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Abstract

Imaging techniques offer attractive alternatives to small-angle
Thomson scattering for scale lengths of density fluctuations causing
diffraction in the Raman-Nath regime. This is the case for fluctuations
with wavelengths above about 3 mm for tokamak sized plasmas, when a CO,
laser probe beam is used. Four methods ("phase scintillation", phase
contrast, wavefront shearing and interferometry) are compared, on the basis
of their transfer properties. They offer new means of studying density
fluctuations of magnitude up to the dimensions of the plasma, such as those
associated with turbulence, magnetic islands, convective cells or driven
waves. The long wavelength limitations are discussed in detail and are
related to those encountered for far-field techniques. An experimental
- comparison of "phase scintillation" and phase contrast is given, and the
criteria relative to the depth of field of imaging instruments in this

context are considered.



1) Introduction

When the diffraction of laser light by refractive perturbations in the
plasma occurs in the Raman-Nath regime (KLEIN and COOK, 1967; BORN and
WOLF, 1959), the effect of the latter on the transmitted wavefront is

entirely described by the usual line integrated phase shift
¢(x,t) = 2\t f(n(x,z,t)"1)dzr

where n=(1-wzp/w2)l/ 2 is the plasma refractive index,
= 1-2.814107*3 A ng for w » wp
A= 21/K, is the probe beam wavelength (cm)

Ne = Ng(x,z,t) is the electron density (cm™3).

An imaging interferometer having a‘ wide enough access to the plasma
can provide a measurement of ¢(x,t) (HUGENHOLTZ and MEDDENS, 1982; YOUNG
et al., 1985). As we will see however, for most of the cases of interest
for the study of fluctuations, simpler near field (SHARP, 1983) or imaging

methods (WEISEN, 1982, 1985) provide equivalent information.

The widely used far field (scattering) techniques on the other hand
provide a measurement of the various components of %'(k,t) , the Fourier
transform of ¢(x,t) (SLUSHER and SURKO, 1980; EVANS et al., 1982; TFR
GROUP and TRUC, 1984; SONODA et al., 1983). Obviously the two classes of
methods provide equivalent information if one is able to measure d(x,t)
at "all" positions (using a detector array), respectively '&”(k,t) for all
k. Fundamentally, the two classes and their numerous variants differ only
by how and where the desired information contained in the transmitted

(including diffracted) beam is extracted. However, these methods are not



necessarily equally well suited in a particular context. The most important
is the choice of the probe beam parameters: width and wavelength. The total
amount of information collected by the beam increases with its width. For
imaging techniques an increased width reveals more of the plasma, and for

scattering it results in enhanced wavenumber resolution.

Generally, for the case of scattering, one wishes to observe a homoge-
neous plasma sample to obtain the fluctuation's power spectrum S(x,,) and
is therefore restricted to a beam width much smaller than the plasma
radius. The resulting conflict with the desire for good wavenumber resolu-
tion limits the usefulness of scattering techniques at long wavelength.
(The finiteness of the beam width is effectively a measurement of the
position of the fluctuations observed and is therefore incompatible with a

simultaneous measurement of their wavenumber. )

In well designed imaging systems this problem does not arise because
no attempt to measure k is made during the recording process, and the beam
width is made as large as possible. One is still free a posteriori to
express the information recorded in terms of spectra. Whether this is use-
ful or not depends on the nature of the fluctuations. It is more informa-
tive for example to view localised or complicated wave patterns directly in

real space.

Thus imaging techniques appear to be preferable at long wavelength
(say A > 1-2 am for tokamak sized plasmas) whereas common scattering is
more adequate for short wavelengths, in particular for the Bragg regime,
which is not discussed here. A detailed comparison between a representative
of each class ( "phase scintillation" (SHARP, 1983) and far forward
scattering (EVANS et al., 1982)) has recently been given by JAMES & YU

(1985).



The techniques presented in the following sections will remind the
reader of the Schlieren (and related) methods used on high density plasmas
(JAHODA, 1971). Schlieren methods however are described by a. geometrical
optics treatment, the validity of which breaks down in the context of
fluctuations in the low refractivity plasmas characteristic of current

tokamaks, making a wave-optics treatment necessary.

2) Imaged detection of small phase shifts

Consider a plane wavefront of complex amplitude B(x) propagating

through a thin phase object located at the plane g, (fig. 1a).

The transmitted beam B'(x,t) (fig. 1b) is then (A » 0)

B'(x,t)‘_' exp (id)(x,t)) B(x) = (1 + i¢(x,t)) B(x) for ‘q)i 1. (1)

The intensity is not affected. However we obtain a ¢ dependent intensity
I(x,t) if we add a reference beam iB(x) to an image of B'(x,t) (fig.

YK

B'(x,t)= B'(x,t)* iB(x) , thus I(y,¢t) = 287x) (T+o(x,t))e (2)

This is simply the case of a homodyne interferometer tuned to fractional
fringe observation, i.e. offset to the steepest point on a fringe. Other
methods do not use an external reference. How is information about d(x,t)

obtained in these cases ?

One answer is that by modifiying in some way the relative phasings of
the large undiffracted part B(x) and the small diffracted part
i¢(x,t)B(x) detectable interference of the two components can be
obtained (fig. 1d). The phase contrast method (ZERNIKE, 1935; BORN and

WOLF, 1959; PRESBY and FINKELSTEIN, 1967) relies on the separation of the



two components in the far field of a lens to achieve a n/2 phase shift
between them and then on their recombination to form an image again.

Complex amplitude and intensity are then

B'(x,£)= Bx) (1 + 0(x,t)) » I(x,t)= B (x)(1 + 20(x,t)) - (3)

"Phase scintillation" (SHARP, 1983) can be considered to rely on the fact
that diffracted light has a longer path to travel, from Z; to the detection
plane £, (fig. 1a), because it travels at a slight angle, thus building up

phase differences and intensity variations that are functions of z and k.

Obviously a device without a separate reference beam cannot measure
absolute phase variations like an interferometer. Therefore the phase at a
given point can only be given with respect to the phase at other points in
the beam, for example a weighted average over surrounding points (WEISEN,
1985). As these imaging devices are linear systems, their performances will

in the following be evaluated on the basis of their transfer properties.

3) Transfer properties

The theoretical framework used to analyse imaging systems is found in
basic textbooks, e.g. GASKILL, (1978). The overall effect of the system on
the optical wavefields is described by a linear operation JZTrelating the
complex amplitudes in the input (object) plane to those in the output
(detection) plane.

L 1 B'(x,t) > B"(x,t) = R(x) + D(x,t) (4)

B(x) > R(x)
16(x,t)B(x) > D(x,t)



It is the interference between R(x) and D(x,t) that is of interest
to us because it leads to intensity variations AI(x,t) that depend

linearly on ¢(x,t) and can be recorded using power sensitive detectors.
AL(x,t) = R*(x)D(x,t) *+ D*(x,t)R(x)- (3)

The linear relation between Al(x,t) and ¢(x,t) 1is conveniently
described by introducing an instrumental impulse response hi(x,y)
obtained by replacing 0(x,t) bY 8(x-y) in eq. (5). The Fourier trans-
form of hi(x,y) with respect to u=x-y can be interpreted as a wavenumber
response (which may be position dependent). It is a transfer function,
noted H(k), when the system is shift invariant, i.e. when hi(x,y)
hi(x—y)- Even though treating a finite system as being shift invariant is

clearly an idealization, H(x) provides an excellent basis to compare

different methods.
3.1) Phase contrast

A wave optics treatment of the phase contrast method has recently been
published elsewhere (WEISEN, 1985). The above mentioned n/2 phase shift
betwéen diffracted and undiffracted 1light is achieved by introducing a
phase plate P into the focus of lens L; (fig. 2). The phase plate can
consist of a transparent disc having a groove of a depth such that the
diffracted light falling beside it is retarded by A/4 with respect to the
undiffracted part focussed onto the grdove. Lens L, then forms an image of
the plasma at I', where the phase shifts produced in ¥ are revealed as
corresponding intensity variations. If B(x) is the incident beam ampli-

tude in ¥ and C(x) the inverse Fourier transform of the charateristic



function E:‘fk) of the phase plates groove (fig. 3), the intensity

distribution (power density) in »' is
I(x) = Io(x) + AI(x) (to first order in ¢),

A (x) = 2{[B(x) ® C(x)] ¢(x)B(x)~ Bx)[ (6(x)B(x)) ® C(x)]}.  (6)

A @ designates the convolution operation. AI(x) is essentially propor-
tional to the difference between ¢(x) and a weighted average of o (x)
over neighbouring points. For fluctuation scales smaller than the scale of
C(x) this average tends to zero and AI(x) is directly proportional to
¢(x)+ (To simplify the notation we drop the explicit temporal dependence

of o(x,t) and write the position variable X=(X] sX,) as a scalar.)

BEq. (6) leads to an instrumental impulse response given by

B(y)C(x-y)

hi(x,y) = 2(x) [B(x) ® C(x)] (8(x-y) - Bx) ® Cx)

(7)

which in the shift invariant approximation (around x=0) reduces to (fig.

4.b')

B(-u)C(u)

hi(x-—y) = hi(u) = 21, {é(u) -W

(8)

where B(x)[B(x) Q® C(X)] = IO(X)'

The corresponding transfer function is

B(x) @ T(x)

Heixy = 2I {1 -
() ° B-1) @ T(1)]1-0

}. (9)




The behaviour of H(x) is depicted in fig. 3 for the experimentally
representative case where both %’(k) and 6'( k) are even functions. For
k > keq, H(kx) is essentially flat, as for an interferometer. The cutoff
wavenumber ko can be chosen sufficiently small to allow detection at

wavelengths of the order of the diameter of the beam.

In the case of Raman-Nath diffraction the k-spectra are symmetrical
and both halves carry the same information. It is also possible to obtain
transfer properties very similar to those of phase contrast by suppressing
half of the diffracted spectrum while leaving the undiffracted part
unaffected and use it as a local oscillation in 5'. Although very different
in interpretation this strongly resembles the Knife Edge Schlieren method
(JRHODA, 1971). As its sensitivity is reduced by !/, compared to phase

contrast, it will not be considered further here.
3.2) Phase scintillation

We now give a brief treatment of the case of "phase scintillation" for

the needs of our comparison.

The propagation from Z) to Z, (fig. 1) is described by a convolution
with the free space impulse response hz(x) (GASKILL, 1978) in the Fresnel

approximation:

B"(x) = B'(x) @ hg(x) = {(1 + 1¢(x)) B(x)} ® hz(x) (10)
hp(x) = (irz)™! exp (ikgx%/2z).

The resulting intensity distribution in I, is to first order in ¢

— 2
Tix) = B(x) ® hg(y)|” + 81k



where

Al(x) = -i(B(x) ® hy(x)) (o(x)B(x) ® hy(x)) + c.c.

c.c is the complex conjugate of the immediately preceeding term. The near

field being defined by B(x) ® hz(x) = B(x).,

M(x) = -iB(x) (6(x)B{x) ® hz(x)) + c.c. . (11)

The intrumental impulse response hj(x,y) 1s obtained by setting

0(x) = &(x-y) in eq. (11):

hi(x,y) = -2(A2)7! By)B{y) cos (k¢ (x-y)2/22} . (12)

Over an area where B(y) = B(y) and ]B(x)l = yI;, the system is
shift invariant with impulse response and transfer function (fig. 4.c &
c'):

hj(x-y) = Bi(u) = —2(Az)"} I, cos {kyu?/2z} (13)

H(k) = AL(x)/8(x) = 21 sin {zk?/%k,} (14)

The discussion of the sensitivity of this technique at long wavelength
(e.g. of the order of the beamwidth) is delicate, because, in order to
obtain high sensitivity one would have to choose z too large to satisfy the
near field oondition B(x) @ hyz(x) = B(x). It could then not even

loosely be associated with imaging.
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3.3) The wavefront shearing interferometer

Another possibility of deriving a reference from the probe team is to
set up an interferometric arrangement in which the phase at each point is
measured with respect to a reference point within the beam. The position of
that reference can be fixed or depend on the point where the measurement is
made, as it is the case of the Bates wavefront shearing interferometer
(BORN and WOLF, 1959). After its passage through the phase object the probe
beam enters a Mach-Zehnder arrangement, at the output of which the beams
from the two arms are superposed with a shear. Suitably offset for
fractional fringe observation the instrument measures the phase difference

between points separated by the shear distance, a, yielding (fig. 4d & a')

hi(u) = 172 Ig(8(u-as2) - 8(utas2)) (15)

Hik) = I, sin(ak/2). (16)
For k < m/2a the difference can be identified with a derivative., The
small wavenumber sensitivity is limited by the fact that the shear, a,

cannot be made larger than the beam width.

4) Comparison of transfer properties

In fig. 4 the transfer properties of the three methods described can
be compared to those of an ideal Mach-Zehnder interferometer. It was
assumed that the techniques all make use of the same laser source and have

the same probe beam width and magnification.

The interferometer (a,a') set to fractional fringe observation gives a

direct measurement of ¢(x) independently of the wavenumbers. Consequently
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hi(u) = 1/2 Ioé(u) and Hikx) = 1/2 I,, the factor 1/2 arising from the
use of two beamsplitters. A common feature of all techniques that lack a

reference beam external to the plasma is their insensitivity to absolute

path length variations, i.e. H(gy = 0 strictly. The finite beam width
is responsible for a "dip" in H(k) around k=0, that is at least equal
to the width of B(k). (This is also true for the sensitivity of far-field

techniques without an external reference - see appendix).

The drop in sensitivity for wavelength longer than the beam width is
however not a handicap with respect to the interferometer r if we are only
interested in fluctuations with wavelengths shorter than the beamwidth. On
the contrary, such an instrument has the advantage of being considerably
less sensitive to mechanical perturbations. Depending on the experimental
situation, the removal of the large contribution to ¢(x,t) due to the

bulk density of the plasma, may also be welcome.

Whereas for k > k. a phase contrast device can be treated like an
interferometer, the interpretation of data obtained from a phase scintilla-
tion setup is much less straightforward. Its transfer function can take any
value between -2I; and +2I;. The zeros of H(x) represent lost informa-
tion. Nonetheless, for k> < |2koz"1| the approximation Hkx) = Iozko'lk2
holds, showing that at long wavelength (or small z) it yields a measurement
of af¢(x) + exactly as the classical technique of shadowgraphy (JAHODA,
1971). The advantage of the technique seems to be in its simplicity, and,

as it requires only few optical components, its high mechanical stability.

The wavefront shearing interferometer is easier to interpret and more
sensitive at small k, due to the linear dependence of H(x) around k=0.

Evidently, the phase contrast method provides both the highest overall
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~sensitivity and the closest approximation to the transfer function of an
interferometer. In the appendix we show that a phase contrast device can
provide a good physical realization of what could be regarded as an ideal
"internal reference interferometer". Using a 23 cm wide probe beam, the
system on the TCA tokamak has been shown to provide a flat response to
wavelengths up to about 20 cm (WEISEN, 1985). The cutoff wavenumber ke is
adjustable, allowing one to reject unwanted spectral contributions. A
disadvantage of the technique is that it needs high quality optics, other-
wise its low-k performance is degraded by the broadening of the focal spot

at the phase plate.

5) A direct experimental comparison between phase contrast

and phase scintillation

The experiment reported here was carried out during the development of
the phase contrast system now operating on the tokamak TCA (WEISEN,
1985-2) . The gaussian beam of an 8 Watt CO, laser (A = 10.6 p) was suitably
expanded to fill the 7x4 cm clear aperture of the optics with a FWHM of 4.8
an (fig. 5). The parabolic mirror L; (f;=45 cm) focussed the beam onto a
phase mirror P, manufactured as described by WEISEN (1985). Mirror L,
(£,=27.5 cm) produced the final conjugation of the planes 3 and r'. Ultra-
sonic waves were produced by a piezoelectric transducer (with resonant
frequencies between ~100 and 500 kHz) which could be scanned in the z
direction along the beam. When the groove (width 200 n) of the phase mirror
was positioned to coincide with the focal spot, the system operated in the
"phase contrast mode". When it was shifted out of coincidence, the groove

was of no effect and the system operated in the "scintillation mode".

The homodyne interference signals due to the ultrasonic waves were
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detected by a liquid nitfogen cooled HgCATe photovoltaic diode at r'. A
fast lock-in amplifier yielded their vector amplitude and relative phase as
a function of the transducer position. Fig. 6 shows the amplitude obtained
for 3 successive scans with k= 37.3 rad/cm in each of the two modes of
operation. As expected, when the transducer was at ¥ (i.e. z=0), there was
no signal in the scintillation mode, whereas phase contrast was at its
maximum. The peak sensitivities were the same in both cases. Zero crossings
were always accompanied by inversals of the signals. The distance d(x)
between successive zero crossings (fig. 7) was as predicted by eq. (14),
i.e.

d(x) = 2nkok=? = a%)-1

The same results were obtained for a phase scintillation arrangement
without imaging optics (as in fig. 1a), the detector being placed at the
position of L;. (The advantage of imaging optics for a practical scintilla-
tion device are that they allow one tb choose the magnification of the
system and to set the effective detection plane I, (fig. 1.a) at otherwise

inaccessible positions.)

6) Depth of field

As seen from fig. 6 phase contrast is subject to scintillation effects
when the imaging is out of focus. This effect is easily taken into account
if an additional modulation factor cos{zk?/2ky} is introduced into the
right hand side of eq. (9). Under these conditions an interferometer will
also suffer scintillation effects, as reportéd by SHARP (1983). As these -
effects are basically undesirable for the operation of imaging diagnostics,
the length 1/2 d(x) will be a measure of the allowable depth of field,
defined between the points where the sensitivity drops to 70% of its in

focus value,
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The resulting requirement

lz|< A2 /40 (17)

is similar to the requirement that the Klein & Cook parameter Q be small
to ensure Raman-Nath diffraction (KLEIN and COOK, 1967). For a plasma with
a diameter of 40 cm, (17) is satisfied for A > 0.3 am if a CO, laser (A =
10.6 p) is used. It is however only satisfied when A > 3 cm for a probe
beam in the FIR with A = 1 mm. Thus for imaging techniques, the use of a
short probe wavelength results in the advantage of a wider range of plasma

wavelengths that can be studied.
7) Summary

Imacjing methods are in general better suited to the study of 1long
wavelength fluctuations than scattering techniques. In order to obtain
information about large scale fluctuations it is necessary to have a wide
access to the plasma. If possible the probe beam should be as wide as the
plasma. For wavelengths smaller than the beam width, imaging methods using
no external reference beam can provide information that is equivalent to
that given by an interferometer, with the advantage of simplicity and
reduced sensitivity to mechanical perturbations. This advantage is
particularly welcome if one uses a CO, laser to obtain a large depth of
field. The transfer function of the phase contrast method is the closest
approximation to the wavenumber independent transfer function of the
interferometer. For wavelength larger than the beam width, the sensitivity
of methods that do not use an external reference beam decreases in the same

way than for far field methods.

Other imaging methods may still need to be discovered or rediscovered

to suit particular applications.
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Figure captions

Fig. 1 a) diffraction by a thin phase object
b) complex amplitude diagram of the transmitted wave
C) detection of a small phase shift by adding an external reference
wave (interferometry)
d) homodyne detection of a small phase shift with an internal
reference.

Fig. 2 Basic setup for phase-contrast
I, object plane
', image plane
P, phase plate
D, diffracted light component
UD, undiffracted light component
L) and Ly, focussing and imaging lenses

Fig. 3 Wavenumber response of the phase contrast method from ed. (5).

Fig. 4 Compared impulse and wavenumber responses for the 4 methods
discussed
a,a') interferometry
b,b') phase contrast
c,c') phase scintillation
d,d') wavefront shearing interferometry

Fig. 5 Experimental setup used to compare phase contrast and phase
scintillation. Captions as for fig. 2, except
T, piezoelectric ultrasonic transducer
DT, HgCdTe detector element

Fig. 6 Amplitude of the interference term for phase contrast (1) and phase
scintillation (2) as a function of the transducer position z,

Fig. 7 Distance d(x) between zero crossings.

Fig. 8 (1) Normalised wavenumber response H(x)/2Io from eq. (A.7)
(2) Maximum homodyning efficiency Nmax from eq. (A.12).
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APPENDIX

Long wavelength limitations

We first present a theoretically ideal "internal reference interfero-
meter" and then show that the drop of the sensitivity at small \kl is a

general feature of any method (imaging, near-field, far-field) using no

reference beam exterior to the plasma.

We start from eq. (1)

B'(x) = B(x) + iD(x)
(A.1)

B(x) * 1¢(x) B(x)

where B(yx) and ¢(x) are arbitrary (but ‘¢(x)| € 1) and belong to the
space of square-integrable complex functions. The interaction of the

incident beam with a phase object must conserve the total power

IBI? = [Bx)B(x)dx = IB"12, (A.2)
implying

J(iD(x)B{x) + c.c.)dx = 0. (A.3)

We now decompose D(x) into its components in the subspace Ej

generated by B(x) and the perpendicular subspace Ej.

B(x) = aB(x)

D (x) = D(x) = Dy(x)
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It follows from eq. (A.3) that « is imaginary. Hence, whatever 1linear
operation is performed on B'(x), the interference between diffracted and
undiffracted light will contain no contribution due to Dy (x). An ideal
"internal reference interferometer" can still be thought to make use of all
of the available diffracted light (i.e. the D} components) and produce

intensity variations AT(x) consistent with (A.3) given by
*
Al(xy = B(X)DJ_(X) + c.c.

IBly)B(v) 6 (v)dv
[B* (v)B(v)dv

= B(x)B(x) lo(x) - (B-5)

for ¢(x) real.

As can be seen from this equation, AI(x) is a measure of the phase
¢(x) With respect to a weighted average of ¢(x)+ In this ideal case the
weighting function is the normalized intensity profile of the beam. Phase
differences between any two points are measured as well as with a classical
interferometer. It is easily verified that the intensity variations of eq.
(A.5) are produced by a linear imaging system modeled by a unitary operator
U having the eigenvalue 1 in the subspace Ey and all eigenvalues equal to

-i in E.
U : B'(x) » B"(x) = Bx)y + iDj(x) + D.L(x) (A.6)

In the shift invariant approximation around x=0, (A.5) leads to a
transfer function similar to eq. (9):

fg(l)B’(‘l_k)dl

[ard [ad }
fB(l)B*(l)dl

H(k) = 2IO {1 -
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1
- } (A.7)
B(1) ® B{-1) |1=0

We see that a phase contrast device using a phase mirror with Ko
closely matched to the diffraction limited spot size is a good approxima-
tion to the ideal instrument described by egs. (A.5) and (A.7). Fiq. (8)
shows H(k)/ZIo in the case where B(x) = exp (~x2/2w2). (Note that the

absence of a first order dependence of H(x) is particular to x=0.)

The transfer function of a shift invariant imaging device can also
serve for a comparison with the wavenumber response defined for far-field
techniques. Clearly there is no a priori difference in sensitivity between
the two classes. However, for a system that is not shift invariant, the
local wavenumber response (as defined in section 3) does not adequately

describe the system's overall efficiency.

In the following we therefore give a more general upper limit to the
total homodyne power, that can be obtained by methods relying on the

undiffracted wave as a local oscillator.

The available diffracted power is IIDJ_II2 = fDI(v)DL(V)dV and the
total local oscillator power is an2=fB*(V)B(V)dv, yielding an inter-

ference signal of power

AP < 2|ID_LII IBE < 2IDEIBI (A.8)

The highest homodyning efficiency of an "internal reference apparatus" is

Ip, i |/ Ippn?
"max = 2L 1 - o (A.9)

thus
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/B (0)By 0oy

[/B* (v)B(v)av][[o* (v) ¢ (v)B* (v) B(v)dV]

y1/2 (A.10)

or mpax = {1 -

For a perturbation of the form o(x) = exp(ikx) this reduces to

Buos Bl |* |1/

Mmax(k) = {1 - - — (A.11)
|B(1)® Bt-1) |3=0
If B(x) is a gaussian beam of the form B(x) = exp(—x2/2w2), then
(fig. 8)
Tmax(k) = {1 - exp(-k2w?/2)}1/2 (A.12)

There is a "dip" of sensitivity at small wavenumbers, the width of
which is at least equal to the width of ﬁ’(k). As ¢(x) and B(y) were
taken to be complex (rather than real) functions, the result can be
extended to the case of diffraction that does not occur in the Raman-Nath
regime and to the common detection schemes where the probe and the local

oscillator beams cross inside the scattering volume.
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