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ABSTRACT

The ponderomotive force exerted by a ciﬁ"cularly polarized
electromagnetic wavefield in a uniform, magnetize¢5 plasma column is
calculated. The effect of the self-consistent naturd% of the wavefields
in the plasma is illustrated for the case ojf long wavelength
excitation. The contribution to the total ponderomotive force of the
interaction between the induced magnetization and |the magnetic field
is determined. It is shown that self-consistency pl%ys a dominant role
in determining the ponderomotive potential and induced magnetization
of each plasma species if the wave frequency is Jln the vicinity of

either the cyclotron frequency or an eigenfrequehcy of the plasma

column,



1. INTRODUCTION

There has recently been a large interest in the investigation of
the ponderomotive force exerted by an electromagnetic wavefield in a
magnetized plasma. Various approaches, including single particle,
stress tensor, fluid and kinetic, have been used in the past to
calculate the ponderomotive force. (A survey of this work is given by
STATHAM and TER HAAR (1983).) Of particular interest has been the

behaviour of the ponderomotive force for a wave  frequency in the

vicinity of the cyclotron frequency of one of the plbsma species.

A number of authors have derived expriéssions for the
ponderomotive force which exhibit singularities iat the cyclotron
frequencies. The apparently large value of the mnd%ramtive force in
the vicinity of the cyclotron frequencies has led tjto the proposition
of various applications; for example, radio—freqtl}ency plugging of
open-ended devices (WATARI et al., 1978; FADER et al., 1981), isotope

‘
separation (WEIBEL, 1980) and low frequency mode stabilization (FERRON

et al., 1983; YASAKA and ITATANI, 1984).

It has been pointed out (CONSOLI and HALL 1963; EUBANK, 1969;
LICHTENBERG and BERK, 1975) that the apparent sEingularity in the
single particle ponderomotive force arises due to the assumption that
the motion of the particle is adiabatic. If, ﬂwever, the wave
frequency is in the vicinity of the cyclotron frequ{#ncy, the particle
may exhibit non-adiabatic motion. A correct treatmeq?ﬁt of the particle
motion, including the effect of non—adiabaticity, yields a
ponderomotive force which is small, and not resonant, at the cyclotron

frequency (LAMB et al., 1984).



Numerous authors have used the expression for the single particle

ponderomotive force in an attempt to describe the n?nlinear behaviour
of a plasma (see, for example, WEIBEL, 1980; AKIMjNE et al., 1981;
DIMONTE et al., 1983; FERRON et al., 1983; PARKS pnd BAKER, 1984).
However, such a non self-consistent treatment requirés a great deal of
caution. The self-consistency of the wavefields in a plasma is made
manifest through the ponderomotive force by two important effects.
Firstly, it is well known that a plasma may significantly modify an
imposed oscillating electric field. In particular, if the oscillation
frequency is in the vicinity of the cyclotron frequency of one of the
plasma species and the density of this species is sufficiently high,
the generation of self-consistent plasma currents may prevent the
electric field from penetrating into the plasma. Conversely, if an
eigenmode of the plasma is excited, enhanced electric fields may exist
in the plasma. Secondly, it has been shown (KLIMA, 1968; KARPMAN and
SHAGALOV, 1982) that the total ponderomotive force exerted on a

magnetized plasma includes the interaction of the nonlinear

magnetization induced by the wavefield with the external magnetic
field. This interaction does not exist for the mojk:ion of a single
particle in a magnetic field under the influence <‘pf an oscillating
electric field (MOTZ and WATSON, 1967). Due to thes% two effects, to

analyze correctly the ponderomotive force exerted§ on a magnetized

plasma a self-consistent treatment is therefore required.

In the present paper we consider a self—consis%:ent treatment of
the ponderomotive force exerted by an externally ex?tcited electromag-
netic wavefield on a magnetized plasma column. Botjjh right and left
circularly polarized wavefields within the frequency} range of the ion

cyclotron frequency are considered. while the preseht analysis shall



be restricted to long parallel wavelengths, it will| be seen that the
essential features of self-consistency are retained |: the significant
contribution to the perpendicular ponderomotive force of the induced
magnetization, and the important influence of both exclusion and

enhancement of the wavefields in the plasma in determining the ponde-

romotive force.

2. FORMULATION

In this paper we shall consider the nonlinear iinteraction of an
electromagnetic wavefield in a cylindrical, magnetiﬂ?ed plasma column.
The wavefield is excited by an antenna that is located at the boundary
of the plasma column. The ponderomotive force exerteqﬁ by the wavefield

on the plasma is obtained from the time average of the solution, to
|

second order in wave amplitude, of the appropriate fluid equations.

We shall consider a cold, collisionless, muljti—species plasma
having, in the absence of the wavefield, a unifor:jh density n,, for
each species o, and a uniform axial magnetic fieldj, By = Bo _%_. The
equilibrium values of electric field and fluid velojbity are assumed
to be zero , that is Ey = uy,o = 0. The plasma cblumn is infinite

in length and has a radius rq.

The antenna excites at the plasma boundary r = ¥o an electric

field that can be written, in complex notation, as

E (ry) = Eect [m,i , O] cosk”z CXP{i(MO-wf)} oM

where Egxt is a constant.



We shall restrict our analysis to the case [m| = 1, that is, to
excitation by either a pure right (m = +1) or left (m = -1) circularly
polarized wavefield. The wavefield is assumed to be standing in the
axial direction with an axial wavenumber k; land frequency o

determined by the external antenna.

3. LINEAR SOLUTION

In the plasma region we shall consider fields of the form :

A (r,ez 1) = A (r2) ex[o{i(m9-u#+)} . (2)

These fields must satisfy the following set of 1inea+rized multi-fluid

equations :

Ju 3
Mo a‘-_T_'q-' = ?d‘ ( El * l-'(trl X Bo) > (3)
e+ on Veu, = O, (4)

2t ° f
V §| = /u'° % nd‘o (i,w li"a-n ? ()
vxE = -°8 | (6)

at |

Here, a subscript 1 is used to denote a quantity tﬂat is first order
in the wave amplitude. The displacement current has been neglected
from equation (5) since the scale lengths of interést are much less

than the free space wavelength.



Since we are interested in the present analysis in frequencies

much less than the electron cyclotron frequency, we shall treat the

electrons as a massless fluid, with Mme = 0. (Although electron

inertia has been shown to have a dominant influence, for low plasma

density, on the ion cyclotron wave (HOSEA and SINCLAIR, 1969), it will

be seen that this mode plays no role for the particular case examined

in the present analysis). The equation of motion

fluid then becomes

for the electron

and, as a oonsequence, the electric wavefield component parallel to

By is zero.

Under the above assumptions, a well-known solut

ion of the set of

equations (3) - (6) has electric field components wh?se Fourier ampli-

tudes may be written in the following form (WOODS, 1{962):
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where Jp is a Bessel function of the first kind and J'p(z) =
dJy/dt . The constants Ay and Cp are related by

2
ki A - ko - 4 - & (8)
2 2
Con 5 k +k -4
where
2 W
3 - W [-Lad
’é .C-?. (wz_nQ.) ’
c#te T
(9)
2 . 2
b = fewneg, e | w > Wee g ,
2 £ 2 42
B, ¢t A w (w 1.n.d_)

and wpg’ = N 2/m.eq and Q. = q M.
po o0 “/Ms€o o o o

If the wave frequency is in the vicinity of the cyclotron

frequency of an ion species ¢ = i, we may approximate & and &,
defined in equation (9), by
2 2 2| 2
4 = - Wet ;B o e Th
c? (w"-n.i‘) Cziw(wz-ﬂ:)

We shall, for the sake of clarity, restrict th# present analysis

to the case for which the axial wavenumber imposec* by the external

antenna is small, that

is,

n (10)

w"\er'e

g,; =



We may then show that

kll A Leal
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The perpendicular wavenumber is then imaginary, witt

k,ro = iCj.

Applying the boundary condition of continuity ¢

(11)

1 |k, |2 » k42 and

pf the tangential

electric field Eg at r = ry, we obtain from equation (1) the
following expression:
Cm = ~- E_,, Eex'l' \ (12)
w Fr
where
{
Fo= m In(8) o w1'(g) (13)
™m m L
S,
e, :
and Ip is a modified Bessel function.
Fm possess a zero if the frequency is equal to an

eigenfrequency of the plasma column.

to the excitation of a long wavelength m = -1 f
consider a low density plasma (i € 1), it ma
F_y = 0 when
2
= | - gi.

The zero of F.

1) may be related
rast wave. If we

y be shown that

(14)




corresponding to the dispersion relation for the first radial eigen-
mode of the m = -1 fast wave near cut-off (k; + 0) given by COLLINS
et al. (1984). Note that Fy; is always positive : there does not

exist an eigenmode of the m = +1 wave in the vicinity of w = Q1.

We note that for the specific case considered in this paper (that
is, excitation at the plasma boundary of fields having a long axial

wavelength), we have excluded the excitation, for w = Q i, of any

eigenmodes (APPERT et al., 1984; OOLLINS et al., 1984) except the

first radial eigenmode of the m = -1 fast wave. ;

In general, as observed from equation (7), tbe electric field

|
excited in the plasma region r < ry will be ellipfically polarized.

However on the plasma axis, r = 0, we find

E' (OJZ) = - Eﬂ : (l + m knAml)[m'('.,O-] cos k“:'! , (15)
- 2 K, Co

that is, the field is circularly polarized.

For the conditions stated above, substituting equations (11) and

(12) into (15) yields the following electric field on axis :

El(o'z) = Eexf (|+m_‘*_’)[m i.,O] COS‘(Z ) (16)
- —_— ’ n

2 F, ;
For right circularly polarized excitation (m = +1), the electric field
on the plasma axis is therefore only weakly dependent on the wave
frequency in the vicinity of the ion cyclotron frequency. However, for

left circularly polarized excitation (m = -1), the field is excluded
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from the plasma axis at w = Qj, but experiences & resonance at the

zero of F_;, corresponding to the excitation |[of the m = -1

eigenmode.

4. NONLINEAR SOLUTION

The ponderomotive force is obtained from the t:;i.me average of the

|
equation of motion to second order in wave amplitud¢. For the present
study of a stationary wavefield (dEgxt/dt = 0) Me may write the

equation of motion, after averaging in time, as

NL !

‘lr"co(‘::z“‘-*n"?’o) + F o= o, (17)

where the subscript 2 is used to denote a ti.me—-ave;kaged second order
quantity. The nonlinear (ponderomotive) force actinJg on species ¢ is

given by

NL * *
E} 7r { h¢'§| t Ngg Y ¥ §, J

_nc'omd'{gm(v'-u:.) + (g'a'n.v) I:{:'} ! (18)

where the superscript * denotes the complex! conjugate. The
ponderomotive force defined in equation (18) conforﬂs to that used by
previous authors (see, for example, STATHAM and TER HAAR, 1983; LEE

and PARKS, 1983),

Using equations (3) to (6) to express the Fourier amplitudes of

Eyy By and ng in terms of that of uy, it can be shown




-11-

(KLIMA, 1968; KARPMAN and SHAGALOV, 1982; LEE and

the ponderomotive force acting on species ¢ may be w

NL

i

-n
[

°V§¢ + §°x(VxC

-

where the ponderomotive potential and the induced n

respectively,

w mg

4w

If we specialize the above equations to the cas

polarized wave, using equation (3) we may write

U, (r,2) = ij [-i,
m,(w+ ma )
where
El = IEP, = ,Ee,

Substituting into equations (20) and (21) yields

9. E,

2mpw (wema )

]

T

D

~-q

; .
+ L3 B (u, X u

PARKS, 1983) that

ritten as

(19)

nagnetization are,

(20)

-

-T!

)}

(21)

se of a circularly

m O'] ,

(22)
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and

2 2
nee 3 B . (23)
B, :qu.w(w-ﬁm.n.a_)"

P>
K4

>
3
o)

Note that the ponderomotive potential given in equation (22) is
the same as that calculated from a single particle approach (MOTZ and
WATSON, 1967). However, as seen in equation (19), in a magnetized
plasma, an additional term arises due to the interaction of the
induced magnetization and the external magnetic field. For a
circularly polarized wavefield we may combine these two terms to
obtain, after substituting equations (22) and (23) into (19), the

total ponderomotive force in the form :

2
F:L = ; [ - Ngo 9: ‘a___E:_.'L }
- ) 2m,(w+rman )* 3r

(24)

2 2
+ 2[ ~Neo 3¢ B__E_.LJ
ZNVw(w+nma¢) 22

It is interesting to note that inclusion of the contribution of the
induced magnetization results in a form for the perpendicularly-
directed ponderomotive force that differs from that calculated from a
single particle approach. As can be seen from equation (24), whereas
the parallel component changes sign as the wave frequency crosses the
cyclotron frequency (for an appropriate polarization of the

wavefield), the perpendicular component does not. This may be
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important to note 1in connection with attempts
stabilization of low frequency modes observed in|
(FERRON et al.,

1983) by means of the perpendicy

force.

to explain the

a mirror device

1lar ponderomotive

For the wavefield excited by an external antenba as described in

section 3, the self-consistent ponderomotive mtebtial and induced

magnetization acting on an ion species may be calculbted on the plasma

axis (where the wavefield is circularly polarized) ahd at z

|E| is maximum) by substituting equation (16) into
then obtain for a wave frequency in the vicinity

frequency of the ion species

2 2

§_° = (w+rma) 9. Eext
L
4wF? 2m; nf‘
and

° m . n, gl
M.l = ¢t Y] ?é ext
t 2 Y
tw En Bo Z'nijli

5. DISCUSSION

In Fig. 1 and 2 are plotted, for three values
density (j, the normalized values of 3{° and Mj

of w/Qj. Figure 1 shows the dependence for a

polarized wavefield (m = +1) and Fig. 2 for 4

polarized wavefield (m = -1).

z

0 (where
(22) and (23). We

of the cyclotron

(25)

(26)

of normalized ion
O as a function
right circularly

left circularly
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As seen from Fig. 1(a), including the effect of self-consistency

of the wavefields does not alter substantially the ponderomotive

potential created by an m = +1 wavefield exerted on an ion species.
Figure 1(b) shows, however, that the self-consistent treatment leads
to an induced magnetization that significantly influences the
perpendicular (radial) ponderomotive force. It !y be noted from
Fig. 1 that the ponderomotive potential and the induced magnetization
remain small for a wave frequency in the vicinity of |the ion cyclotron
frequency. Both decrease only slightly with increasing density. These
observations result from the fact that a right ci#cularly polarized
wavefield is unaffected by the ion cyclotron reson$nce, and for the
choice of wavefield made in section 3, there does nqlt exist an m = +1

eigemmode in the range of frequencies being consider{ed in the present
1

analysis.

|
|
On the contrary, the self-consistent nature C‘Lf the wavefields

\
modifies substantially the ponderomotive potentiaj created by an

m = -1 wavefield exerted on an ion species. In

contribution to the perpendicular ponderomotive force+ is obtained from

ddition, a large

the induced magnetization. Several important feature may be observed
from the curves shown in Fig. 2. It may first be noﬁked that both the
ponderomotive potential and the induced magneti%ation exhibit a
resonance at a frequency just below the ion cyclotron frequency. This
corresponds, as noted in section 3, to the exci iation of a long
wavelength m = -1 fast wave. The eigenfrequency of this mode lies
|
always below the ion cyclotron frequency (APPERT et 41 » 1984; COLLINS
et al., 1984), and its excitation results in a larcjle electric field

amplitude in the plasma and hence a large mndermt%.ve force. Figure



-15-

2(a) also shows that for w = Qi the ponderomotive potential &i° is

zero for m = -1 excitation. This results from the exclusion of the

electric field from the axis of the plasma column, as noted in section
3. However, as seen from Fig. 2(b), the induced %agnetization MjZ
is non-zero for w = Qj, leading to a non—ziFro perpendicular
ponderomotive force. For frequencies w 2 Rir FigJi 2 shows a sharp
reduction of ®{° and M;j,° for increasing plasma density. For
frequencies sufficiently far from both the eigenfre%uency and the ion
cyclotron frequency, the effect of increasing the ion density is
small : the plasma then does not significantly affect the penetration

of the m = -1 wavefields.

For w > Qi (that is, the frequency regime which does not
contain a plasma eigenmode), the maximum value of the ponderomotive
potential created by an m = -1 wavefield is reduced and occurs at a
higher frequency if the plasma density is increaspd. From equation
(25) the maximum of ®;° for w » Qi occurs at a frequency wg
given by
9F, n;

: ‘ : (27)
, ow w, w, (w

2
F.

For the particular wave excitation considered in this paper, substitu-

tion of F., from equation (13) yields for ti €1,

w, = .ﬂ.é(li-%_iz) o (28)

The maximum value of ®{° is then given by
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] 2 E *
B (w) = L B et

(29)

From equation (28), it is therefore seen that the effects of wavefield

self-consistency will dominate in the ponderomotive potential if

or

(30)

The above-described behaviour of the ponderomotive potential is

illustrated in Fig. 3, which shows the frequency dependence of ®i°

for an m = -1 wavefield in the frequency regime w > Q;

> Q1.

It should be noted that in the present analysiéf, kinetic effects
|

have been neglected. These effects may play an i.l*portant role for

frequencies close to the ion cyclotron frequency,

depending on the

form of the oscillating field and the ion distribuition function. To

avoid cyclotron damping effects, which will result i in a plasma-wave

interaction not accomodated by the present fluid approach, a necessary

condition to be satisfied is

k V. K l w- N,

i L

(31)
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where Vi, is the ion thermal velocity parallel to B,. LAMB et al.
(1984) have shown that the same inequality as (31) must be satisfied
for the motion of a single ion in an oscillating (electrostatic) field
to be adiabatic (if Vi, is identified as the parallel ion veloci-
ty). This reflects the fact that both phenomena, cydlotron damping and

ion non-adiabaticity, describe the same physical processes: the non-

conservative interaction of particles with a osciilating field. The
result of this interaction is that if the inequ%lity (31) is not
satisfied, the ponderomotive force exerted on the i;rons will be subs-
tantially reduced from that calculated assuming a cgpnservative inter-
action. Thus, for wave frequencies sufficiently |close to the ion
cyclotron frequency, the ponderomotive force exéjrted on the ion
species will be modified by both kinetic effects Land the effect of
wavefield self-consistency investigated in this 1paper. We note,
however, that if the plasma density is sufficiently ibigh, that is

g* > 4k Vi

L

(32)
0.

[ 3

there will exist a frequency regime for which ki{iuetic effects are
negligible, but wavefield self-consistency plays a‘ dominant role in
the determination of the ponderomotive force. It shd;uld be noted that
the inequality (32) may be readily satisfied experi.r&uentally (see, for
example, FERRON et al., 1983). ;

6. CONCLUSION

In the present paper we have considered ?@ self-consistent
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|
calculation of the ponderomotive force exerted by T electromagnetic

wavefield in a magnetized plasma. The influence of wavefield self-

consistency is manifested by two important effects : the modification

of the wavefields in the plasma, particularly at *:he cyclotron and
eigenfrequencies, and the contribution to the perpenn#icular ponderomo-

|
tive force from the interaction of the induced magnetization and the

external magnetic field.

By examining the specific case of long wavelength excitation in a
cylindrical plasma column, the modification of the ponderomotive force
due to the effects of self-consistency has been illustrated. A strong
modification has been calculated for left circularly polarized excita-
tion if the frequency is in the vicinity of the ion cyclotron frequen-

¢y or the eigenfrequency of the m = -1 fast wave.

It is pointed out that the specific results obtained in this
paper are relevant to the particular choice of wavefield that has been
considered. However, it should be stressed that| the effect of
accounting for the self-consistent nature of the wavefields in a
plasma is of universal importance. The detailed manner in which the
ponderomotive force is modified depends critically on the specific
method of excitation. The frequency and wavenumber spectrum of the
antenna, as well as the particular plasma parameters, | must be included
in any investigation of the ponderomotive force exerted on a plasma.
Finally, while this paper has been concerned with frequencies in the
vicinity of the ion cyclotron frequency, similar behaviour is to be

expected in the range of the electron cyclotron frequency.
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FIGURE CAPTIONS

Frequency dependence,

density ¢j, of the normalized

ponderomotive potential i, and (b) the

moment Mj,°, for a right circularly pol

(m = +1).

Frequency dependence,

of the normalized

density ¢,
ponderomotive potential #i°, and (b) the
moment M;,°,
(m = -1).

Frequency dependence, for w » @ i and

normalized ion density ¢j,
the ponderomotive potential &{ for a

polarized wavefield (m = -1),

values

values

for three values of normalized ion

of (a) the

induced magnetic

larized wavefield

for three values of normalized ion

of (a) the

induced magnetic

for a left circularly polarized wavefield

four wvalues of

of the normalized value of

left circularly
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