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ABSTRACT

Differential equations for small amplitude electromagnetic
perturbations in a hot nonuniformly magnetized inhomogeneous plasma
are derived from the Vlasov and Maxwell equations. Assuming a slab
geometry, a perturbation expansion to second order in the smallness of
the Larmor radius compéred to characteristic scale-lengths of the
plasma and fields is used. The results are expressed in terms of an
equivalent dielectric tensor operator. The latter is shown to possess

appropriate conservation properties.



1. INTRODUCTION

The propagation and absorption of waves in nonuniform plasmas is
one of the principal problems in the theory of radio-frequency heat-
ing. Until recently, the equations applied to study the problem have
usually been derived using the Fourier transform of the dielectric
tensor which is valid for hot uniform plasmas. This procedure, how-
ever, is not unique and often leads to equations which do not possess
appropriate conservation properties.Moreover, the terms due to the
gradients of equilibrium quantities are missing in the equations.
Therefore the correct equations have to be derived from first
principles. This problem was first addressed by Berk and Dominguez [ 1]
who have deviced a variational method to derive the differential equa-
tions in question. However, the explicit form of the equations was
given only in a number of limiting cases pertinent to the ion-cyclo—~
tron range of frequency [2-5]. The purpose of this paper is to provide
a formulation of the dielectric tensor operator that can
straightforwardly be implemented in a numerical code covering all

frequency ranges.

The operator will be derived from the Vlasov and Maxwell equations
under the following assumptions :

1) The equilibrium quantities vafy in the x direction which is perpen-
dicular to that of a given magnetic field.

2) The magnitude of the wave field is small so that the Vlasov equa-
tion may be linearized.

3) The system possesses a small parameter 8§ = p/L, where p is the
Larmor radius and L is a characteristic scale-length of the varia-
tion of the equilibrium and wave field guantities in the directions
perpendicular to the static magnetic field.

4) A perturbation method will be used to obtain the solution of the

Vlasov equations valid up to &2.



In Section 2, the solution of the linearized Vlasov equation is
obtained to the desired order. The dielectric tensor operator 1s then
evaluated in Section 3 assuming a specific form of the equilibrium
distribution function. The resulting operator is shown to possess

appropriate conservation properties .

2. SOLUTION OF THE LINEARIZED VLASOV EQUATION

A
The distribution function f for a species with charge g and mass
> >
m, of a plasma interacting with an electromagnetic field E, B obeys

the Vlasov equation
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Assuming a small perturbation around an equilibrium we may split
A ~
f into an equilibrium part F and a fluctuating part f. The same is
true for the magnetic field. Thus, the linearized Vlasov equation

reads
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where By = Bj(x)e,.

The equilibrium distribution function satisfies
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where wo(x) = gBg/mc is the local cyclotron frequency. The solution
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of (3) is an arbitrary function of the integrals of motion : v, =
X
(Vx2+vy2)l/2, Vz and P = vy o+ fwc(x')dx'. For simplicity,

we shall consider only F=F(v,P), where v=(v_,_2+v22)1/2.

~
Let £ be the Fourier transform of f with respect to the variables
t, ¥, 2. On introducing cylindrical coordinates in velocity space ('siz,_',
~

pars
@y Vz) and eliminating B via Faraday's law equation (2) is trans-

formed into
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where It = 3/3x + ky and
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To respect causality, w is assumed to have a small, positive, imagi-
nary part. Since f must be periodic in « we can write it as a Fourier

series
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The same is true for A.

According to our assumptions we now expand F up to 0(62)

F = F(/U’f)+/l)‘F+—~/U‘F (7)

X
where F' = 3F/3f and E(x) = [uc(x')dx'. Inserting (7) into (5) we
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can separate order by order and perform the Fourier series decomposi-

tion to obtain
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where 8p n' is Kronecker's delta and G = 3F/ov. In the expression

(10) we have omitted contributions of the harmonics that are not

needed in subsequent calculations.

Finally, substituting (6) into (4) and separating different

orders we obtain a recursion relation
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where Qn = 0 - nwe - kyv,.

For 1=0, this relation simplifies to
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3. DIELECTRIC TENSOR OPERATOR

Having found the perturbed distribution function to the required

order we can calculate the perturbed current density according to
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where the symbol ? denotes the sum over all the plasma species. To
simplify notation this symbol will be omitted in what follows. Once
the current is known the dielectric tensor operator 2? can be deter-

mined from the relation

L
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where the conductivity tensor operator ¢ is given by
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and I is the unit tensor.

In order to perform the velocity integration in equation (15) we
need to specify the equilibrium distribution function. For practical

purposes we choose a Maxwellian

m’f("» /V(x)( T'() F( 2T(x) ., (18)

where N(x) and T(x) are the density and temperature of species,




respectively. We now insert (18) into (8)-(10) and combine these with
(12)=(14). On substituting the resulting expressions into (15) we can
easily evaluate the integrals over vy . In fact, only a few v, -moments
of the Maxwellian are involved. The integration over vz , however,
is more complicated. First, we have to commute the operatores L%
with the denominators Qn‘l in such a way that various products of
the latter can be decomposed in terms of irreducible fractions.
Secondly, we transform the derivatives dF/sf into dF/dx. These opera-
tions are tedious and lengthy but they allow us, at the same time, to
cast the expressions into more compact and symmetric form. When this
is achieved, the vyz-integration becomes straightforward since all
the integrals in question can be represented by a plasma dispersion

function and its derivatives. For the sake of brevity we shall use the

notation
w"t 3
2, = Z‘ (19)
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where
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is the plasma dispersion function as defined by Shafranov [6], wp is
the plasma frequency of species and wp = (2T/m)1/2, We can then

write the final form of the dielectric tensor operator as follows :



The zero order contribution
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which is formally the same as in the case of a uniformly magnetized

homogeneous plasma.

The first order contribution
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The second order contribution
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In order to avoid confusmn it should be noted that the operator
d/dx in the expressions for s, Y“) ané 1(2) cgerates only on

the equlllbnum quants,ties‘

Equations (23) through (26) are the main result of this paper. As
can be seen from (23)-f(2§) the dielectric tensor operator is of a‘
Hermitian form, i.e., exhibits certain symmetry properties. On the
other hand, it does not satisfy the Onsager reciprocity relation. For
instance, Tig(z)(—ao) # Yi(2)(By). The reason for this
symmetry breaking is the fact that the unp’erturbéd state of the system
in question, described by the distribution function F(v,P), is not a

state of a thermodynamical equilibriun,” but only a steady state.

In the geometry considered the time averaged Poynting theorem may

be written in the form

- ‘ ‘I—» -
&= AR(E]) -2 WM (BTE),

where Egs. (16) and (17) have been used. Here S is the time averaged

x~-component of the Poynting vector given by
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Let us now dispense with the dissipative part of the plasma
dispersion functions. On making use of Egs. (23)~(26) we can then

transform Eq. (27) into

A (S+Sp) =0, (2

where
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may be identified as an energy flux density due to plasma thermal

motion. Bquation (29) implies that the total energy flux density
. «

S+Sp 1s constant, a result which was to be expected since ¢ is

Hermitian in the absence of dissipation.
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4. CONCLUSION

We have derived the linear dielectric tensor operator for a hot
nonuniformly magnetized inhomogeneous plasma in a slab geometry. The
tensor is valid up to second order in p/L and explicitly takes into
account the gradients of equilibrium quantities. Its form is Hermitian
and therefore suitable for implementation in a numerical code based on

a variational formulation.
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