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ABSTRACT

This paper presents numerical methods developed for the calcula-
tion of global wave solutions in cold plasmas, in connection with rf
heating in the Alfvén and Ion Cyclotron Range of Frequency. Both one-
dimensional and two-dimensional geometries are treated, with special
emphasis on the toroidal geometry. A scheme based on a variational
formulation and the use of finite hybrid elements is presented in
detail. The numerical properties of the computational model are care-
fully examined. It is shown that an approximate solution with good con-

vergence properties in an exact geometry can be obtained.
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1.  INTRODUCTION

The_ study of waves in cold plasmas is one of the oldest subjects
of plasma physics [1-3]. In the last few years much effort has been
made in this domain [4-10] in great part due to the numerous
experimental achievements with using rf waves to heat the plasma
[11,12]. Though the properties of such waves in homogeneous plasmas
have been well known since a long time, many difficulties arise when
the non-uniformity, the finite size and the actual geometry of the
plasma in present day experiments, such as tokamaks, are taken into

account in the theoretical models.

The first way to tackle the problem has been to treat the differ-
ential equations in the WKB approximation, which in multi-dimensional
geometries led to the ray-tracing techniques. This approach has given
many successful results [13-15]. Unfortunately, it suffers from several
limitations. Firstly, the WKB approximation may break down, for example
around the resonances. Secondly, in the Alfvén and Ion-Cyclotron Range
of Frequency (ICRF), in the actual experimental devices the wavelength
is of the same order or larger than the size of the plasma, making a
geometrical optics approach inappropriate. Thirdly, in ray-tracing one
has to assume single-pass absorption, making the study of eigenmodes

impossible.

These reasons, together with the complexity of the analytical
methods [16], motivate a different approach to the problem, namely the

global determination of the wave field in inhomogeneous, non-uniformly

magnetized, finite-size plasmas using numerical techniques to solve




appropriate differential equations. By' global solution we mean that:

- the problem is solved in one well-defined geometry, with no match-
ing between different regions having different geometries;

- the solution obtained is the sum of all incident, reflected,
transmitted and evanescent waves;

- the differential equations are solved in the whole domain: plasma

and vacuum including antenna and shell.

As stated above, it is specially in the Alfvén and ICRF domains that a

global solution is needed. We shall therefore limit ourselves to this

frequency range.

In this domain, three physical phenomena can be exploited for rf

heating:

- the existence of global eigenmodes of the fast magnetosonic wave

and of the Alfvén wave [17].

- the perpendicular resonances, either Alfvén or ion-ion hybrid of

a multi-ion species plasma (mode conversion regimes).

- the cyclotron damping, assisted by introducing a minority ion

species (minority regime).

Our global approach will be able to treat the eigenmodes and the per-
pendicular resonances in cold plasmas, as well as their simultaneous

occurrence,



The numerical methods used to determine the global solution are
well-known textbook methods [18,19]. Nevertheless, their application to
the study of rf waves in plasmas is rather recent. It is therefore
necessary to discuss them in detail, in particular to show clearly
their mathematical foundation and to determine where their domain of
validity is, in order to develop them to a high degree of credibility.
In this paper we shall present the implications of the specific physi-
cal and mathematical properties of the problem on the choice of the

numerical methods.

The paper is structured as follows. In part 2 we make a few re-
marks about the one-dimensional problem. The aim of this section is to
illustrate some of the basic methods for calculating a global solu-
tion. First, we discuss the pertinence of using a cold plasma model for
rf heating. We then mention shooting and finite element methods. The
treatment of vacuum, including antenna and conducting wall, is also
presented. In part 3 we describe the two-dimensional problem. Special
care has been taken of the treatment of the toroidal geometry. In par-
ticular, we present the recent development of the LION code. LION is
based on a variational formulation and finite hybrid elements. The
numerical scheme is very carefully examined. By doing convergence
studies the accuracy can be measured; comparison with analytical
work [20], where possible, as well as with experiment [21] is made;
other physical tests, for example of the power balance, are presented.
Part 4 discusses the limitations of global wave codes and the possible

future improvements of the numerical techniques. We conclude in part 5.



2. GLOBAL WAVE SOLUTION IN ONE-DIMENSIONAL GEOMETRY

2.1 Cold Plasma

The first question which arises is the pertinence of cold plasma
model for studying rf heating. In the Alfvén and ion-cyclotron range of
frequencies, two phenomena are pure warm plasma effects: the existence
of kinetic Alfvén and ion Bernstein waves, and the cyclotron damping.
It is therefore necessary to keep in mind that neither 2nd harmonic
heating, where the interaction with the ion Bernstein wave is crucial,
nor fundamental minority heating, where ion-cyclotron absorption takes
place, can ever be described in the context of cold plasma. It then
remains the question of the influence of finite temperature on mode
conversion scenarios. It has been shown that the cold plasma model is
in very good agreement with the warm plasma model, at least in 1-D geo-
metry. When the temperature of the plasma tends to zero, the ion Bern-
stein wave reduces to the ion-ion perpendicular resonance. But the
total power absorbed is exactly the same. In other words, the antenna

ignores that the plasma is warm. For more details, see Ref. [22].

2.2 Equations

2.2.1 Basic equations

We consider a cylindrical, non-uniform, current-carrying,
multi-species plasma (Fig. 1). All equilibrium quantities depending
on r only, we can Fourier-decompose the fields in exp{i(mo + kz)}. Let

us define a local magnetic coordinate system (en, €3, e1) by

W ey



€, = ¢, x €,

and project Maxwell's equations on this system. Moreover, we make the
approximation of zero electron mass, leading to E; = 0. The most ele-

gant way to write the equations is to use E L and By as variables:

AL 4 (rE) = GRE, + (A-4})iwB,

(2.2)
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2.2.2 Singularities

Except for r = 0, the only possible singularities of the equations
are given by A = 0. One can easily show that the behaviour of the sin-
gular solution around the points r = ryeq, defined by A(rres) = O,

is

m
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The presence of a continuous spectrum, defined by A = 0, and the type
of behaviour of the different field components (2.4) will have a con-

sequence on the choice of the numerical method.,

A simple way to turn around the singularities is to introduce a

small imaginary part v in A:

A-> A+ iv (2.5)

with v > 0 to satisfy the causality.

Then the system (2.2) is no longer singular.



Let us make two important remarks:

1°

w = wcj is not a singularity of the equations, despite of the
presence of the vresonant denominators in eyy and eyg .
Actually, one can show that the circular component of the polari-
zation of the wave field in the ion gyromagnetic direction,

Ey = Ey + iEi, satisfies

Lim lIE,] = O . (2.6)
W=,

It is crucial that the singular behaviour of E 4 and By is non-

analytical (2.4): the power absorption at the singularity is given

This feature allows resonance absorption to occur; the apparent
paradox is that we have non-vanishing absorption with damping
going to zero. It is then crucial that the numerical techniques

guarantee a good description of the singular behaviour.



2.2.3 Antenna and vacuum

We shall neglect the displacement current in all what follows.
This is a good approximation for Alfvén wave heating where the vacuum
wavelength is much larger than the dimensions of the system. For ICRF

in large devices it might be questionable.

Our antenna model is a current sheet located at r = ry (Fig. 1),

with surface currents jg and j,

. N\
e =-§'- p O(r-r ) exp( L (mh + k2 -1ot))+cc,

' i : (2.8)
JZ ='24-‘|? J(f‘—ra) CxP (C (mp + &E "wt))i-C.C..

In the region between antenna and shell, feeder currents j, and

j, are introduced to satisfy div j = 0.

The surface currents can be treated as a discontinuity of the wave
magnetic field, while the feeder currents are volume currents which

have to be included in the vacuum wave equations. These can be brought

to the form

2 2
[ T8 [ ° zf’ﬁ;ﬁ)r -8,
dr

B ]
v - &! Z Bop k_t_ B”
r r B, &,

E.'.I.: r'jr (2.9)
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2.2.4 Regularity, boundary and matching conditions

1°  On the axis, the equations have the usual singularity of the
cylindrical geometry. But for physical reasons, the solution has

to be regular. Writing E, and Bj as

~

= r.lMl-l E

E.l.
2
B, - _4_ rim g (2.10)
/ (e

A N
0: E = egte;r+..., B = bgtbjr+...,

and expanding around r
A = agtajr+..., G = ggtg r+..., we use the equation (2.2) to
obtain in lowest order in r
im| - m m
Qp Im| 9. e

2 2,

X -9 %[m| + mq_|| b, (2.11)

The regularity condition is then

E(r=0) = B (r=0) _ (2.12)
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¥ At the plasma-vacuum interface, we require the fields be

continuous. We only have to transform E L toBy

B, (r.-.-r;o) = 7 -c_oi, E, (r=r) . (2.13)

r At the antenna, the surface currents (2.8) impose

A B, A
ﬂ'gn:p =0 [[B”] = et —3—0-3 Ja , @m

where the double bracket indicates a jump across the antenna from

the inside to the outside.

4  On the shell, the infinite conductivity imposes

By (r=ry) =0 . (2.15)

The equations (2.2) and (2.9), with (2.12)-(2.15), determine a

unique solution.,

2.2.5 Power

The total complex power delivered by the antenna is

| *
PQ, ='-Zf l'E dV R (2.16)
\'A



- 1P =
where V is the vacuum domain.

It can be compared to the total power transmitted through the

plasma-vacuum interface

| L]
F; =z] E, B, dr
Yol

(2.17)

2.3 Shooting Methods

The simplest numerical scheme is to solve (2.2), (2.9), (2.12) -
2.15) as an initial value problem with a Runge-Kutta algorithm. The
principle is to determine the fundamentals of the system of equations
and to use the matching conditions to fix the constants of integra-
tion. The presence of singularities forces us to introduce v # 0 in the
equations (see 2.5) and to have an adjustable step in order to control
the accuracy. We proceed as follows:
1° We start at r = § <K< 1 with a given initial value, using the
reqularity condition (2.12). We integrate the plasma equations

(2.2) up to the plasma-vacuum interface r = Ip.

X We use (2.13) to transform E 4 to By, and integrate the vacuum
equations (2.9) with j, = jJ_ = 0 up to the antenna r = rz. We

have then the solution at rz - 0



s 3

C -
1 (2.18)

¥  In the region between the antenna and shell we integrate once the

homogeneous (H) equations, i.e. (2.9) with N = j, =0, and

once the inhomogeneous ones (N) starting with the condition

(2.15). We have the solution at ry + 0

BN( H) B (N
c + N
2 (H) (
Bl/ Bl{ B

(2.19)

# The matching conditions at the antenna (2.14) introduced into

(2.18) and (2.19) yield the integration constants

M (H) (N)
Cy = gm) (CZ-BM & Bn
N (2.20)
(R) & (N)
¢, = L(_.B(n) By Bu A +gﬂ¢
o ("B —w |re2h)
(R) o (W)
D = B(m - Bf: Bn
" 3(8)

P  We use (2.16) and (2.17) to calculate the total power.
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The real antenna excitation structure can be Fourier-decomposed in
exp{i(mo + kz - wt)}. The whole procedure (1°) to (%) is repeated for
each Fourier component. The total power is simply the sum of the

powers of all components.

An example of application of such a method has been the calcula-
tion of antenna coupling for Alfvén wave heating in TCA [23]. Different
configurations of antennae were used: variation of its excitation
spectrum, tilt, positioning the feeders, etc., in order to optimize the
coupling and the radial absorption profile. Global modes can also be
found using this method; in this case the power varies as 1/v, while if
there is a resonant layer in the plasma the power is independent of v
for sufficiently small v. If the antenna excites neither a resonant

layer nor a global mode the power is proportional to v.

2.4 Finite Element Method

The principle of this method [18,19] can be summarized as follows:
1°  We discretize the domain on a general non-uniform mesh {ri}N,

2 We expand the unknown fields E in a set of basis functions Ty,

j = i'ooo' N

- (r) =2 xjr:l'(") : (2.21)

=t



- 15 -
The 'y are polynomials having a finite support (see Fig. 2).

¥  We introduce (2.21) in the differential equations to obtain an al-
gebraic system of equations for the Xj. This is usually done by
multiplying the equations by sufficiently regular test functions
and integrating by parts. On using the basis functions as test

functions we get the algebraic problem

_J_(_ = _b_ (2.22)

>

where _13 is the source term due to the antenna. The matrix i is the dis-
cretized version of the operator defined by the differential equations;
in our case it is a complex non-hermitian band matrix. Its bandwidth
depends on the number of unknown field components and on the order of

the basis functions.

The choice of the basis functions is in principle free. Our
problem, however, presents a particularity: the existence of a conti-
nuous spectrum (A = 0, see (2.3)) requires that the basis functions re-
produce locally the different singular behaviours of the different
field components (2.4). Otherwise spectral pollution occurs, which
means that the discretized continuum exhibits spurious modes which can
be completely outside the exact range, and sometimes even spread among
physical global modes. An example is given in Fig. 3 (right-hand side)
for the case of ideal MHD (w/wei = 0), using regular finite elements
of first order [24]. These unphysical modes can be eliminated by
increasing the number of intervals, but it can be an unrewarding task

to make such convergence studies for each case. In the case of the



- {6 =

cylindrical cold plasma, we were able to use E L and By as variables
by eliminating Ey. Since they have the same singular behaviour (2.4),

there is no problem in using reqular finite elements.

However, we shall see that it is no longer possible in toroidal
geometry; one is forced to use Ey and E L @s variables which have
different singular behaviour (2.4). This suggests the use of different
basis functions for Ey and E, , e.g. piecewise constant for Ey and
piecewise linear for Ey, such that dE; /dr has the same behaviour as
EN. This technique was successfully tested in the frame of ideal MHD
[24]; spectral pollution disappears (Fig. 3, second spectrum from the
right).

Another technique is the use of hybrid elements [25]. It consists
in considering a function and its derivative as independent variables.

This technique will be presented more in detail in the next chapter.

Brief discussion

The advantage of the shooting method over finite elements is its
simplicity. A problem arises, however, if there exists an evanescent
wave branch: when integrating backwards, the solution will explode
exponentially due to the numerical noise. Fortunately, in a cold plasma
the wave is not too strongly evanescent, so that one can still
guarantee a reasonable accuracy if the evanescent region is not too
large. For a warm plasma, the presence of an evanescent Bernstein wave

prevents completely the use of shooting methods.



= 1

On the other hand, the finite element method solves the problem as

a boundary value problem; unphysical exponentially growing solutions

cannot appear. This is the great advantage of this method.

3. GLOBAL WAVE SOLUTION IN TWO-DIMENSIONAL (TOROIDAL) GEOMETRY

3.1 Introduction

The two first successful attempts to determine a global solution
of the wave equations in the ICRF in toroidal geometry were made by
Itoh et al. [6,26] and Colestock et al. [27]. Both numerical methods
were finite difference schemes. The first authors used a simplified
geometry via expansion in inverse aspect ratio. The configuration was a
cylindrical plasma with a circular cross-section, a density depending
on the minor radius and an axial magnetic field depending on the major
radius. On the other hand, the first global wave code in real toroidal
geometry, but restricted to the study of Alfvén wave heating in ideal
MHID (w/wei = 0), was constructed a few years ago [28,9]; its

development was based on the ERATO stability code [29].

In this section we present the first global wave code which
solves the wave equations relevant for both Alfvén wave and ICRF heat-
ing in a cold toroidal plasma, with no geometrical approximation. The
problem is formulated variationally and solved using finite hybrid

elements.
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3.2 Toroidal Geometry

The axisymmetric equilibrium magnetic field can be written
B, =TY)ved + Véxvy (3.1)

where ¢ = const defines a magnetic surface and ¢ is the toroidal angle

(Fig. 4).

The toroidal and poloidal components, Bot = T/r and
Bop = |Z¢‘/r, have a two-dimensional functional dependence. This
implies that the magnitude of the magnetic field varies along a field
line. As a consequence, it is impossible to define the parallel wave-
length in the same way as in the cylinder by an algebraic expression
(2.3); k; is now not only a function of position but it is a

differential operator:

k =V =41 B, (3.2
"kll v// B, 4 Z

This means that the relation giving the Alfvén and ion-ion hybrid
perpendicular resonances (enn — kﬁ = 0 in 1-D) - hence the resonance
absorption - is also a differential operator. This complication makes
analytical work difficult. Studies by Hellsten & al. [7] indicated that
the resonant surfaces lie on the magnetic surfaces (¢ = const). Our
global code will be able to cheék this result as well as it will show
how the usual one-dimensional picture is recovered when the size of the

plasma is increased, or when the poloidal field is decreased [30].
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We shall see in the next section that the magnetic surfaces
(¢ = const) have an interesting property for the partial differential

system of equations.

3.3 Equations

3.3.1 Basic equations

We consider a plasma in an axisymmetric equilibrium. The magnetic
field is given by (3.1) and the density profile por as well as the
concentrations of the different ions species fj, can be arbitrarily
specified. In our case we have chosen p, and £y to depend on ¢
only. We write Maxwell's equation in the local magnetic coordinate
system (e_l_\!, ey ﬂ'.) defined by ey =_\_7¢|Y¢|, ey = &/Bo,
ey = &1 ey

rrtwl E - €& E =0 (3.3)

where £ is the dielectric tensor of a cold current-carrying multi-
species plasma. It is a differential operator. It neglects any finite B
effects, such as finite Larmor radius and equilibrium pressure, but it
takes into account the equilibrium plasma current density jo. Finite

electron mass has been neglected, leading to Ey = 0. We have then

£ o B ok, €, rz>l:,,§i
€ = 4+ 49 =e , (3.4)
= (“€m Enw BE ety e, ret e

e Eny
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where

(idem in 2.3) (3.5)

Notice that the operators roty and rot, act also on E.

The reason why we included the equilibrium current in the dielectric
tensor is that this term has been shown to be important for Alfvén wave
heating in cylindrical geometry, e.g. the existence of global eigen-
modes of the Alfvén wave [17], or the effect of assisting to deposit
energy in the central resonant layers [31]. Whether this term is

important also in the ICRF is not yet clear.

3.3.2 Variational form of the equations

It can be obtained by operating on eq. (3.3) with:

fdv
S

I™e

Q = plasma volume, (3.6)

A
where E is a sufficiently regular test function. After partial integra-

tion, we have



Jav (mtEomte ~ £ B 2 orp - g [ bu
o N

(3.7)

14

~iof dr . (Exg)=0
o

3.3.3 Singularities and symmetries

The operator in (3.7) is non-compact due to the presence of
singularities. As discussed in section 3.2, they are described by a
differential equation. A simple way to treat the problem is to make the

transformation
. 2
dEAHV — éav" + -Zt)’t&’d? (3.8)

with v > 0 to satisfy the causality. We have chosen v = const. One
could also take the collisional form of ENN OF replace w by w + iv
[6]. But these options have the disadvantage that the imaginary part of
ENN Peaks around w = weij, with a width proportional to v. Since v
has to be sufficiently large to turn around the discretized
singularities, it would introduce pseudo-cyclotron absorption acting on

the total electric field E and not only on the polarization E; [30].

With v # 0 the operator in (3.7) has no longer singularities, but

it has lost its hermiticity.
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The axisymmetry of the equilibrium allows us to decompose the wave

-

field E and the test function ?3' in Fourier series in the toroidal angle

_E_. =Z E” CLD¢
" ., (3.9)
> E. e |

n’

2

Introducing these expressions in the variational form (3.7) and

integrating over ¢, we can treat each Fourier component separately

since for a given n only the term n' = -n will contribute. We then have

= (n w hen auh'ny on E

(3.9b)
d : ; y
~ = -Ln twhen a.cfug on E .

The operator in (3.7) is not symmetric with respect to the "up-

down" transformation (Fig. 5)

go —> —g_o
. . (3.10)
J" == =~ Jo .

This is due to the privileged direction of the ion gyromagnetic rota-
tion. As a consequence, we have to solve the equations not only in a

half-plane like in ideal MHD, but in the whole poloidal plane.
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The finite aspect ratio breaks the cylindrical symmetry. The
azimuthal wavenumbers m cease to be good "quantum" numbers. They are no
longer independent: toroidal coupling occurs between modes of a given m
and m + 1,... . The ellipticity of the cross-section couples m to
mi 2,... . These effects have been studied in the context of ideal MHD
[9]. When a line w = wqj crosses the plasma, one expects the break of
cylindrical symmetry to be even larger, due to the vertical wei

structure.

Let us make the following remark: each break of symmetry
corresponds to a splitting of degenerated modes, thus allowing for many
of them to exist and to be possibly excited by the antenna. The less
the system is symmetric, the more one can expect the mode structure to

be complex.

3.3.4 Toroidal coordinates

We have chosen ¢, x, ¢ as coordinates (see Fig. 4).

1° The relation ¢ = const defines the magnetic surfaces (eq. 3.1).

For convenience we shall use the "radial" variable s:

S= \l% (3.11)
s

where ¢g is the value of ¢ at the surface of the plasma.



- 24 -

The "poloidal angle" y is such that the Jacobian defined by

-1
1=(92¢-(¥x=x¥%4¢)] (3.12)
becomes ,] 2 (3.13)
- T' ]
where T = T(¢) is defined in (3.1) and q = q(¢) is the safety

factor

q((}/) =-4-¢-1;§3-t dl (3.14)

21T DP

where dl is a length element in the poloidal plane on a ¢ = const

surface. We have
dé = ZB,P dx (3.15)

Notice that r2/J is a function of ¢ only.

The choice of the toroidal angle ¢ is natural since we have

decomposed the wave field in Fourier series in ¢ (3.9).

Instead of Ey and E,, we shall use the variables V and X defined
by
vT

E=1T - Xr* ,
=7 s Vg -XT VX + 7 Vé . cae
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N T (V-5 X
1('123 /37: ) (3.16b)
E o FZB¢
J1v¢| ’
where By is the non-orthogonality:
ﬂ _ agl;s Vt// 7 x (3.16¢)
X lgg)* = =
Using the relations
- d - d
V2P TS TS
1 ¢ 2 S
5,0V = j( > *15 )
(3.17)
2 =1 2
3 s 28

vk £ = (2 75, ) <2 - (X7) xqx + (740) g
= A X¥ g V¢ Ve x gy
Clgy gy s wellvy °
A=< 2 +ing)X
t legwl (ax ?) (3.18)

= T+ = éx V
Hz &tPst[. 3 ; (é En'r')x)

= n A X _ (242
A5 T‘P:_T( q(VRX)-R p X (24 )x)
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~n
The same expression holds for rot E, except that n has to be

replaced by -n (see (3.9b)).

With the relations (3.16) - (3.18), the variational form (3.7)

can be written as

1 of g
!ds!dx(f‘:“ chF]j) +S =0 , L.
where
I=] =X
I, =], = V-gX
Iy=X ., J,=V
I, =v , Tu=X
Ie=Js= 3 +ingX
(3.19b)

- . X YV
I‘-J‘- 354-5;‘

I, = 77 = %-r{ix% +/3*£m’X + HX-L‘"C]V

’
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1 P
By 1
C, = ""JB:;B,:'F" A
2458
C3 - _Bét rs l:l\
C" = --C3
_ 2¢.sr?
s = 3: Jz" (3.19¢)
op
B, r*
c‘ = ot I
2.4;3]
2
C7 = B"g r
z%sg
cg = ~24r'qK
1s ’
£ = puts_Ih
* k- (wlwg)”

(3.194)
= 2 r? 2y¥s
e 507+ i
v u
= VY _{lﬁi Jp¢ P q 2
K - ( =3 v S-Knr op
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E xB ) (3.1%)

S = -£wf dr . |
N

This section may appear unnecessarily complicated to the reader
who is unfamiliar with toroidal geometry. For example, one may think
that it is much simpler for the algebra to take r,z +$ as coordinates.
In this case both variables have derivatives with respect to r and z =
making the differential system appear as a fourth order system. The
great advantage of using magnetic coordinates is that one variable, V,
has no derivative in the ¢ direction, thus lowering the order of the
differential operator. This has many advantages for the numerical
resolution. Moreover, we have the same differential structure as for
the ideal MHD stability problem. It is then natural to take advantage

of the existence of the numerical code ERATO [29] by using the same

coordinate system.

3.3.5 Regularity, boundary and matching conditions. Vacuum solution

The reqularity on the magnetic axis (s = 0) imposes the fields to

remain finite. Since lim|g¢| = 0 and lim|V¢|/s = const, from (3.16) we
S$-»0 S0
conclude

1]

bm X =0 |

(3.20)
S0

The surface term S in (3.19) has to be connected to the vacuum
solution via boundary conditions. Here we require the fields be con-

tinuous across the plasma-vacuum interface.
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Our model of antenna is a current-carrying sheet surrounding the

plasma (Fig. 6). As in the 1-D case, we shall neglect the displacement

current. The antenna surface is defined by
D(ry=0 (3.21)

and its current j5, satisfying automatically Vejz = 0, is

J‘ - J(D) Z'D X g/,; exP(l(n4>-wt)) » (3.22)
where 8 is the "current potential®. For the sake of simplicity we
assume B to be a function of @ only. Then B determines the current in
the poloidal direction, and dB/de is related to the current in the

toroidal direction [9].

The matching conditions at the antenna are

na xL81 =n xvp
-— (3.23)

"a°[[§]3=° >

where n, is the outer normal to the antenna; the double bracket in-

dicates a jump across the antenna from the inside to the outside.

The vacuum region is surrounded by a perfectly conducting shell

where we have

n3 . B =0 (3.24)

where ng is the outer normal to the shell.
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The vacuum equations are

B=vg

— o—

(3.25)

V& =0

We are now ready to express the surface term S (3.19e) in terms of the

vacuum solution. S can be written, using Ey = 0 in the plasma, as

S = —-L'wf é;B,,da'

(3.26)
bW R
Using the vacuum equations (3.25) and the identity
~ AY] LV
k = (W
ot (S E) ¢B, + E, B, ; .27
we have
2 (A
S= wf §8, dr
3.28)
. ‘

S = iwf 3 VI,éL dor (3.29)
AN |

The potential & is functionally related to its normal derivative

on the boundaries of the vacuum region (the plasma boundary, antenna



.

and shell) via Green's theorem. Using the boundary and matching condi-

tions (3.23) and (3.24) one can write ® on the plasma boundary as

@(f):IQ(f>E')Y§(£')-g'_rr + 55 (f) , (3.30)
AN

where ®g is the source term due to the antenna. The derivation of the

full expressions for Q and &g has been given in Ref. [9].

Introducing (3,30) in (3.29), we obtain

S=-][ ate, e (9,E))(9,E () drdr
2¥olpTel

(3.31)

riw| &, (_r:’)(%é;(r";)df’ ,
dNn

with

Q= M. [ E, - (Dp -21)D Egp )

§E= "P;'[ ‘DPs‘z'I)ﬁs.s'Dsa. +21 -9”1/3

Mpp = Dpp - 21 - (Dp«s"“)'Ds:bsp

Dur fle1 = 30 (40 - f0)) V76 (5., ') de”

Euy r‘f.‘) = j‘ﬂ_f G (&,&'} _Y'f(f')téf' (3.31b)
v

G(Tu,0)= 41/ In.-1,|

By v = P (plasma), a (antenna) or s (shell).
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An alternative to the Green's function technique is the numerical

integration of vacuum equations, e.g. using finite elements [32].

Once the antenna current (3.22) is specified, the solution of the
variational form (3.19), with its vacuum contribution (3.31) and the
reqularity condition (3.20), is uniquely determined. Before explaining
the numerical construction of this solution, we shall derive a few

expressions which are interesting from the physical point of view.

3.3.6 Power, Poynting flux and power balance

The total power delivered by the antenna is
P =d de . E;It V = vacuum region (3.32)
a 2 gl ’ '
vV

It can be written, using the definition of the antenna current (3.22),

after partial integration and use of Maxwell's equations as

Pa-'r- -chfpﬁ*-do; (3.33)
. T =

The integral is a surface integral along the antenna. With the same

Green's function technique as described above, B*¥ ¢ doz can be

expressed as a surface integral along the plasma-vacuum interface
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-2 5

@*-4_0_1 =]Z(§4,§)(€7,,E:(5))do;, + L ()
P

(3.34)

and
P = -_i{_:u/stg)iz (ta, ) (Y, Ej’(_r__,,))do-f;lg

s [plro (g)da;) , (3.35)
with ’
Z = TP;' (Vrr -Up @ )
ﬁ.PE = TP: uPP e
Toa = Epa =~ (Dpa-21)D. E, .

-1
LLPP :DPP -ZI - (DPQ—ZI)gdA Da’f

V,,P Eﬂ’ - (fDPa 'Z.I):Da: Ea‘f

Another interesting quantity is the total power transmitted through

the plasma surface

PP =2Lj (E* xg)-c_!_o—r . (3.36)
o
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It can be evaluated either from the explicit calculation of the

Poynting vector S, or directly from the variational form (see 3.7).

The global power balance is

Re P =Re P

a P . (3.37)

The local power absorption density div%Re(Ef x B) can be written as
1 2

P (r) =— (3m£~~ |E,] +

d =" "

+2m (6,,+16,,) Im (EVE,))
(3.38)

In our case we have an imaginary part only in eny (see 3.8); thus
this relation reduces to

2
1
Pd (r) o Im Enn I_E.I (3.39)

To check the validity of the solution, we compare the power absorbed in
a given volume with the Poynting flux across the surface of this
volume., Iet Ry be a torus defined by a ¢ = const surface, and let us

define the Poynting flux P5 as

(3.40)

Po4) =t Rele*xg)-do,
Y
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and the power flux P as
Pe(d/)"j Pd(f)dv : (3.41)
Ny

The local power balance is evidently

Poy)= Ry) , vy

(3.42)

dPs

One can also compare o with j Pd ([‘)d% . (3.42b)

<
(%4
5

-~

Finally, we must have

Refa=R€1;=fs(4§)=P,(‘k) (3.43)

where ¢g 1is the magnetic flux at the plasma-vacuum interface. The

Poynting vector S = E¥ x B can be evaluated using B = 1/iw rotE and
yn — — Y qu—

the expression (3.18) for p_o_tg:_.
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3.4 Numerical Solution of the Variational Form

We now have all the material necessary to describe the numerical

scheme used in the LION code. It consists of five distinct parts.

3.4.1 Equilibrium

The equilibrium can be computed either in a separate code or by
using the Solovev analytical model [33]. In both cases one obtains the
values of ¢, solution of the Grad-Shafranov equation, on a rectangular
mesh in (r,z): {0i5 = olrirzg), i = 1Ny, J = 1..N;}. In the
actual version of the code the equilibrium is assumed to be symmetric
in z and is determined only in the upper half-plane. The plasma domain
is covered with a rectangular non-uniform mesh in (s,x): { (Sier)r
i= 1e.Ny, J = 1..Npo1} (s is defined in eq. 3.11). The information
has to be inverted, i.e. for a given (si, Xxj) we have to find the
corresponding r and z coordinates and all the equilibrium quantities
needed for the calculation of the coefficients of the variational form
(3.19). The code works in dimensionless units such that the major
radius R,, the equilibrium magnetic field By, the mass density Po
and the Alfvén transit-time Ry/cp are normalised to their values on

the magnetic axis.
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3.4.2 Vacuum

The vacuum region contains the antenna and shell surfaces. These
are given by arbitrary functions pal®) and pg(6) (Fig. 6). The
antenna current is specified by the function B(0) in Eg. (3.22).
Different forms of p4(0) and B(0©) will define various antenna models:
helical, low field side, high field side, both high and low field

sides, or top-bottom.

The vacuum contribution (3.31) to the variational form is repre-
sented by a matrix and a source vector. These are obtained by calculat-
ing Q and % according to the relations (3.31b). Notice that the
boundary and matching conditions are included in these expressions.
Everything is then prepared for the calculation of the power delivered

by the antenna (3.35): we evaluate 2 and BYg according to (3.35b).

3.4.3 Plasma

We have chosen to use finite hybrid elements for the following
reasons. Firstly, we want our code to be valid for any aspect ratio, in
particular in the cylindrical limit, where we know that regular finite
elements may cause trouble due to the spectral pollution (Fig. 3).
Secondly, the hybrid elements lead to simpler integration formulas than
the regular ones. Nevertheless, they have the same convergence laws.
Thirdly, the LION code has been developed from the ERATO stability code

which uses finite hybrid elements of first order and it was most con-
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venient to retain the same elements.

Let us now describe the principle of the method.

solving the variational form (3.19) as

L (X, V)=0

we consider

— , ———

s 0 =

() (3)
o (XY g0 X% W e )
= > X )
X
with the evident relations
(n 2 (3) () (2)
X =X"=X , Y=Y
An equivalent way to write (3.46) is

lim
A->

1
o O

Instead of

(3.44)

(3.45)

(3.46)

‘ ( X(l)_ X(Z))dv =0 5 VAc'.Q.. , (3.47)
A

and the same for the other relations. After discretization we restrict

the conditions (3.47) by identifying A with a mesh cell. When the

number of these cells tends to infinity we recover the initial problem

(3.44).
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(1)  (2) (3) (1) (2)
We expand X , X , X , vV and Vv in a set of basis func-

tions. The simplest choice is made, i.e. we require each term in the
variational form (3.19) be constant on each mesh cell. The shape of
these basis functions is given in Ref. [29]. The integration reduces to
a multiplication of the value of the integrand at the centre of a cell
by the volume of this cell. We define X4y as the values of X and V on
the nodal points. Figure 7 shows their positions in a mesh cell and

their local numbering, j = 1 to 6. At the centre of the cell we have

3_)_(-"’_-_. Xy + Xg = K = Xg
X Z AX

o

WP Xs X =% -x,

3s 2 As ey

);;v-m _ x&. _xs
oX AX

-V-‘Z)_ X! ‘f'x"
d

|

For each mesh cell we calculate the contribution to the variatio-
nal form (3.19) using the formulas (3.48). This yields 6 x 6 "local
matrices" which have to be added in the proper way to the total matrix
A of the discretized form. This is done by choosing a global numbering

of the nodal points. The matrix A is constructed by blocks of contribu-
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tions of s = const cells (Fig. 8). The numbering is non-monotonic in X
and the periodicity in y is automatically satisfied. The matrix ob-
tained has the structure shown in Fig. 9. It consists of Ny blocks
which partly overlap; each block is subdivided in 9 subblocks of dimen-
sions Npol X Npolr each subblock is a band matrix of bandwidth 5.
We introduce the regularity condition (3.20) on the first block. The
vacuum contribution (3.31) is added to the last block. The matrix A is
complex and non-hermitian. In the actual version of the code we store
the full blocks, not profiting from the many zeros they contain. How-
ever, it is possible to gain a substantial amount of storage by using

sparse matrix techniques. We shall discuss this point later.

3.4.4 Algebra

The problem has been reduced to the determination of the solution

of the linear system of algebraic equations

Ax = b (3.49)
— - —

where b is the source vector due to the antenna (see 3.31). We decom-

pose é into L =‘D U where l:.‘ and U are lower and upper triangular matrices
- = =

and D is a diagonal matrix. The solution x is then obtained in two

steps
4=L"b

(3.50)

-l

)¢
"

=
nw
jag
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The matrices are treated block by block with subsequent input/output

operations.

We check the validity of the solution X by substituating it into
the equations (3.49) and comparing the norm of §§>with the norm of b.
In all cases the results agree to 13 digits, hence the matrix A is well
conditionned for this elimination procedure. Since the variational form
itself can be considered as a power balance relation (see 3.7), and
since we solve it exactly, we have found a formulation in which the

power balance is exactly satisfied.

3.4.5 Diagnostics

The total power delivered by the antenna, Py, 1is evaluated
according to (3.35). The total power transmitted through the plasma
surface, Pp (3.36), is calculated directly from the source vector and

the solution at plasma-vacuum interface

-1 * b
et _— X M .
Ii, ; Lol » (3.51)

From the solution X we reconstruct the variables X and V as well
as their derivatives 3X/dy, 3X/3ds and dV/dy according to (3.48). We use
the definition of X and V (3.16b) to obtain the components of the wave
electric field Ey and E, , the expression (3.18) for ot E to
calculate the wave magnetic field By, By and Bl and the Poynting

vector Sy, Sy and Sj. The polarizations of the electric field
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Ey = Ey £ iE;, and the Fourier decomposition of the solution in the
poloidal angle y are also computed. The power absorption density Pj
(3.38), the Poynting flux Pg(¢) (3.40) and the power flux Pe (¢)
(3.41) are constructed, and the related power balances (3.42) (3.43)

are checked.

We have to be careful in comparing Pg(d) with Pe(¢). According
to the finite hybrid elements (3.48), the fields E, B and _S_ associated
with the wave are defined at the centre of each mesh cell. The compari-
son between Pg(¢) and Pe(¢) has to be done on a surface 3Q¢, pass-
ing through the centres of the cells (Fig. 10). Therefore we have to
take into account only one half of the volume of the exterior cells

when integrating Pe(¢).

The real antenna structure can be decomposed in Fourier series in
the toroidal angle. For each Fourier component we repeat the calcu-
lation presented in sections 3.4.1 to 3.4.5. The total power is simply

the sum of the powers of all components.

3.4.6 An application of the LION code to JET

As an illustrative case we show an example of the mode conversion
scenario at the ion-ion hybrid resonance in JET. The plasma contains a
mixture of deuterium (96.6%) and helium-3 (3.4%). The antenna is on the
low field side. Its excitation frequency is such that it matches the

cyclotron frequency of helium-3 32 cm from the magnetic axis towards
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the high field side. We show here only one toroidal Fourier component
(n = 3). The equilibrium is of the Solovev type with an expect ratio of
3, an ellipticity of 1.3 and a safety factor on axis of 1.11. The other

parameters are ng = 3 o 101 m3

+r Bo = 3.5 T, Ry = 3 m, the fre-
quency w/2m = 35 MHz, v = 10~2. The mesh used in this computation is
100 intervals in the radial direction (N, = 100) and 50 intervals in
the poloidal direction (Npol = 50). This mesh size (5000 cells) is
approximately the maximum of what can be handled on a CDC-Cyber 855. It
requires 500 seconds of central processor time and 89000 words of cen-
tral memory. The turn-around time is long due to the many input/output

operations.

The contours of the power absorption density are plotted in
Fig. 11. Notice that the resonances are located on pieces of magnetic
surfaces at specific places along the line eyy - n?/r? = 0 (dotted
line) which usually defines the resonance condition in the WKB approxi-
mation. The Poynting vector (Fig. 12) shows a complicated fine struc-
ture which results from the superposition of the "incoming"™ and "partly
reflected" waves. The contour plot of the absolute value of one circu-
lar component of the polarization of the wave electric field, |E+|
= |Ey + iE,|, is shown in Fig. 13. Notice the focalization of the

fast wave towards the central regions.

Let us now turn to the various checks of this calculation.
Firstly, we have A x = b to all digits (107'") which means that the
solution of the discretized problem is exact. Secondly, the total
powers, Pz (3.35) and Pp (3.36), are equal with an accuracy of 3%.

Thirdly, the comparison of the Poynting and power fluxes, Ps(¢)
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(3.40) and Pg(¢) (3.41), is good within 1.5%. This does not mean,
however, that we have solved the problem with such an accuracy but
merely that we did not make gross errors when programming. There remain
errors due to the discretization which can be assessed by convergence

studies. This is discussed in the next section.

3.5 Properties of the Computational Model

3.5.1 Preliminary remarks

It is nice to show a result of a numerical code. However, we may
address the question of its credibility. In other words, we would like
to know - and if possible to measure - to which extent we can be confi-
dent in the numerical solution. We have shown in the preceding part
that the equations are solved exactly on a given finite number of mesh
points. We now have to show what happens to the solution when the num-
ber of mesh points is increased, whether the results converge and how.

This is done in section 3.5.2.

The other parameter which is still free is v (see (3.8)). In sec-
tion 3.5.3 we discuss how the solution behaves with respect to the

value of v and how this behaviour can be interpreted.

From a more physical point of view it is important to determine
how the numerical code compares with other models and whether it is
able to describe correctly the experiment. These points are discussed

in section 3.5.4.
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3.5.2 Convergence properties

We shall examine the convergence properties in three different
cases. We consider first a single species plasma with no resonant layer
inside. The frequency is such that w/wei = 1.5 on the magnetic axis.
We introduce a rather strong damping: v = 0.4. The equilibrium is of
the Solovev type, with an aspect ratio of 10, a circular cross—section
and a safety factor on axis of 1. The antenna is located both on the
high and low field sides and we consider only one toroidal Fourier com-

ponent: n = -4. The problem is solved on various meshes. We define

Ncell = Nd)Npol

(3.52)
h2

1/Ncell

We let Ny and Npo1 vary simultaneously with Ny = 2 Npo1 and

examine the numerical results as a function of h.

For non-hermitian problems solved using finite elements of first
order the theoretical convergence law of the solution is linear in h.
In our case we have found a mixture of quadratic and quartic
dependencies. In Figure 14 the quantities ReP; and RePp (3.36)
(3.51) are plotted versus h*. We see that the convergence is quartic,
mixed with a small quadratic dependence which shows up only for very

fine meshes. Iet us write

2 4 5
RePp = Pgo + £ch” + goh’ + 0(h°) (3.53)

RePa = Pas + fah? + gah* + 0(h%).
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From Figure 14 we deduce gp = 17 330 and g5 = 11 500. A plot of
RePp - qph'+ and of ReP; - gahl‘ versus h? (not shown) vyields
the converged values Ppw = 5.500 * 0.001 and P, = 5.500 + 0.001.
Notice that even for rather coarse meshes the result is within 1% of
the converged value. In Figure 15 the power balance relation
(Pe(¢) = Pg(¢))/Pe(d) evaluated on the outermost cells is plotted
versus h?, A quadratic convergence is observed. We are very pleased to
see that the converged value is zero and that even for coarse meshes
the balance is satisfied with an accuracy of 0.02%. Other quantities

such as the reactive power, the maximum value of the power absorption
density, the Poynting vector or the electric field converge quadrati-

cally in h (not shown).

We now consider the same plasma as before but lower the excitation
frequency so that w/wei = 0.375 on the magnetic axis. This is in the
Alfvén wave heating domain. The antenna is helical with n = -6,
m = -1, A small damping v = 2.10~2 is introduced. As shown in
Fig. 16(a) the quantity ReR, converges in 0 (h*). The quantitiy
RePy still exhibits a mixture of quadratic and quartic convergences.
In this sense RePp (see 3.51) is a better evaluation of the resistive
power than RePy (3.35). Nevertheless, both quantities differ only by
2% even for coarse meshes and they converge to the same value
RePpo = RePy, = 3.107 + 0.001. The reactive power inside the plasma
shows the same behaviour (Fig. 16(b)): ImP, converges quartically to
8.515 *+ 0.002 and ImPgPlasma onyerges to the same value with a
mixture of quadratic and quartic laws. The vacuum power Impyvacuum
converges quadratically to 1.936 + 0.005. At certain points the value

of the wave field converges quartically. An example is given in
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Fig. 16(c) where ReEn(s = .336, x = 0, ¢ = 0) is plotted versus h".
In general, however, it converges quadratically as shown in Fig. 17(a)
where ReEn(s = .585, x = =, ¢ = 0) is plotted versus h?. The power
balance (Pe(¢) - P5(4))/Pe(¢) converges quadratically to zero
(Fig. 17(b)). As in the previous case we have an accuracy of 0.02% even

with rather coarse meshes,

In some cases the solution shows a complicated structure, so that
the maximum mesh size available is insufficient to demonstrate the con-
vergence properties of the numerical code. There is also the problem of
the strong variation of eyy and ey (3.5) around the line ¢ = wei
specially if the oconcentration of the corresponding ion species is
small. In such cases it is difficult to have enough spatial resolution
for a good description of eyy and eyp . Our choice of the coor-
dinates ¢ and y is certainly not the best in this respect; however,
since the solution often shows much structure in ¢ our mesh will
describe it advantageously. As an example we consider a large plasma
(JET) containing a mixture of hydrogen (97.4%) and deuterium (2.6%).
The equilibrium is of the Solovev type, with an aspect ratio of 3, an
ellipticity of 1.3 and a safety factor on axis of 1.11. The magnetic
field B, is 3.5 T and the density ng is 4 « 10°m~3, The antenna is
on the low field side and its frequency, 27.2 MHz, is such that the
cyclotron frequency of deuterium is matched at the centre of the plasma
column. A small damping (v = 2.5 « 10~%) is introduced. The solution is
shown in Fig. 18 where the contour lines of the circular left polariza-
tion, |E‘.+! = |EN + iE;|, are plotted. Notice the importance of the
magnetic structure. The power absorption occurs predominantly on the

intersections of the vresonant ¢-surfaces with the 1line
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ENN - n?/r? = 0 which is the resonance in the WKB approximation (not
shown). The mesh used in the calculation is Ny = 100 and Npo1 = 50
and, as we shall see, is not sufficient to get close to convergence. In
Fig. 19 the quantity RePp is plotted versus various mesh sizes. Large
oscillations occur with an amplitude which decreases with the number of
mesh cells. We cannot state an accuracy of better than 30%. Therefore
we have to be careful in presenting numerical results such as Fig. 18:
they can give a good insight into what happens physically but cannot be
regarded as the final (converged) result. An indication that the solu-
tion shown may be not so bad is given by the power balance relations.
The comparison between the quantities Py (3.35) and Po (3.51) gives
ReP; = ReP, with an accuracy of 0.6%. The agreement between the
Poynting and power fluxes, Pg(¢) (3.40) and Ppo(¢) (3.41), is within
0.5% on the outermost cells and better than 2% elsewhere. However, this
does not mean that the solution is so close to the converged result.
Satisfying a power balance relation is not sufficient to validate a
solution. Let us consider for example the mesh Ny, = 48, Npol = 24.
We have RePy; = RePp within 1% and Pg(¢) = Pe(¢) within 3% on
the outermost cells. But the solution is manifestly not correct with

such an accuracy (see Fig. 19)!

It can be a fastidious task to make such convergence studies for
each case. A possibility of getting an idea of the accuracy of a result
is to vary the distribution of the mesh cells and look hm. the
different quantities depend on this variation. In cases like in Fig. 18
the number of resonant magnetic surfaces is so large that the number of
cells is not sufficient to describe all of them. By changing the

distribution of the mesh cells, new resonances may show up while others
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may vanish. This can give an idea of the size of the mesh required for

convergence.

The results of the above convergence studies can be summarized as
follows: either the mesh is insufficient due to the intrinsic complexi~
ty of the solution and no convergence law can be evidenced, or the mesh
is fine enough and a convergence or even super—convergence is observed,
leading to very accurate results. No mathematical explanation of this

super-convergence has been found as yet.

3.5.3 Behaviour with respect to v

Four different types of behaviour of the solution with respect to
v may occur. They can be related to four different physical situations:
excitation of a global mode, resonance absorption, both these phenomena

occur simultaneously, none of them occurs.

In the case of a pure global mode, the role of v is the same as
that of the electric resistance in an ICR circuit: the power absorption
is inversely proportional to v. If we trace the power as a function of
the frequency, a global mode will show up as a peak whose width is pro-
portional to v and height inversely proportional to v. The structure of
the power deposition is global and does not depend on v. This is not

the case when a resonant surface is present inside the plasma.

In the case of resonance absorption, the role of v (Eg. 3.8) is to

turn around the singularities. The power is then independent of v for
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sufficiently small v. For a given mesh, however, there is a minimum -va—
lue of v below which the effects of the discretization show up. We have
to remember that resonance absorption means the excitation of a mode
belonging to a continuum, and that this continuum is numerically re-
presented by a finite set of modes (see Fig. 3). The value of v must be
such that at least two discretized modes are simultaneously excited. To
illustrate this important feature we consider an Alfvén wave heating
scenario with the same parameters as in Fig. 14. We solve the problem
on a mesh with N, = 40 and Nool = 20. The curve (a) in Fig. 20
shows the total resistive power RePp as a function of v. We see that
RePp is independent of v for values down to vijmy = 1072, Below this
value the power varies as 1/v, but this does not mean that a global
mode is excited. It merely means that the frequency is equal to the
frequency of one of the discretized modes of the continuum; below
Vliim We excite only this one. The mode is not physical since it
depends on the mesh. Therefore one has to be careful before identifying
every feature which varies proportionally to 1/v as a global mode! By
varying the mesh it is nevertheless possible to eliminate the ambigui-
ty. An example is shown in Fig. 20 where the curves (b) and (c) repre-
sent the total resistive power, RePp, corresponding to the same case
but solved on different meshes. A mesh with Ny = 40 and Npop = 20
is used; for the curve (c) we accumulate the mesh points around the
main resonant surface. For the curve (b) the excitation frequency is
situated between two discretized frequencies, so that below
Viim = 1072 the power drops proportionally to v. For the curve (c) we
excite a discretized mode (as for curve (a)) but the mesh accumulation

allows us to lower Viim down to 3.10-3.
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In the case of the excitation of a global mode in the presence of
resonance absorption, v plays both roles described above. This
situation is delicate since we have to be sure that the mode observed
is physical and not due to the discretization. The presence of a global
mode inside a continuum enhances the power absorption. Let us consider
a mode conversion scenario in JET with the same parameters as in
Fig. 11: a minority of helium-3 in a deuterium plasma. We only change
slightly the frequency (32.1 MHz instead of 35 MHz). The total
resistive power ReP, as a function of 1/v is plotted in Fig. 21. The
error bars are due to the lack of mesh resolution (Ny = 100,
Npol = 50). Therefore we must consider this result as preliminary.

For v down to 10~2 we have

RePp = Pcont + Pglobal/v (3.54)
For values of v smaller than 102 we deviate from this dependency be-
cause we start to lose the contribution from resonance absorption. It
is therefore not possible to know whether or not , for smaller values of
v, the power is independent of v (which means that the power due to the
presence of the global mode is also resonantly absorbed). The indica-
tion of the presence of a global mode when a continuum is also excited
is delicate and needs still further investigations. For example, we can
calculate the power as a function of the frequency (or the plasma den-
sity). A global mode manifests itself as a peak. The width of the peak
is proportional to v and its height above the continuum is inversely
proportional to v, as (3.54) suggests. This kind of study has been app—
lied to the tokamak TCA where such peaks superposed on a continuum have
been found experimentally [34]. This point is discussed in the next

section.
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In the case where neither a global mode is excited nor resonance

absorption occurs, the only absorption arises from the damping v so

that the total power is just proportional to v.

3.5.4 Comparison with other models and with experiment

A very important check of the validity of the numerical scheme is
to examine its ability to reproduce the results of other models. We
mention here two limiting cases: the cylindrical limit with Ffinite

w/wci and the ideal MHD limit (w/wej = 0) with finite aspect ratio.

For homogeneous plasmas in cylindrical geometry an analytic dis-
persion relation can be derived, giving the eigenmodes of the fast mag-
netosonic wave and of the Alfvén wave. A study of the spectrum of these
modes for the case m = +1 can be found in Ref. [20]. On using the LION
code in this large aspect ratio limit we have found the same spectrum

as the analytical one.

In the ideal MHD in toroidal geometry we compare the results of
our numerical scheme with those of the ERATO code in its version used
for the study of Alfvén wave heating [9]. Since our model does not
include finite B effects but ERATO does, both calculations yield the

same results with a discrepancy of the order of B.

These two checks demonstrate the ability of the LION code to treat

both the physics related to finite w/wci and the toroidal geometry.
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The final criterion of the validity of a theoretical model is the
comparison with experiment. The studies of Alfvén wave heating in the
TCA tokamak provide us with a possibility to perform such a check, and
even to show a case where the combined effects of the finite w/wei
and toroidal geometry are necessary to explain the phenomenon. The
experiments have shown the existence of modes, both global Alfvén and
subsequent continuum, in a region of the spectrum where none was
expected from a cylindrical model. The interpretation of this fact is
the toroidal coupling from the antenna excitation structure (here
n=2m=1) to themode (n = 2, m = 0), The ideal MHD toroidal model
(ERATO) was able to show the existence of the continuum, while the
global mode was still absent in the calculations. With our present
model which includes also the effects of finite ion-cyclotron frequency
(here w/wei = 0.22) we have found a global mode at the same place in

the spectrum as the experiment [21].

4. Limitations and further improvements of global wave codes

The essential limitation of global wave codes is the maximum mesh
size which can be treated due to the large memory storage, input/output
operations and central processor time required. We have seen that in
some cases this maximum is insufficient to allow us to demonstrate con-
vergence. Therefore we have to develop new algorithms having a better

efficiency.

In the LION code the full blocks of the matrix A are stored though

they are sparse (Fig. 9). This is due to the fact that the decomposi-
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tion of _ﬁ_ into 'E 2 g fills the blocks. There is clearly a need to over-
come this handicap. A possibility is to take advantage of the particu-
lar structure of the matrix :}}: the blocks overlap only for the variable
X (see Fig. 9). This arises from the fact that V has no derivative in
the ¢ direction and from the choice of the finite hybrid elements of
first order. The variable V appears therefore as "one-dimensional". It
is then possible to eliminate it, so that the only subblocks of the
matrix é which must still be stored as full matrices are the overlaps
(}_&l in Fig. 9). All the others can be stored as band matrices. The
g-_.D Eldeccmposition is only applied to the subblocks 4:5.1 and gc, All the
other operations are resolutions of linear triangular or banded systems
of equations. This technique has been successfully applied to the ERATO
stability code [35]. It led to a gain in CPU time and memory storage of
the order of 4 and to a gain in disk storage and input/output opera-

tions of the order of 10, thus reducing dramatically the turn-around

time. For the LION code the expected gains are comparable.

Another class of algorithms, the iterative methods, keep the
sparseness of the matrix A untouched. These algorithms are easily
vectorizable. Unfortunately, in our case A is neither symmetric nor
positive definite. When applying a Gauss-Seidel scheme to our problem,
the solution diverges after 4 or 5 iteration steps even on a mesh as

small as 4 x 4! A possibility is to solve

g
b (4.1)

>,

|

X =

o

instead of Ax = b (3.51). The matrix AT is symmetric and positive

definite but its condition, defined as the ratio of the largest to the
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smallest eigenvalue, is usually very bad. A very promising scheme is
the "incomplete Cholesky - conjugate gradient" method (ICCG) [36] in
which incomplete .[_.'2 g decomposition of the matrix is performed, thus
retaining its sparseness and greatly accelerating the conjugate

gradient iteration.

An alternative to the finite element and finite difference schemes
is to expand the fields in Fourier series in the poloidal direction
[37]. Unlike the toroidal decomposition, the poloidal Fourier com-
ponents are not independent from each other. Practically, one has to
truncate the series to a finite number of terms. Whether or not such a
method is competitive depends on the rapidity of convergence with

respect to the number of terms in the Fourier series.

In this paper we discussed the toroidal geometry in particular. It
is clear that the numerical methods presented here are not restricted
to this geometry but in principle can be applied to other two-dimensio-
nal configurations such as axisymmetric mirrors [38,39] or straight

stellerators [32,40], for example.

We have restricted ourselves to the cold plasma model. There re-
mains the question of introducing more physics into the numerics. For
example, without touching the differential structure of the equations
we can model the collisional or ion-cyclotron damping of the fast
wave, However, as soon as more effects of finite temperature are taken
into account, the differential structure of the equations is altered
and thus the code needs more profound modifications. First of all, one

would have to derive the pertinent equation in two-dimensional geome-
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try, a task which is not easy at all. Moreover, since we met spatial
resolution problems already with the cold plasma model, one can expect
these problems to be even tougher when "kinetic" short-wavelength waves
are present. For more details concerning the global wave solution in

warm plasmas see Refs. [22,41].

5. Conclusion

In this paper we have presented and discussed some of the methods
which are used for the numerical determination of the global solution
in cold plasmas. We hope we have demonstrated that the global wave
codes can be a powerful and reliable tool for the study of RF wave
heating. A great advantage of these methods is that the accuracy of the

results can be checked and measured by doing convergence studies.

As an example we have shown in detail the numerical code LION
which solves the pertinent partial differential equations in exact
toroidal geometry using a finite element method. The model is valid for
any aspect ratio and any shape of plasma cross-section. It provides a
description of both the Alfvén and ion-ion hybrid resonances. Its com-
patibility with the ideal MHD and with an analytic dispersion relation
for homogeneous plasma cylinder has been checked. By means of this code
we were able to find global modes and to study the toroidal coupling. A
successful comparison with the experiment in the TCA tokamak has been

made in this context.
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The work on global wave codes is still in progress. The efficiency
of the methods needs to be improved by adapting modern and if possible
vectorizable algorithms to our particular problem in order to increase

the maximum mesh size available.
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Figure Captions

Fig. 1:

Fig. 2:

Fig. 3:

Fig. 4:

Fig. 5:

Fig. 6:

Fig. 7:

Cylindrical configuration.

Basis functions I'y for the regular finite elements of
first order and representation E(r) of a function with these

elements.

From the right to the left are shown typical polluted and
unpolluted spectra wj, together with the Alfvén frequencies
wa(rj) at the spatial grid points ri, in comparison
with the exact analytical spectrum. Alfvén modes (A) are

shown with circles, fast magnetosonic modes (F) with crosses.

Toroidal configuration showing the local magnetic coordinate
system (ey, ey, e€;), the polar coordinates (r,z,d) and

the toroidal magnetic coordinates (¢,x,6).

Schematic view of the "up-down" transformation defined by

eq. (3.10).

Poloidal cross-sections of the plasma, antenna and shell sur-

faces.

A mesh cell with its 6 nodal points and their local number-
ing. The small square in the centre is the point where the

relations (3.48) are defined.



Fig. 8:

Fig. 9:

Fig. 10:

Fig. 11:

Fig. 12:

Fig. 13:
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A set of s = const cells with the global numering of the no-

dal points for Npo1 = 8.

Block and subblock structure of the matri)% A for the number-
ing shown in Fig. 8. The subblock Ag is %the subblock A of

the next block.

Surface 3Qq passing through the centres of the mesh cells
where the Poynting and power fluxes, ;Ps(q,) and Pg(4),
defined by egs. (3.40) and (3.41), are ocxr%fnred.

Contour lines of the power absorption density for a mode con-
version scenario in JET in a deuterium pléaana with 3.4% he-
lium-3. The parameters are: ng = 3-1019%m'3, Bb = 3.5 T,
R, = 3m, aspect ratio = 3, frequency = %35 MHz, low field
side antenna, n = 3, v = 102, The dastixed lines indicate
where the frequency matches the cyclotr%m frequencies of
deuterium and helium-3. The dotted line fis the approximate

resonance condition eyy - n?/r? = 0.

Poynting vector for the case shown in Fig} 11. The parallel

component is not represented.

Contour lines of the circular left-hand pblarization of the
|
electric field, (E:+]= IEN + iEJ'[, for the cése shown in

Fig. 11.



Fig. 14:

Fig. 15:

Fig. 16:

Fig. 17:

Fig. 18:
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Convergence study of the total resistive power versus
h* = 1/N%ce11 for a strong damping case with no resonance
inside the plasma (w/wei = 1.5 on the magnetic axis,
v = 0.4). P; denotes the power delivered by the antenna
(3.35) and Pp the power transmitted through the plasma sur-
face (3.36) and (3.51).

Convergence study of the power balance
(Pe(¢) - Pg(¢))/Pa(¢) versus h? = 1/Nee11 for the

same case as in Fig., 14,

Convergence study of (a) the total resistive power, (b) the
reactive power inside the plasma and (¢) the electric field
at a given point versus h*, for an Alfvén wave heating case

(0/wei = 0.375 on the magnetic axis, v = 2.102),

Convergence study of (a) the electric field at a given point
and (b) the power balance (Pa(¢) = Pg(d))/Pa(¢) versus

h2, for the same case as in Fig. 16.

Contour lines of the circular left-hand polarization of the
electric field, |E+| = |EN + iE.I.I , for a mode conversion

scenario in JET in a hydrogen plasma with 2.6% deuterium. The
parameters are: ng = 4.10'% m3, Bob = 3.5 T Ry = 3 m,
aspect ratio = 3, frequency = 27.2 MHz, low field side

antenna, n = 3, v = 2,5¢10~3. The dashed line indicates

W = wep.



Fig. 19:

Fig. 20:

Fig. 21:
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Convergence study of the total resistive power versus h? for
the same case as in Fig. 18. For the maximum mesh size used

(Nq, = 100, Noo1 = 50) the convergence is not reached.

Behaviour of the total resistive power with respect to v for
the resonance absorption case. The frequency used for the
curves (b) and (c) is slightly different from that used for
the curve (a). For the curve (c) the mesh points are accumu-

lated around the main resonant surface.

Behaviour of the total resistive power with respect to v for
the case of simultaneous excitation of a continuum and of a
global mode. The parameters are the same as in Fig. 11 except

the frequency = 32,1 MHz.
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