusion 17, 65 (1977)

K. Hain and R. Liust, Z. Naturforsch. 13a, 936 (1958)

See, e.g., W. Magnus, F. Oberhettinger, and R.P. Soni, "Formulas
and Theorems for the Special Functions of Mathematical Physics",

3rd ed. (Springer, 1966), § 2.4.1.

D. Voslamber and D.K. Callebaut, Phys. Rev, 128, 2016 (1962)



- 31 -

and consequently Dg » +» (-») as the critical speed is approached
from above (below). This implies that the stability of the continuum
edge is exactly opposite to that of the k; = 0 surface (8) and we
may expect that the sequence(s) of unstable modes will be transferred

between the two at the critical speed.

It should be noted that the range of validity for the boundary
layer analyses of Secs III.B and III.C goes to zero at the critical
speed. This happens because S" goes to zero at the critical speed and
higher order terms in x tend to become important unless the frequency
shift is very small. Since Z)’s and S" are both linear in M?-g near
criticality, the scaling (36) shows that in order for the boundary
layer calculation to be wvalid, A can be at most of order
s"2 ~ (M*-B)2. A similar difficulty occurs in the Suydam case where
one pole (16) moves to infinity in the scaled variable X and the last
term in (14) blows up at the critical speed. Therefore, the behaviour
of the few most unstable modes around the critical speed cannot be
inferred from the boundary layer analysis. Numerical results are given

in Sec. IV.
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III.D Global Alfvén modes

An analysis along the same lines as in Sec. III.C can be carried
out for the edge of an Alfvén continuum, where A has a quadratic zero,
at radius r = ra. We find that the marginal equation has oscillatory

solutions when

Dp > 1/4 , TAZO0
(43)
where
k2 . (By¥B/kr) 2 q. 2B, Bg
Dp = B2 r gl r(krB,#mB,) = 2 ]
4B2
_ _6 1-2
7 T3 } . (44)

Except in the centre, the criterion for oscillatory solutions is
independent of the absolute magnitude of m and k. For rp # 0, the
inner layer analysis is identical to that for the slow waves.
Typically, the edge of an Alfvén continuum does not coincide with the
other continua and under such circumstances Eq. (43) implies the
existence of two infinite sequences of discrete Alfvén eigenmodes with

real frequencies.
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IV. Numerical study

In this section, we present numerical results for a particular
test case where we have followed the unstable frequencies in the
complex plane as the flow speed and pressure gradients are varied.
Only the case of purely axial flow has been investigated. The
equilibrium was a slightly modified form of the force-free Bessel

function model analyzed by Voslamber and Callebaut??
Be = J1(Ar) ’ BZ = (1—P1)1/2 Jog(Ar)

p =D + (P1/2) J2(Ar) (45)

Vo = 0 ’ vz = vzo(1-r2) '

with a conducting wall at r = 1, £(1) = 0. The value of A was fixed
at 2, which is well below the threshold for global current driven
instabilities, A = 3.176 at P; = 0. 2% We also fixed m = 1 and
kz = 1.2, so that there was always a resonant surface k; = 0

inside the plasma, and used y = 5/3, Py = 0.05 and p = 1.

Based on the local parameters D, and Dg, we have the stability
diagram of Fig. 3 where the stable region is marked A, region B is
potentially unstable to the modified Suydam modes D; > 1/4, region C
to the discrete slow waves at rg # 0, Dg > 1/4 and region D to
discrete slow waves at the center Dg > m® = 1. The boundary between
regions B and C occurs where the flow speed is critical M? = B. Along
the boundary between C and D, where the edge of the slow wave

continuum arrives at the centre, S; vanishes. Therefore, this curve
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is also critical in the sense that Dg + = and the marginal solution’
for £, becomes infinitely wiggly. We remark that because of the
rather flat equilibrium profiles (45), region C, where the edge of the

continuun is located at nonzero radius, is rather small.

The numerical results confirm the relevance of the local
criteria. Tey also give concrete examples where the coupling with
continua at different radial location gives rise to qualitatively new
effects as compared with the static case, notably, the disappearance
of one of the two Suydam sequences at slightly subcritical flow and
the transfer of the other sequences to the edge of the slow wave
continuum at the critical speed M = BV 2, From the practical point
of view, Fig. 3 gives rather a pessimistic view of the stability for
equilibria with strong sheared flows, since the entire region where

the flow is close to or above the critical speed is unstable.

IV.A Tracing eigenfrequencies

Using the shooting method with an implicit integration scheme for
Eq. (3), we have traced eigenfrequencies in the complex plane, varying
the flow speed V,o, with the pressure gradient P; held at some fixed
value. We have chosen two values of P;, namely P, = 0.10, which is
Suydam unstable already for vzo= 0 and also P, = 0, which is stable
in the absence of flows. These two values correspond to the upper and

lower edges of Fig. 3.

We discuss the case P; = 0.10 in detail. We have traced the first

few Suydam unstable modes starting at vy = 0. It is useful to note
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that the two sequences have eigenfunctions which extend primarily to
one side of the Suydam surface, i.e., r < ry or r > ry. These will be
referred to as the "inner" and "outer" sequences. For vanishing or
small flows, with the equilibrium profile used here, the inner
sequence contains the fastest growing mode. The mode with the second

largest growth rate belongs to the outer sequence.

Figure 4 shows the dependence of the growth rate on vy, for the
three first modes of the inner sequence r'y(M). A striking result
of Fig. 4 is that the growth rate of the most unstable mode is only
weakly dependent on the flow speed, and, in particular, it is well
behaved around the critical velocity M? = g. With a bit of hindsight,
one can understand that this is what should happen, since the fastest
growing mode is always one that violates the local assumption, and its
growth rate is dependent more on global conditions than on the local
properties in a small region around the resonant surface. As discussed

in ITI.C.3, this will be particularly true near the critical speed.

Secondly, the growth rates of the higher modes in the inner
sequence have maxima around the critical speed. This is readily
understood since the asymptotic ratio of growth rates between
successive members approaches unity at the critical speed as the
imaginary part s of the characteristic exponent goes to infinity. If
r(0) is only weakly dependent on vgq, r(n) for n 3 1 will have a
maximum around the critical speed, more pronounced the larger n is. As
is shown by Fig. 4, the ratio never becomes unity for the first few
modes and we reiterate that Egs. (25) and (41) only apply in the limit

of large positive n.
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Thirdly, and most importantly, all the modes of the inner
sequence remain unstable and become attached to the continuum edge as
it crosses the Suydam surface at the critical speed (Vgox = 0.18).
The discrete slow modes remain unstable after the edge of the
continuum reaches the center (at Vgo = 0.21). For even stronger
flows, the growth rates decrease with increasing flow speeds. The
decrease is more pronounced for the higher modes because s (the

imaginary part of the characteristic exponent) is decreasing away from

the critical speed.

Certain conclusions can be drawn about the asymptotic eigenvalues
for slightly supercritical flows by examining the explicit formula for
A1S obtained from the boundary layer analysis. Equation (39) shows
that when s + + «», the two sequences of discrete slow modes combine to
form one geometric sequence

~2is

2218 o 2 (iR (15 0(e7)]

The phases are given by
2s arg A, = 1og|R+R_| + O(e ™Sy

Consequently, either both or none of the two sequences should exist
depending on the external solution, and if Ry and R. do not diverge,

both sequences approach the real w—-axis.

Numerically, we find that both sequences of unstable slow modes
exist at slightly supercritical flows, but the convergence to the

asymptotic behaviour is of course slow. To illustrate this, and also
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support numerically the conclusion that the unstable slow modes belong
to infinite sequences, we show in Table 1I: the growth rates
Im A(M) = mm(w(M)-y(®)), the phases arg A(N), and the ratios
|A(n)/A(n'1)| for the infinite sequences at v,5 = 0.15, 0.19,

and 0.25. The table shows that the ratios of successive frequency
shifts converge to the theoretically expected values, exp(mn/s) or
exp(2n/s), respectively. We have also traced two high order modes
(the ninth and tenth) and found that they keep their ordinal number in

the sequences, switching from the inner Suydam sequence (region B), to

the two combined sequences of slow modes at rg > 0 (region C), to

the single sequence of slow modes at the centre (region D).

Figure 5 shows the radial dependence of the first and third
inner modified Suydam modes at vz = 0.15 (below the critical speed)
and Fig. 6 shows the corresponding modes at v, = 0.19, when their
eigenfrequencies accumulate toward the edge of the slow wave
continuum at rg = 0.39. Figure 7 shows the same modes at
Vzo = 0.25 when the continuum edge is located at the centre of the
plasma. It is evident from these figures that the transition between
the different regions B, C and D in Fig. 3 is a very gradual process
for the first few modes of the inner sequence, involving slight shifts
in where the eigenfunction oscillates faster and a gradual onset of
the continuum singularities. Of course, for the higher modes, the

changes will be more abrupt.

We now turn to the other Suydam sequence, the "outer" modes.
Figure 8 shows the dependence of the growth rate on the flow speed.

For subcritical flows, the growth rate of the first mode is
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essentially independent of vzy and, similar to the inner sequence,
the higher modes are destabilized by the flows. However, around the
critical speed, vzox = 0.18, the behaviour changes drastically and
dt certain flow speeds the growth rates go very quickly to zero. The
modes disappear when the frequency crosses the real axis and the mode
gets absorbed into a continuum. We see from Fig. 8 that the second and
third roots disappear below the critical speed. Figure 9 shows the
eigenfunctions at vz = 0.15 and Fig. 10 shows the third mode in the
outer sequence at vy, = 0.1592 where it is almost marginal. The
sharp drop in growth rate and stabilization of this mode takes place
when its frequency overlaps with the slow wave continuum near the

outer edge of the plasma.

To understand why such an overlap must occur, it is helpful to
study Fig. 11 where the radial dependence of the slow wave continuum
frequency Qg(r) is shown together with Re w for the first four modes
of the inner (Re w > wg) and outer (Re w < wg) sSequences when
Vyo = 0.4, 0.16, 0.18 (critical), 0.20 and 0.22. At the critical
speed, Qg(r) has its maximum at the k; = 0 surface r, = 0.48.
For somewhat weaker flows, Qg(r) has a maximum point, r = rg,
between r = r, and the plasma boundary, r = 1. As the flow is
increased, rg moves inward and approaches the Suydam surface. It is
clearly seen in Fig. 11 that as rg » r;, all the outer Suydam modes,
which have Rew < wg = -(‘]2-7) (rg), eventually overlap with the
continum for r > rg. The heavily drawn segment of the w-axis in
Fig. 11 shows the extension of the slow wave continuum outside the

maximum point r = rg and the perpendicular bar marks Qg(r=1). Just
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above this frequency the eigenvalues of the outer sequence disappear
one by one by approaching and being absorbed by the continuum on the
real w-axis. It is also clear why the higher order eigenvalues are
absorbed first. For the amusement of the reader we show in Fig. 12 the
first outer mode near marginal stability at Vzo = 0.205, where the
near singular behaviour at the continuum resonances is in clear
evidence. Figure 13 shows the location of the first few point
eigenvalues in the complex plane [relative to the Suydam frequency
wg(Vzo)] for the same flow speeds as in Fig. 11. The complex plot
shows clearly (a) how the inner Suydam modes remain unstable but are
captured by the edge of the continuum at the critical speed and (b)
how the outer sequence disappears as the mode frequencies go through
the cut along the real axis, soon after the overlap with the continuum

near r = 1 occurs.

To summarize the numerical results for P, = 0.10; the inner, and
most unstable, sequence of Suydam modes transforms into a sequence of
unstable discrete slow modes around the critical speed, whereas the
outer sequence becomes stabilized as a result of continuum overlap.
We emphasize that the stability of the "local" modes really depends on

the global profiles.

The scenario described above is modified in a more or less
evident way when the pressure gradient is reduced so that the static
equilibrium is stable. The growth rates of the first inner and outer
modes for P| = 0 are shown in Fig. 14. Here, we only note that the
growth rates of the purely flow driven instabilities are quite small,

with a maximum of slightly less than 2e10-% near the critical speed.
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In particular, the growth rates of the unstable discrete slow modes

become very small when the flow is well above critical.

V. Conclusion

We have studied flow and pressure driven instabilities of a
cylindrical plasma with equilibrium flows. One important effect of the
flow is a modification of the Suydam criterion, see Eq. (8). Sheared
axial flows always decrease the maximum pressure gradient that can be
stably confined. The modified Suydam criterion also indicates
instability independent of the pressure gradient when the flow speed
is slightly below a critical value, M = Bl/ 2, vwhere the shear of the
flow balances the propagation of slow waves on the sheared magnetic
field. An interesting effect, qualitatively different from the static
case, is that as the flow is increased past the critical speed, the
unstable modes originally connected with the Suydam surface ky =0
become attached to the edge of a slow wave continuum and the unstable
modes continuously transform into discrete slow modes accumulating
toward a finite Doppler shifted frequency. For the test case we have
studied numerically there appears to be no stable region above the
critical speed M? = B. However, the growth rates of the purely flow
driven instabilities are rather small, and when the flow is well above
critical, the growth rates are in the range typical of resistive

instabilities.

Instability of the discrete slow modes can occur when two
conditions are simultaneously satisfied, namely, (a) the edge

frequency of a slow wave continuum gives an oscillatory solution
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for £y, as expressed by Egs. (31), (32) and (34), and (b) the edge
frequency equals some continuum frequency at another radial location.
On the basis of our numerical test case, this destabilization appears
typical in the supercritical case, M > B. We stress that, in contrast
with the static case, overlap with continua makes the stability of the
infinite sequences depend on the global profiles, and the local

criteria are not sufficient for instability.

Finally, we are well aware that the predictions of the ideal MHD
model will be significantly modified when, for instance, finite
resistivity is taken into account. Another effect not included in MHD
is wave particle resonance. Wave particle interaction is likely to be
important when the flow is near or above critical, since the unstable
modes are then strongly dependent on the propagation of slow waves
and, for low B, these are essentially ion sound waves along the field
lines. Consequently, kinetic effects must be considered in a more
complete description. Furthermore, effects of toroidal geometry have
not been addressed here. We believe, however, that an understanding of
the intricacies exhibited by the simplest model is useful and may

provide quidance for the application of more advanced models.
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III.C.3 Exchange of instabilities at the critical speed

It remains to show that just above the critical speed M = 61/ 2,
Dg is large and positive, so that the Suydam modes can be picked up
by the edge of the continuum. We once again consider vy = 0, write S
as in Eg. (30) and note that at the critical speed the following

relations hold at the resonant surface k; = 0 (indexed by sub-*)

e =%g=0 , wi= (keW)l=zxL#0 .
, > - -3 .
If the flow changes slightly = vx + 6v, the edge of the continuum

(indexed sub-s) will move to a slightly different radius

. ] 0 . .
rg = rx + &r determined by ’Js = Lge. Taylor expansion gives

sr = (kedv)'/(Z"= w") .

a

Thus, at the continuum edge

st = 20 (B2+yplug (u" - 3") = —20(B24yp) (ke¥) ' (kes¥) !

£2(B2+yp) (M%) (42a)

hence S" is small and negative for slightly supercritical flows. In
this case F = f &6r is also small and Dg in Eg. (31) can be

approximated as

2 B2 2
D =~ (ﬁ_) ..g_ _8% , (42b)
S rq' B, (1-8)(M°-B)
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Figure Captions

Fig. 1:

Fig. 2:

Fig. 3:

Fig. 4:

Fig. 5:

Fig. 6:

Complex x and X plane, shown for the case arg ' = /3,
B = 0.3 and M = _0010

Schematic picture showing the location of the eigenfrequen-
cies of the Suydam modes, with an accumulation point at
wp = —(T:’-:r’)o. The diagram assumes that the external solution
is real valued (26b) and does not apply in the case of over-

lap with another continuum.

Map of the P, - v, plane characterizing the equilibrium
(45). Region A is stable according to the local criteria,
region B is potentially unstable to the modified Suydam
modes, region C to discrete slow modes at rg # 0 (32) and

region D to discrete slow modes at the centre (34).

Logarithmic plot of the growth rates of the three first

inner modes as functions of the flow speed for P; = 0.10.

Radial dependence of the first (a) and third (b) inner Suy-
dam modes for vz, = 0.15 and P} = 0.10. The solid curve
shows Re(gy) and the dashed 1line Im({y,). The solution

was started so that £, is real as r » 0.

Same as Fig. 5 but with vz = 0.19. The accumulation
frequency is now the edge of the slow wave continuum at

rg = 0.39.



Fig. 7:

Fig. 8:

Fig. 9:

Fig. 10:

Fig. 11:
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Same as Fig. 5 but with vz5 = 0.25. The accumulation fre-
quency is now the slow wave continuum frequency at the

centre of the plasma.

Iogarithmic plot of the growth rates of the three first

outer modes as functions of the flow speed for P, = 0.10.

Radial dependence of the first (a) and third (b) outer Suy-

dam modes at vy5 = 0.15 and P; = 0.10.

Radial dependence of the third outer mode at vy = 0.1592
and P; = 0.10. At this point the mode is near marginal sta-
bility. Note the modification of the mode near r=1 from the

case Vgzo = 0.15 in Fig. 9b by overlap with a continuum.

The curve shows the radial dependence of the slow wave
continuum frequency and the heavy segment of the w-axis
shows the extension of the slow wave continuum for r > rg.
The real part of the frequencies for the four first modes in
the inner and outer sequences are indicated by crosses. In
all figures, P} = 0.10 and in (a) vge = 0.14,(b) vgo

= 0.16, (c) vz = 0.18 (critical), (d) vgo = 0.20, and

in (e) vgze = 0.22. The origin of the diagrams is at
r = ry = 0.48, w = wy(Vzo). The abscissa runs between
wg + 3.11 « 102,



Fig. 12:

Fig. 13:

Fig. 14:
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Radial structure of the first outer mode for P; = 0.10 and
Vzo = 0.205 where it is close to marginal stability. Note
the near singular behaviour at four separate continuum

resonances.

Location of eigenfrequencies in the complex plane for the
same case as in Fig. 11. All diagrams are drawn to the same
scale fuy - wg| < 3.11+107% and |wj| < 7.47.107%, thus

the imaginary direction is magnified about 4 times.

Logarithmic plot of the growth rate as a function of V2o
for the purely flow driven case P, = 0. Shown are the growth

rates of the first inner and outer modes.
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Table caption

Table I. Numerically computed values of A(R) = o(n) - (®) for

the infinite sequences at various flow speeds and P, = 0.10.

(a) Modified inner (+) and outer (-) Suydam modes for
Vo = 0.15, £y = 0.48, and w(®) = wy = 0.1379656352.

Asymptotic ratio from theory exp(n/s) = 3.0903.

(b) The two combined sequences of slow modes at vy = 0.19,
rg = 0.39, and w{®) = wg = 0.1752635981. Asymptotic

ratio from theory exp(n/s) = 1.4215.

(c) Single sequence of slow modes at vzs = 0.25, rg = 0, and

w(®) = wg = 0.2452847071. Asymptotic ratio from theory

2.9962.

R

exp(2n/s)
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n Im A(n) arg A{n) ‘A(n)/A(n-1)|
1+ 7.04+10"3 0.4140

2+ 1.28¢10™3 0.2728 3.690
3+ 3.63+10™" 0.2482 3.212
4+ 1.144107" 0.2428 3.118
5+ 3.65¢107° 0.2413 3.100
6+ 1.18¢107° 0.2407 3.094
T+ 3.80+107° 0.2405 3.092
8+ 1.230107° 0.2405 3.091
9+ 3.98+1077 0.2405 3.090
1- 4.47.10°3 2.8502

2- 9.71.107" 2.9008 3.817
3- 3.02.10" 2.9095 3.097
4- 1.01.10~" 2.9068 3.018
5 3.37.107° 2.9038 3.046
6- 1.10+10"° 2.9023 3.071
7- 3.59+107° 2.9017 3.083
8- 1.16-10~° 2.9015 3.087
9- 3.7710°7 2.9015 3.089

Table 1a
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n Im A(D) arg A(n) \A(n)/A(n'1)‘
1 6.37.10° 0.2885
2 1.3241073 0.1494 2.529
3 4.99+10" 0.1088 1.925
4 2.42.107" 0.0894 1.693
5 1.35.107" 0.0782 1.575
6 8.15¢107° 0.0713 1.505
7 5.220107> 0.0667 1.462
8 3.48+107° 0.0637 1.434
9 2.384107° 0.0619 1.416
10 1.67107> 0.0608 1.405
11 1.18+107° 0.0602 1.400
12 8.4210~° 0.0601 1.397
13 6.03+10~° 0.0602 1.398
14 4.33410"¢ 0.0605 1.399
15 3,11.10"° 0.0608 1.402
16 2.23.10~° 0.0612 1.405
17 1.59+10~° 0.0616 1.407
18 1.13.10-° 0.0619 1.410
19 8.07+107 0.0622 1.412
20 5,73+10~7 0.0625 1.415
21 4.06¢107 0.0626 1.416
22 2.87+10~7 0.0628 1.418
23 2.03+10~7 0.0630 1.419

Table 1b
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Im A(n) arg A(n) |A(n)/A(n—1)|
5.28¢10~3 0.3011

9.99.10~" 0.2042 3.616
2.92.10~% 0.1874 3.145
9.36+10™> 0.1831 3.049
3.07+10°° 0.1817 3.021
1.02410™> 0.1813 3.009
3.38.10-6 0.1807 3.003
1.13.10-% 0.1805 2.998
3.7710~7 0.1808 2.994

Table 1c



