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Abstract

Two of the technically most developed numerical descriptions of
radio frequency waves are discussed:Global-wave and quasilinear
codes. The numerical approaches are presented within the physical con-
text. The techniques considered are different finite element methods
ranging from cubic Hermite finite elements to the non-conforming
"finite hybrid elements". A high efficiency of the latter technique is
demonstrated. The applications include Ion-Cyclotron Range of Frequen-
cy (ICRF) mode-conversion heating in JET, Alfvén Wave Range of Fre-
quency (AWRF) and ICRF Heating in TCV, and runaway production in

Lower-Hybrid Range of Frequency (LHRF) ramp-up.



1. Introduction

In the last decade a considerable number of new numerical tools
have been developed for the study of RF heating and current drive.
Concise reviews [1], and specialized research papers [2] in different
areas of activity have been presented at the 3rd European Workshop on
Problems in the Numerical Modeling of Plasmas (NUMOP) in Varenna last
year. In the present report it could be attempted to review the
reviews presented at the workshop. The outcoming enumeration, we are
sure, would not be particularly zestful. In place, we intend to
confront the reader with the merits and the limitations of our own
nuwerical models. The general interest in this contribution is,
however, preserved by the fact that these models appertain to those
two areas of sophisticated RF numerics which presently are the most
developed: the solution of linear global wave equations in plasma
cavities (as opposed to ray tracing approaches) and the time evolution
of particle distribution functions according to Fokker-Planck or
quasilinear equations. Both areas are rapidly evolving under the
stimulus of experimental results which show evidence for the excita-
tion of eigenmodes in the ion-cyclotron range of frequency [3] (ICRF)
and for the modification of the electron distribution function under
the influence of waves in the lower hybrid range of frequency [4]

(LHRF) .

The plan of the paper is as follows. In Chapter 2 we present the
computation of a mode conversion scenario in JET performed with our
two-dimensional cold plasma code LION [5]. Playing the Devil's advo-

cate we shall ask whether the result is at all credible and whether



the method used is the best. Using one- and two-dimensional cold and
one-dimensional hot plasma models we shall document the difficulties
in treating an ICRF scenario which is dominated by eigenmodes. In
Chapter 3 we then pose similar questions concerning our new two-dimen—
sional quasilinear code, ADLER [6]. In contrast to a Fokker-Planck
code, a quasilinear code computes the self-consistent evolution of the
wave spectral energy together with that of the particle distribution.
Such a code is needed if eventually we want to model certain kinetic
instabilities observed in some low-density discharges with and without
LHRF current drive [7,8]. Again, the situations we have in mind are
hard to treat numerically, a fact which obliges us to discuss the
numerical methods in detail. Finally, in Chapter 4 we use our numeri-
cal tools to answer a few additional physical questions in different

frequency domains.

2. Excitation of Global Waves in Bounded Plasmas

2.1 Physical background

Until recently the most common numerical approach to the excita-
tion and propagation of waves in the range between the ion and elec-
tron cyclotron frequencies has been ray tracing based on the WKB
approximation [9]. In the Alfvén Wave Range of Frequency (AWRF) this
approach 1is manifestly impractical due to the fact that the wave-
lengths of the excited waves are of the order of the gradient scale
lengths (minor radius of the torus). This is particularly true for the

main AWRF heating scenario where the first radial eigenmode of the



fast magnetosonic wave is excited by antennae situated in the vacuum
region between the plasma and the conducting wall [10]. In the wKB

picture this mode is evanescent over the whole plasma minor radius.

With respect to the ICRF, in large devices like JET, originally
it was felt that ray tracing should be appropriate because the wave-
lengths of the excited fast magnetosonic waves are small compared to
the minor radius. Ray tracing is indeed appropriate in heating
scenarii where most of the wave energy emitted by the antennae is
absorbed over a few wavelengths. In this case no energy is reflected
to the antenna, and the antenna does not feel any back EMF (electro-
motive force), or, in other words » the antenna does not excite any
eigenmode of the plasma cavity. In the opposite case ray tracing, at

least in its present form, is not applicable.

The alternative approach has become known as the "global-wave
approach" implying that the solution of the pertinent wave equation
contains incident and reflected waves, or, in other words, that the
wave equation in the plasma is solved together with the wave equation
in the vacuum and appropriate boundary and matching conditions at the
interfaces plasma-vacuum, vacuum-antenna-vacuum and at the conducting

wall.

The wave equation has the general form
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where E, w and c are the wave electric field, the applied frequency

o

and the velocity of light, respectively. The dielectric tensor, € , can
have the most different forms depending on the plasma model used. It
is a simple tensor in cold plasma theory [‘H] including low-g current-
less MHD and is a spatial operator when equilibrium-current [5 /12] or
finite-temperature (finite larmor radius) effects [13] are included.
In the case of low-frequency excitation (w << wry, lower hybrid fre-
quency) use is made sometimes of the fact that € zz * © as

me / mj > 0, and E; » 0 as a consequence.

In all the models we have presented so far we have used the fact
that me << mj. This approach is mandatory in a cold plasma model
in two dimensions [5] because it excludes small spatial scales which
would be, as we shall see, difficult to resolve. In one dimension,
however, where it is easy to solve even the wave equation of the hot
plasma model [14] (for a review including 2D see [15]) and where small
scales are already present due to the finite temperature effects, the
approximation mg / mj > O seems to be an unnecessary limitation of
the computational model. Taking into account finite wvalues of Ez
turns eq. (1) from a 4th order into a 6th order ordinary differential
equation (ODE) [15] which, from a numerical point of view, is an un-
significant complication. Physicswise an apparent advantage of this
more complete model is the possibility of treating Landau damping con-
sistently. Based on a general form of the dielectric tensor [16], we
have recently developed a new version of the 1-D code ISMENE [14]

applicable to any frequency domain.



In the course of this investigation we extensively use the 2D
code LION described in Ref. 5, and compare the results with those
obtained with the old version of ISMENE [14] applied to the hot and
then to the cold plasma model which, in fact, turns eq. (1) into a 2nd
order ODE. The new version of ISMENE, mentioned in the preceeding

paragraph, has been used for one illustration only (Fig. 5).

2.2 ICRF heating in JET

The 2D code LION [5] permits the study of ICRF wave propagation
in a low-f plasma confined in an axisymmetric torus. It uses the same
geometry, spatial operators and equilibria as the ideal-MHD stability
code ERATO [17]. It is based on the cold plasma model and, hence, the
waves are absorbed merely by resonance absorption as in the AWRF case
[12,18]. It is a trivial matter to add ion-cyclotron absorption to the
cold ?, turning the cold plasma model into a "warm" one. As, from the

numerical point of view, the "warm" model behaves very similar to the

cold one we refrain here from using the former (except for Fig. 11).

Let us model a JET mode conversion scenario in a deuterium plasma
with a central density np(0) = 2.8 . 1013 an? and a small admixture
of helium-3, nge3(0) = 2.06 . 10!2 ¥, The density profiles are
modelled by parabolas in the variable of s = /¢ where ¢ is the poloi-
dal flux function. The toroidal magnetic field has a value of 3.4 T on
the magnetic axis. The plasma current profile also is roughly parabo—
lic with the safety factor on axis, 9 = 1, and at the plasma boun-
dary 9z = 2.2. The plasma beta is zero, since a force free

equilibrium has been used. The phenomenological damping & defined as

in Ref. 12 is § = 0.0025.



The antenna is modelled as in our original AWRF work [18]: an
imposed infinitely thin current sheet 3'; = %&(r—A(e)) on an
arbitrary toroidal surface, r = A(6), encircling the plasma torus.
Here r and 6 stand for the minor radius and the poloidal angle, res-
pectively. All wave quantities, and in particular the wave-exciting
antenna current 'j;, are assumed to behave like exp(ing)in the toroi-
dal direction. Apart from wave forms and absorption profiles in the
plasma one wishes to compute the power emitted by the antenna [5],

‘—>*3

'P-‘-%jolv"};'E . (2)
vacuom
A JET low-field-side (LFS) antenna is modelled by an antenna surface
which approaches the plasma on the LFS and is near to the conducting
wall elsewhere [5]. In this paper we do not sum over different compo-
nents n of the antenna current, therefore not considering therefore,
antennae with a finite toroidal extent. Except for the convergence
studies we use throughout the paper Ny = 160 radial mesh points and

Npol = 80 poloidal mesh points.

In figure 1 we show contour lines of the circular left-hand
polarisation of the electric field for the case of an exciting fre-
quency, f; = w/2n = 33 MHz and a toroidal wave number, n = -15, Con-
sequently, the "geometric" data for this case are the following : The
cyclotron frequencies lie at x = ~64 cm for D and at x = 14 cm for He®
respectively, where x stands for the horizontal distance from the
magnetic axis. The major and minor radii are 300 cm and 125 cm,
respectively. The "homogeneous-plasma" mode conversion layer almost

Crosses the magnetic axis (x = 3 cm). As can be expected from general



considerations [19] the wave seems to be focussed to the center of the
plasma and the local power absorption density, not shown here, has a
large maximum in the center [5]. From this figure one could be tempted
to believe that the energy leaving the antenna is focussed to the
centre and is absorbed there in a single pass. However, this is not
true at all. Looking at Fig. 1 more carefully we see that Alfvén
resonances are excited near the high field side edge of the plasma.
This means that the wave has been partly transmitted through the
ion-ion hybrid mode conversion layer. Another indication comes from a
plot of the total wave electric field and of the Poynting vector, not
shown here, both of which show that the wave is not confined between
the antenna and the mode conversion region, but is excited over the

whole plasma cross-section.

A further indication comes from Fig. 2, where the total energy
flux through a magnetic surface is shown versus the coordinate of that
surface. We see that 50% of the energy is absorbed outside the surface
S1/2 = 0.36. From the wavy structure for s > 0.2 of the power
absorbed per radial interval we conclude that the wave is standing and
that it suffers from the phenomenological damping. Apart from cases in
which the electron Landau damping is large, this absorption is un-

physical and can be avoided by tailoring the phenomenological damping.

The next fact is documented in Fig. 3 where we show a frequency
scan of the power, Eq. (2), in the range of 31.2 to 34.8 MiHz. Experi-
mentally, such a scan is difficult to perform; however, evolving
plasma parameters can change the physical situation in a similar way.

Here we have chosen 33 MHz as a central frequency of the scan. We



intend to analyse the numerics for this very case in detail and, as it
is in fact the physics which makes the case numerically delicate, we
show its physical environs by changing the frequency. We have a cer-
tain sympathy for an unbiased reader's reaction on Fig. 3 who would
qualify it as "computer hallucinations". It is, indeed, not obvious
that the erratic behaviour of the power as a function of the frequency
should be physical in nature. On earlier occasions [20], however, we
had already found that frequency scans from a 2D~code can behave quite

wildly when eigenmodes of the system are excited.

The JET experiment, in some cases, indeed shows variations of the
loading impedance when the plasma parameters change and it is possible
to interpret these variations as a scan of the spectrum of eigenfre-

quencies of the plasma column [3].

To make this point watertight we show in Fig. 4 the antenna load-
ing, proportional to P, eq. (2), as obtained with the 1D-code ISMENE
[14]. In a plane slab geometry we have used the same densities, magne-
tic field and geometric dimensions as for LION. No poloidal magnetic
field is present. We have, on the other hand, used the hot plasma
model with E; = 0 and a central ion temperature of Ti(0) = 2 keV.
The phenomenological damping [14] acting on the Bernstein wave was
vg = 0.0005. The poloidal wavenumber was ky = 0.02 an~l. The
equidistant mesh with 512 intervals together with the choice of cubic
Hermite finite elements guaranteed well converged results [14]. As in
Fig. 3 we find high resocnance peaks in Fig. 4. There is no doubt that

the antenna excites eigenmodes of the system at fo = 31.76 MHz and

at fo = 34,15 MHz. The origin of the small peak is not completely
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clear as yet. Its existence and height seem to be related to the
relative position of the resonance and the nodes of the wave respecti~
vely [21]. The resemblance between the 1D and the 2D results is strik-
ing. It could even be more striking if in 1D we would sum over the
different poloidal wavenumbers contained in the Fourier decomposition
of the current in an antenna of the type shown in Fig. 1. This summa-
tion could result in a picture similar to Fig. 3 [3] where the peaks

at 31.7, 33 and 34.2 MHz consist of several overlapping simple peaks.

The main features in Fig. 3 have thus found a physical expla-~
nation. Some features may or may not be of numerical origin. First of
all, the toroidal resonances seem to be of lower quality that the ones
in Fig. 4, which could be due to either the effect just mentioned or
toroidal effects or a relatively high value of the phenomenological
damping. Secondly, the peak at 33 MHz in Fig. 3 is more pronounced
than the one in Fig. 4. Thirdly, the finescale hash on the loading
curve can either be due to numerical problems or to the resonances

with modes with different poloidal wavenumbers [3].

It is not easy to decide upon these questions because hitherto it
has been impossible to perform hot-plasma computations of the quality
of Fig. 4 in two dimensions. We must be satisfied with cold-plasma
computations. When applied to large plasmas like JET and under weak
absorption conditions (i.e. excitation of eigenmodes) even these com-
putations are only marginally acceptable from a technical point of
view of the numerics. It is one purpose of the next section to con-

front the reader with this fact.
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Before we move on to these purely numerical questions in the next
section, let us make a few final remarks on physics. In Fig. 5 is
shown the wave field obtained with the new version of ISMENE for
fo = 33 MHz. Although this new version includes Landau damping we
have been forced to use an additional phenomenological damping on the
Bernstein waves of the order of vB = 0.00024 in order to prevent
troubles in the region of the deuterium cyclotron resonance at
X = -64 cm. The very short wavelength perturbation on the traces of
Ex and E; in this region is a numerically converged signal (a
non-equidistant mesh has been used) but it is physically meaningless
because the wavelength is of the order of the deuterium Larmor radius
and, hence, the theory used is not valid. When we shall analyze the
numerics and be tempted to feel unsatisfied we should keep in mind
even the limitations of the physics. The situation is dissimilar from
that in ideal MHD stability where the physical model seldom needs to
be criticized and all the forces can be concentrated on the numerical

techniques.

As a last point we note in Fig. 5 that the fast magnetosonic
wave, best characterized by the trace of Ey, seems to ignore the
mode conversion layer. Evidently, this cannot be true. A close
inspection of the phases shows that the wave on the HFS of the
conversion layer is strictly standing as it should be: there is no
energy transport there. An additional inspection of the traces of
Im E, not shown here, reveals moreover that Ey = Ex + iEy ~ 0 on

the HFS as already remarked in Fig. 1.
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2.3 Numerical techniques for the cold plasma model

In the cold plasma model there is no essential formal difference
between the singularities leading to resonance absorption of the fast
magnetosonic wave at the Alfvén and ion-ion perpendicular resonances
[12,22]. It seems therefore to be obvious that one would use the same

numerical techniques in the ICRF as in the AWRF.

In MHD stability [23] and in AWRF studies [24] our slogan has
always been "spectral pollution". When the ideal MHD operator is dis-
cretized with standard finite element methods, one obtains a very bad
numerical representation of the continuous spectra associated with the
mentioned singularities. Spurious discrete eigenfrequencies appear
outside the frequency band occupied by the continua. The discrete
spectrum is "polluted" by modes which have been ejected from the con-
tinuum by the improper discretization and, as a oonsequence, the con-
tinuous spectrum has lost modes and has become "more discrete". Pollu-
tion can spoil any ideal MHD stability calculation. The implications
for RF-computations in the AWRF have been assessed in Ref. 24 and will
here be discussed for the ICRF. In Ref. 24 we have found that, if more
mesh points are used, a polluting method can produce results of

similar quality as a non-polluting one .

The importance of the discretization technique for RF heating
applications can be emphasized by two additional points., It can be
shown [25] that in the plane slab geometry the wave fields must behave
like

Bx ~ 1/|xxg|, By ~ log [x-xg] (3)



- 13 -

in the neighbourhood of the singularity at xg. The numerical discre—

tization should allow for this behaviour or at least

dEy/dx ~ Ey, (4)

i.e. if a piecewise linear continuous approximation is used for Ey .,

the component Ey is better approximated by piecewise constant than

by piecewise linear functions.

Moreover, the analytical treatment of the problem yields a
Poynting flux which is constant from the antenna up to the conversion
layer (the singularity) and is zero beyond. In the limit of vanishing
phenomenological damping, the transition is discontinuous and the
numerical approximation should allow for this discontinuity which
indeed it does when Ey is piecewise constant. The discontinuity in
Ex can also be illustrated by Fig. 5: in the mode conversion region

Ex changes its phase relative to the continuous Ey.

For more detailed information let us experiment with Ffive
different discretization procedures in one dimension. Ve define an
arbitrary non-equidistant, spatial mesh by

XO < xl <-o.o <xj <oooo <}‘:n' (5)

where Xo and xp are the left and the right plasma boundary [14].

We shall need the four following finite element basis functions:

the piecewise constant basis functions,



- 14 -

O’ X & XJ)
_ (6)
X) = . .
B 00= 4 4, xp<xaxg,
k 0, Xjgo & X,

the piecewise linear basis functions

[ o, X& X o

X= %
-1/ , XJ"" é X_é XJ »
)(-)'—-X_,‘—-f
0 (x) = { (7)

Xjpe =X X & x & x.
-, YA
e = %y

k 0, X0, & X%,

and the two piecewise cubic basis functions

0, X & X,
2

0o = 5 () [3-20000 ], xp,exs %, 00
O) Rye é‘X)

and
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[ 6
b X’XJ'~/7
2
o= | e [ox], Nexex,, ©
! 0) Xi & X

Here, we merely have space to note the different finite element

expansions. For details see refs. 14 and 23.

Method 1 is the standard expansion in cubic Hermite elements

[14]:
N N ; .
- < )
Boo=2 (eded) o+ 2 (6,5) g0,
J:o J=0

- . * * -
Here (e,)(, e{,) and (f;'(, f‘;,) are the nodal values of E and dE?dx

respectively.

Method 2 is the standard expansion in linear finite elements

[14]:
N . [}
Ex) = Z (ei’e:f) 6 (). (1)
J:O

These two methods lead to spectral pollution because Ex and Ey are
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approximated by functions with the same regularity. A conforming [23]

non-polluting approximation is obtained in Method 3:

S i
fx J=! S yj‘ﬁ ™
i 3
E, = e, 6 (x> . (12)
‘3 J:O 3 d

Method 4 and Method 5 are based on the same non-conforming

approximation ("finite hybrid elements" [23])

N
Ec= 2 )% ¥ , (0,
J‘::I ()2

where

N
EH(Z) = Z cd 6. (%), (13)

Note that in the case of a cold plasma with E; = 0 the variational

form of eq. (1) does not contain derivatives of Ex. The expansion
z

coefficients e§ and c§ of Ey are constrained by
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( _ 5
J‘(E}j n_ E;,,(Z)> rt'«é(X)dx =0 R V L= {j) N) (14)

: i i je
which leads to ey = (cy + oy V/2.
The discretized variational form of ed. (1) leads to a linear

system for the expansion coefficients. The matrix elements are of the

form

/4,‘-/‘ = Jﬁ (x) F(x) 2:’ (r) dx (15)

where pji(xX) and rj(x) are basis functions and F(x) is a coeffi-

cient of the differential equation (1).

The value of Aj 4 is obtained numerically with a nine-point for-
mula for the Methods 1 to 4. The nine-point formula is compulsory for
Method 1 if the degree of accuracy of the cubic elements is to be pre-
served by the quadrature. Simpson's rule would be sufficient for
Methods 2 and 3 and the trapezoidal rule for Method 4. This is just
the difference between Method 4 and Method 5: in Method 5 the trape-
zoidal rule has been used for the evaluation of Ajj. Methods 4 and 5
are trivially different as long as the coefficients F(x) are conti-
nuous. In the ICRF problem, however, they are discontinuous across the
points where w = wej, where wgoi 1is a cyclotron frequency. For
large values of N Methods 4 and 5 have nevertheless yielded the same

results. Method 5 is the 1D analogue of the approximation used in the
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2D code LION. It is equivalent to a centered finite difference scheme.

Before we compare Methods 1, 2, 3 and 5 let us first investigate
the influence of a phenomenological damping A which, for simplicity
and in contrast to the 2D case, is added directly to S as given in

Stix's book [11]:

Exx = Eyy =S + lA. (16)

The relation between A and the one used in the 2D calculations, §, is

A = 25c2/cp, (17)

where cp stands for the local Alfvén velocity: with 6 = const, A is

roughly proportional to the density.

In Fig. 6 we show the same frequency scan as in Figs. 3 and 4 but
obtained with Method 1 on a very fine equidistant mesh (N = 6000) for
three different values of A, viz. A = 1, 3 and 10. The resemblance
between the trace obtained with the hot plasma model in Fig., 4 and the
one here obtained with A = 1 is very striking. Apart from the region
between 32.8 and 33.1 MHz the circles in Fig. 6 fall on the trace in
Fig. 4. We conclude that the cold plasma model can reproduce the

results obtained with the hot model.

Comparing Figs. 3 and 6 we find that the shape of the 2D trace is
very similar to the 1D trace obtained with A = 10. The artificial

damping, 8 = 0.0025, used in 2D corresponds roughly to A = 5[1-(x/a)2]
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where a is the minor radius. The average A 1is smaller than 5. One
could therefore be tempted to expect the 2 trace to be similar to the
A = 3 rather than to the A = 10 trace in 1D. From this point one would
further conclude that the different poloidal modenumbers contained in
the 2D model lead to a broad compound peak. This conclusion is pre-
mature: in 2D the artificial damping could be more effective in
broadening the resonance peaks because the volume occupied by the mode
conversion region is, compared to the total plasma volume, smaller

than in 1D. Most probably both effects are operative.

There is an additional feature in Fig. 6 which needs to be dis-
cussed. We mean the badly scattered A = 1 data points in the region of
32.9 MHz which are the heralds of numerical problems. Imagine: we have
used 6000 mesh points for this calculation and still the result seems
not to be well converged. How can one hope to produce reasonable
results with the 2D code where at most we have ZE@ = 400 points

across the plasma? How wrong can the results be?

A partial answer can be obtained from Fig. 7 where again frequen-
Ccy scans of the loading impedance are presented. These computations
have been performed with methods 1, 2, 3 and 5 on a N = 512 equi-
distant mesh with A = 1. The vertical scale is logarithmic. The con-
tinuous line shown as a reference in all four graphs is the trace
obtained with the hot plasma model (Fig. 4). The three peaks of Fig. 4
are reproduced here by all four methods. All the methods produce, how-
ever, a few additional peaks which are numerical in nature. The most
embarrassing one is the peak at 32.35 MHz on the trace (b) obtained

with regular linear finite elements. This peak is neatly described by
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data points and really looks physical. Even the ones at 33.3 MHz on

the traces (c¢) and (d) do not look too unphysical.

We seem to be in the presence of two problems here: one of them
is pollution and can be avoided, and the other is insufficient resolu-
tion and is, in the 2D context, unavoidable. Without an additional
extensive investigation of traces like in Fig. 7 it is difficult to
know what exactly is ascribable to one or the other or both. In a very

pragmatic way we could comment Fig. 7 in the following way.

As Methods 3 and 5 (traces ¢ and d) yield practically the same
results we need to compare merely methods 1, 2 and 5. Method 2 (trace
b) 1s a polluting method and the results are correspondingly bad. The
non-polluting Method 5 shows less numerical peaks than the polluting
Method 1, the difference in quality being, however, not extra-
ordinary. We could even say that, in fact, all the methods yield
equally bad results. It is then easy to choose the "best method".
Method 5 is the most rapid and the least memory-occupying procedure.
It permits the use of much finer meshes than the Methods 1 and 2. As
an example, a computation with N = 6000 and Method 1 uses 988K words
and 21.4 secs CPU time on CRAY 1 as compared with 436K words and 2.2

secs with Method 5.

Let us further comment the results shown in Fig. 7. Most of the
non-physical peaks are probably just due to insufficient resolution
and are easy to understand from the spectral point of view. All the
exciting frequencies in Fig. 7 lie in the continuum of eigenfre-

quencies associated with the ion-ion perpendicular resonance. Accept-
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able numerical results can only be expected if the eigenfrequencies of
the discretized system are sufficiently dense, meaning that their
spacing Aw in the region of the exciting frequency w is smaller than
the damping produced by A. In the opposite case, modes in the conti-
nuum behave like discrete modes and lead to resonance peaks on the
antenna loading. There are, hence, two ways of avoiding spurious
peaks: one either increases A or decreases Aw by increasing the mesh

density around the ion-ion perpendicular resonance.

These two points are documented in Fig. 8 where a convergence
study 1is shown for the case fo = 33 MHz on an equidistant (a+b) and
on two different non-equidistant meshes (c+d). The different methods
of discretization have been used. Traces a, ¢ and d have been obtained
with A = 1, the value used in Fig. 7. In contrast, A = 3 has been used
for trace b. On the equidistant meshes with a reasonable size
(N > 256) the non-polluting methods show somewhat less variation than
the polluting ones consistent with our expectation. There is, however,
not the sligthest sign of a convergence law. At N > 256 the variation
with A = 3 (trace b), however, is clearly much smaller than with
A = 1 (trace a). Clear convergence can be obtained with non-equi-
distant meshes, For trace ¢ we used a spatial mesh size of
Ax = 0.3 cm/N around the ion-ion perpendicular resonance whereas in d)
it was Ax = 0.5 cm/N. From traces c and d it is clear that the choice
of a non-equidistant mesh requires a certain experience: in trace c
too many mesh points have been wasted for the resonance and are not
available for the description of the overall wave function. A judi-
cious choice of the non-equidistant mesh permits good convergence for

N > 128. On the non-equidistant meshes the cubic elements (Method 1)
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perform extremely well. The oonclusion that for a 2D application
Method 5 is the best, however, still holds for two reasons. First of
all, in 2D the mesh cannot be adapted to the same degree as in 1D.
Secondly, the Poynting flux obtained with the cubic elements can show
very strong overshoot in the region of the resonance and hence would

be difficult to interpret in a complex 2D situation.

What more have we learned that could be useful in judging the
performance of the 2D code LION and, afterall, of any 2D code [1,2]
based on the cold plasma model for ICRF ? The situation investigated
in Fig. 3 is dominated by eigenmodes. This is a situation difficult to
model numerically because the height of some peaks 1is strongly
affected by the phenomenological damping A, Fig. 6. The damping A with
which it is possible to simulate the hot plasma, Fig. 4, is too small
from the numerical point of view : in a large-size plasma like JET and
with a number of equally spaced mesh points typical for a 2D model it
is impossible to describe well all the continuous spectra, Fig. 7. In
a 1D model one can have resort to nonequidistant meshes. In the 2D
case, however, this is possible only to a limited degree because, in
general, there are several resonances to be correctly described (see

e.g. Fig. 13 in Ref. 5).

We must therefore be pleased to see in Fig. 9 that the conver-
gence behaviour of the 2D model is much better than one could expect
from the 1D analysis. Note that here we have used linear vertical
scales again. The 2D problem seems to be a bit less delicate to treat
than the 1D problem. The reason is probably the same as for which we

cannot use highly nonequidistant meshes : there is a multitude of
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different coupled resonances and they have a certain averaging

influence.

In conclusion, we can say that the "hybrid finite elements" are
the best choice for a 2D code and that such a code can reasonably be
used for the assessment of an ICRF heating scenario which is dominated
by eigenmodes in a large machine. On a computer like CRAY 1, however,
such a code cannot be used yet as a black box because the spatial
resolution is only marginally sufficient. A corollary is that the

credibility of a hot plasma model [15] in 2D is even more in question.

3. Quasilinear Evolution of Distribution Functions

3.1 Physical background

The most commonly used numerical approach to RF current drive is

what has become known as Fokker Planck Codes [26,27] in one and two

dimensions. These codes solve an equation for species o of the form
e , 2.T L E 2% S LoL
+ W m o -5 o« Toc! (18)

where fa(v,t) is the particle distribution function, g, and m,
the charge and mass of species a, E the D.C. electric field associated
with the loop voltage in tokamaks and C(f,,f,7) 1s a collision
operator describing collisions between particles of the species o and
a’. The wave induced flux, -S-'w, is obtained from quasilinear theory

by
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- g M
== D = (19)
o i

where D is the quasilinear diffusion tensor, the form of which depends

on the type of waves present in the plasma.

Most of the investigations into current drive published so far
assume the quasilinear diffusion tensor to be given. One good reason
for this assumption is that then the problem, eq. (18), is amenable to
numerical and semianalytical calculations. Often the full non-linear
collision operators, which conserve momentum and energy, are used in
these models. This is, however, an inappropriate complication because
energy transport in configuration space is not included in eq. (18).
Energy put into the system by either the DC electric field (Ohmic
heating) or by the RF waves has no way to go [26] and therefore the
models with energy conserving collision operators have to be supple-
mented by an ad hoc energy loss term in order to make them capable of
describing steady states. It is, therefore, equally good to use simple
linear collision operators with a "heat bath", These operators drive

fy back to a Maxwellian of a given temperature.

Equation (18) is essentially a diffusion-advection equation. As
long as the driving electric field is small as compared with the total
diffusion coefficient (due to the collision and the RF) the equation
is easy to solve. The only delicate situation is that of electron run-
away, where in a certain velocity range the advective term dominates
over the diffusive terms. If the resolution is not sufficient it is

common that the front of a runaway tail exhibits strong numerical
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ripples. These ripples might prevent one fram an accurate evalutation

of the runaway rate.

The situation drastically changes when one tries to include more
physics into eq. (18) by allowing for the self-consistent evolution of

g, eq. (19). The diffusion tensor § is then schematically given by

= o v g R -

D=2 |k Wik, ) A(K) & (@ - kg -»12.) (20
»

where v is a sum over cyclotron harmonics, -]: are the wave vectors of
the injected and eventual internally created unstable waves with
the spectral distribution W(K,t) ~ |§]‘<‘(t),2, ?(k‘) is a time

invariant tensor depending on the type of waves present and w('lz) is
the frequency of these waves. The wave vector and the velocity have
components kjy and vy parallel to the equilibrium magnetic field.

The wave intensity evolves according to an equation of the form

oW =
:)_;f—:(z');l-’gofz)w + Q (k) (21)

where the quasilinear growth rate, Ygqu 1is a functional of £,
-Pp

Veoll is the collisional damping of the wave and Q(k) is an external

RF source that has been extensively used for current drive studies

[28,29].

The reader might ask why at all we intend to deal with the diffi-
culties of the full quasilinear equations (18)-(21) when the simple
Fokker-Planck equation, (18), together with an imposed wave induced

flux, ‘é’w, is sufficient to model current drive. The sad fact is that
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we still do not know [30] for sure why LHRF current drive works so
sucessfully [31,32,33]. As in the past [34] the Fokker-Planck codes
correctly predict efficiencies, i.e. the ratio of the produced current
to the invested power, but they fail in predicting the right magnitude
of current and power individually. The discrepancy between the calcu—
lated currents and the observed ones is even larger today [33]. More-
over, most of the dynamical behaviour, where observed, is poorly
understood. For these reasons we should remain open-minded and inves-

tigate physics in a broad sense; the quasilinear theory is a part of

it.

A quasilinear code allows one to study the self-consistent, dyna-
mical behaviour of both the wave spectral and the particle velocity
distribution functions. The dynamical behaviour includes situations
like LHRF current ramp-up, DC electric field and/or LHRF wave induced
runaways and associated instabilities, beam instabilities and related
subjects. As a by-product, in a quasilinear code one only needs to
specify the spectral shape of an energy source, Q(]-c'), and not that of
an energy density, W('k’) , as 1in a Fokker-Planck code. This point is
important in situations where ray-tracing codes predict a multitude of

reflections [35] of the injected rays.

3.2 Some remarks on the numerical techniques

The quasilinear code ADLER presented at this conference [6] is in
fact a 4D code, the 4 dimensions being vy, vy, k; and k, , the com-
ponents of V and 4 parallel and perpendicular to the equilibrium mag-

netic field. Nevertheless the problem is amenable to numerical calcu-
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lation at least as long as one limits the wave-particle interaction to

resonant interactions of the type shown in eqg. (20).

Equations (18)-(21) are discretized on rectangular grids :

=00 L Y, (LY (DL KU (4,)L KU, (M) < oo

0 =YLy LY ({)-+& Y(NYL oo

kS

ky (1) < Ky (<L by (YK Ky (My)

(22)

ky (1) £ ky (234 LI (YLLK ey (M)

The unknown functions £ and W are expanded in finite elements defined

on these grids :
fo,u,8) = Z {0 50, y), 23)
Wky ki, t) = Z WJ(H?S Ckuy kY, (24)
J

where 1 and j stand for a numbering of the pairs (i",il ) and

(j",jl). For the 2D basis functions in velocity space we have taken,

TZ' (U//, U.L) = (77”(“/1) O'ZJ_ ('ﬁ) ) (23)

and for those in the k-space either

$; (kn, k.Y = 63” (k’l} G-iL (k) (26)

oxr
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S)J (kll) k_l_) = XJI‘*"{ (‘0{) 31‘.4% (l(_l_> . (27)

We shall again show that the piecewise constant approach, eq. (27),

has a definite advantage over that using linear finite elements,

eq. (26).

Before doing so let us explain the numerical difficulty engen-
dered by the resonant wave-particle interaction. This interaction
couples the two "populations", f and W, weakly in the sense that a
cell in k-space, C, interacts only with a narrow strip in v-space

defined by eq. (20) or by

w((:’) -p A
a ky

C
1

for l(” € C/ (28)

It 1is this very fact that allows us to treat an essentially 4D
problem. On the other hand, it causes numerical troubles because
abrupt changes in k-space lead to abruptly changing coefficients in
v-space, eq. (18). These alone and eventually in conjunction with the
advective action of a DC electric field tend to produce numerical
ripples on the distribution function. These, in turn, can trigger
instabilities via the quasilinear growth, Yqu ~ 0fy/dvy, and can
falsify the physics or even bring the time evolution to a stop when

the abrupt changes in k-space are amplified.

These considerations led us to believe that a smooth higher order

finite element expansion would help us to avoid the mentioned
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problems. As a first step in this direction, in ADLER we started off
with a smoother approximation, egs. (24) and (26), for W than that
previously used, eq. (27), or in the terminology of Chapter 2, we
tried the 2D analogue of Method 2 instead of Method 4. The result was
disappointing. This is documented with a simple calculation in

Fig. 10.

In Figure 10 we show the evolution of the wave spectral distribu—
tion on a coarse mesh with a fixed particle distribution. At time
t = 0 (the time is normalized to wper the plasma frequency) we had
W =1 in arbitrary units. In eq. (21) the only term included was Yqr
which was positive in the region 0.14 < k < 0.184. With the automatic
time step control in action we have performed 200 time steps with
Method 2 and 30 time steps with Method 4. The final results are shown
in Fig. 10b. An intermediate situation is shown in Fig. 10a. We see
that Method 2 leads to strong overshoot which, in the worst case when
W < 0, could even lead to negative diffusion in eg. (18). On finer
meshes Method 2 clearly behaves more reasonably but we have always
been able to advance in time much faster with Method 4. The problem
seems to be connected with the boundary between stability and instabi-
lity: whereas in the piecewise constant approximation the growth rate
of a grid point is simply given by the integral of the growth rate
over the mesh cell C, it is connected via the mass matrix to all the
other grid points when the piecewise linear approximation is used.
This connection is unnecessary and even detrimental in the discretiza-—
tion of a trivial equation like eq. (21). Near the stability boundary
the small nodal values of stable points tend to change erratically
from step to step by a large relative amount due to this global

connection and a reduction of the time step results.
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We can conclude that here again the piecewise constant approach
performs better than the regular linear finite elements. It remains to
be seen whether it is advantageous to abandon the linear elements
(Method 2) even for the discretization of the particle distribution

function, egs. (23) and (25).

4, BApplication

4.1 TCV (Tokamak & Configuration Variable)

Our laboratory plans the construction of a new tokamak with large
elongation and the question has been posed of how such a machine would
best be heated by low-frequency RF waves. It is clear that ICRF from
the LFS would be as viable a method as on any other machine. The par-
ticular question addressed here is whether it would be possible to
install the antennae below and above (T/B: top-bottom) rather than on
the LFS. Especially in the AWRF we are anxious about the energy being
absorbed near to the plasma surface when this antenna position is

used.

We have made a superficial first investigation of this question.
The parameters used are np = 2.10t" cm3, 7.35% He-3, B, = 1.43T,
do = 1.05, gz = 2.12, B = 2.8%, major radius 87.5 am, minor radius
24 an and an elongation of 2.5. In Fig. 11 we compare the position
Sy/2 of the minor radius inside which half of the total power is

absorbed for the two antenna positions in the two frequency ranges.
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Concerning the AWRF we find it difficult to deposit the energy
into the plasma interior but there are a few quite acceptable T/B
cases. The case f, = 1.3 MHz with n = -4 T/B antenna is shown in
Fig. 12. As far as the antenna position is concerned, to our astonish-
ment the highly-elongated plasma behaves very similar to the plasma
with a circular cross-section [18]: one can reach better the plasma
interior with a T/B configuration than with an LFS configuration and
moreover the ratio of reactive to resistive antenna load (not shown
here) on the average is smaller in the T/B case. Here one seems, how-
ever, to be forced to use higher toroidal mode numbers, eg. n = -4,
whereas in the circular case acceptable results can be obtained with

n=-2.

Concerning the ICRF mode conversion heating the LFS antenna posi-
tion seems to be clearly favourable but the T/B position yields still
better penetration than any of the AWRF scenarii. The same conclusion

can be drawn from both plasma models used.

The scatter of the data points in the ICRF T/B case with cold
plasma probably is of numerical nature. On the other hand, the scatter
seen in the AWRF results is of physical origin and has to do with the

subsequent appearance of new resonant surfaces in the plasma.

4.2 Production of runaways in LHRF ramp~up

Recent current—drive experiments in PLT and ASDEX [36,37] have

clearly demonstrated the ability of lower-hybrid waves not only to
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maintain a steady plasma current, but also to increase it ("ramp-up")
during the discharge. Since the time variation of the current induces
a DC electric field opposite to the direction of RF waves, any
appropriate theoretical description of current ramp-up requires the
knowledge of the plasma dynamical response to the simultaneous appli-

cation of the RF power and opposing electric field.

In a short conference contribution [38] we have recently investi-
gated the dynamical behaviour of the plasma current. As a by-product
we have found steady states with runaway tails higher than predicted

by the "classical" theory [39].

Here, we investigate this effect in detail. In Fig. 13 we have
plotted the runaway rate A = (dp/dt) (pvei)‘l as a function of the
electric field measured in units of the Dreicer field,
Ep = mgVthevei/e, where vipe 1s the electron thermal speed

(Te/me)l/ 2, vei the electron-ion collision frequency and

% %
e = T a/v; via(zi—{

29

e - (29)
In our computations vg = 15 vihe. We have used a discretization
with (N, N , My, M) = (80, 30, 10, 20) and the k-space was

limited by 0.01 < kip < 0.2 and 0.04 < k\p < 0.4 where AD
denotes the Debye length. The IHRF waves have a Gaussian spectrum [29]
and act in velocity space in the range 3.5 vipe S v £ 10 Vipe.

The total power corresponds roughly to the PLT ramp-up conditions [36]
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of about 130 kW. The electric field acts in the opposite direction and

accelerates runaway electrons towards vy = —.

In Fig. 13 we show the runaway rate with and without RF as
obtained with ADLER. As a reference line we have also drawn the result
obtained from analytical theory without RF [39]. If the fields are
such, 0.02 < E/Ep < 0.16, that the «critical velocity
Vo/Vthe (ZED/E)I/Z, lies approximately within the range of
phase velocities of the LHRF waves, the latter are even capable of
enhancing the runaway rate in the opposite direction because a certain
amount of LH produced high energy electrons are collisionally pitch-
angle scattered from vy > 0 to v; < 0 [40] and run away if their
velocity is higher than v.. Their presence on the way from positive
to negative v| can best be demonstrated by the shape of the distri-

bution function at vy = 0: fo(vy = 0, YL)’ Fig. 14.

In the past we have treated LHRF and runaway problems with a
quasilinear model in which the shape of the distribution function was
assumed to be Maxwellian in v . With such a model it is impossible to
treat LHRF anti-runaway situations as the one just presented. The
effect demonstrated in Figs. 13 and 14 is a real 2D effect and can

only be treated consistently with a model like ADLER.

5. Conclusion

We have discussed certain aspects of the numerical modeling of RF

heating and current drive. The physical problems treated are such that
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the numerical resolution is marginal. In such a situation - and this
is a trivial conclusion - it is worth trying different methods of
discretization with the aim to find the "best". For the physical
problems investigated we have found that the "finite hybrid elements"
were by far the best concerning efficiency: for equal memory space and
central processor times the results obtained with the hybrid elements
were "nearer" to the correct results than those obtained with regular
linear or cubic finite elements. In realistic cases we were, however,
unable to demonstrate convergence laws. In such a situation - and this
is a non-trivial conclusion - it is worth disposing of different
methods of discretization in one and the same computer code. In the
absence of convergence laws, the use of these different methods per-
mits an assessment of the discretization errors, and provides credibi-

lity to the numerical approach.
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Figure Captions:

Fig. 1:

Fig. 2:

Fig. 3:

Fig. 4:

Fig. 5:

Fig. 6:

Contour lines of the circular left-hand polarization of the
electric field, 5E+| , for a mode conversion scenario in JET
in a deuterium plasma with 7.35% of He-3 and a frequency of

fo = 33 MHz.

Energy flux (77~7) through a magnetic surface, labelled
with s = ¢1/ 2, and power absorbed per radial interval As

(——) versus s for the case shown in Fig. 1.

Power (in normalized units) emitted by the antenna versus
frequency for the scenario of Fig. 1 as obtained with the 2D

model LION.

Antenna load Z versus frequency as obtained with the hot

plasma model in 1D (ISMENE).

The real parts of the wave fields versus the spatial coor-
dinate as obtained with the new version of ISMENE. Same

parameters as for Fig. 1.

Antenna load 2 versus frequency as obtained with the cold
plasma model in 1D on a fine mesh with N = 6000. Cubic ele-
ments. Three different phenomenological dampings have been

used: A = 1 (0), A = 3 (

) and A = 10 (T777).



Fig. 7:

Fig. 8:

Fig. 9:

Fig. 10:

- 39 -

Antenna load Z versus frequency as obtained with the cold
plasma model in 1D on a coarse equidistant mesh with N = 512
and A = 1, Four different discretization methods have been
used:

a) cubic elements, b) linear elements, c) conforming, non-
polluting elemets and d) non-conforming, non-polluting ele-
ments. The continuous reference line is identical to that in

Fig. 4.

Convergence behaviour of the antenna load versus mesh size
for the four different methods shown in Fig. 7: cubic ele-
ments (—————), linear elements (~~~7), conforming,
non-polluting elements (<eee) and non-conforming, non-
polluting elements (T~ ~7). The meshes are equidistant in
cases a) and b) and non-equidistant in ¢) and d). The pheno-

menological damping is A = 1 except for case b) where A = 3.

Convergence behaviour of the power emitted by the antenna
and the magnetic surface s;,, inside which 50% of the
emitted energy is absorbed versus the mesh size in the 2D

case.

Wave spectral distribution, W, versus the absolute value of
the wave vector, k, as obtained with linear elements
(——) 1in 200 steps and with finite hybrid elements
(T777) in 30 steps, case b), whereas case a) is an

intermediate situation.



Fig. 11:

Fig, 12:

Fig. 13:

Fig. 14:
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Position of the magnetic surface, s = g /2+ within which
50% of the energy is absorbed for the two frequency ranges
AWRF and ICRF (mode conversion) in the planned tokamak TCV.
Antenna position is either top/bottom (T/B) or low field
side (LFS). In the AWRF different toroidal mode numbers have
been used: n = -2 O and n = -4 ® ., In the ICRF different
absorption models have been used: Cold plasma WM and "warm
plasma" O (ion-cyclotron absorption of fast magnetosonic

wave included).

Contour lines of the power absorption density in TCV for the
AWRF case with the best power absorption profile, 1i.e.
n = -4, f5 = 1.3 MHz. 42% of the energy are deposited on
the innermost layer and 38% on the next one. The remaining

20% are absorbed at s > 0.8.

The runaway rate, A, versus the electric field E measured in
units of the Dreicer field, Ep. Shown are the prediction
of the analytical theory (™~ ~~) and the numerical results

{

). High values of "anti-runaway" are obtained when
high energy electrons are produced by LHRF current drive.

Case E/Ep = 0.04 (0) is analyzed in Fig. 14.

Electron distribution function, fe(vy = 0, v, ), along
the v, -axis as a function of the perpendicular energy. The
LHRF current drive results in a long tail even in vy .« The
critical velocity corresponding to E/Ep = 0.04 is situated

in the tail, leading to enhanced runaway.
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