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ABSTRACT

It is demonstrated numerically that a tokamak plasma can be
evolved continuously from a near-circular cross-section shape to a 4/1
vertically elongated racetrack. All intermediate stages and the final
state are stable to axisymmetric MHD modes. The stabilization is
provided by the vacuum vessel walls on the ideal time scale and by an

orthogonal active feedback system on the resistive time scale.

(8)on leave from Plasma Physics Laboratory, Princeton University,
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We demonstrate here the feasibility of constructing a tokamak
experiment to explore Bp limits in high-current high-elongation
plasmas. A limit on Bp (ratio of plasma to toroidal field pressure)
in tokamaks scaling as Ip/aBT r has previously been proposed and
verified!s?2 in ideal-MHD calculations, for plasmas with moderate
elongations up to k=1.6. Here I, is the plasma current, a is the
horizontal minor radius, Br is the toroidal field. At fixed limiter
safety factor qy, Ip increases with increasing « at fixed a and
By, which experimentally has allowed an increase in Bp in quasi-
steady state discharges®. Highly elongated belt-pinches" 56,7
(¢ ~ 10) have obtained high pp (10's of %), but are transient (10's
to 100's of microseconds). Ideal and resistive MHD studies® of an
infinite 1-D plasma have indicated that high-elongation configurations
may have high Bp limits. In this letter, two key areas are specifi-
cally addressed : (1) it is demonstrated that controlled formation and
maintenance of highly-elongated tokamak plasmas in a realistic geome-
try is possible; (2) the ideal and resistive-MHD axisymmetric stabili-

ty of these plasmas is verified.

The geometry utilized in these studies is shown in Fig. 1. A
rectangular vacuum vessel is placed inside two vertical stacks of
field shaping coils which form a periodic structure vertically.
Limiter points are indicated with an x. The plasma evolution proceeds
as follows : a nearly-circular plasma with dy=2 is formed near the
top of the vessel, with Ry=0.80 m, a=0.18 m, Bp=1.5 T, and Tey =
103 ev. The MHD equilibrium and resistive simulations are begun at
this point. The plasma current is then increased at the same time as

the vertical elongation is increased, to 4/1 on the 10-! sec time-



scale. The currents are programmed so as to maintain dy =~ 2, in

order to keep the current profile as broad as possible.

The ideal MHD equilibrium code TCVMHD® is used to calculate the
preprogrammed coil currents for input to the time-dependent STARTUP!?
code. TCVMHD computes axisymmetric, free-boundary tokamak equilibria
with a predetermined plasma shape, and the coil currents necessary to
produce that shape. In order to generate input data for the STARTUP
code, we computed several racetrack equilibria for Table I with
elongations ranging from « = 1.6 to ¢« = 4. It was found that, for
fixed gy = 2 at the limiter, the plasma current scales with elonga—
tion approximately as

In= 1+ ¢
P 2

In the control system modeled in the STARTUP code, active stabi-
lization and control is provided by 4 independent feedback systems for
radial field (RF), quadrupole field (QF), octopole field (OF), and
plasma current (OH). These systems feedback on sums and differences of

the flux measurements on the flux loops 1-7 described in Table II.

A given flux measurement is in general an interpolated signal
from 2 stationary flux loops. Thus, for example, if t)< £t < t,, then

flux measurement number 1 would correspond to

¥, (t) = «¥(0.62,0.43,t) + (1-a)¥(0.62,0.36,t) (1)

where a = (tp-t)/(ty-t}) and ¥(R,Z,t) is the poloidal magnetic flux at

position (R,Z) at time t.



The state vector for the flux loop measurements is denoted by

Y(t) = (¥3(t), ¥p(t), Y3(t),... ¥y(t)). (2)

The orthogonal vectors corresponding to the 4 control systems are

‘IIRF = ( 0,+1 ,+1’ 0"'"1 ’-1 ’0)
YoH = (—11-1r+1r+1r+1r'110) (3)
‘YQF = (-2'+1 ,+1 '-2,"'1 ,+1 ’0)

Yop = ('11‘11-11‘11“17‘116)

Corresponding to each of the orthogonal flux measurement vectors

of equation (2) is a vector of current amplitudes I(t)

I(t) = (I;(t), Ip(t), Ig(t), I(t), Is(t), Ig(t), I,(t)) (4)

The current vectors for each of the control systems are deter—
mined by selecting coils or groups of coils near the control flux
loops at each of the 8 reference times. The inductance matrix M(t)
between these coil groups and the control flux loops is inverted to

obtain the control current vectors at each of the 8 times

= M-l
Ipp(t) = Mo (t) o ¥oo(t)

S | .
IVF(t) = MVF(t) ‘I’VF(t) (5)
- m-l .
IQF(t) = MQF(t) TQF(t)
= M-l .
IOF(t) - OF(t) TOF(t)

Control current vectors at intermediate times are again defined
by linear interpolation. For the plasma current control, a "perfect"
OH system is modeled in which the poloidal flux everywhere on the

computational boundary is increased at the same rate.



In the absence of plasma or additional conductors, the control
systems described above are independent in the sense that the flux
vector from one current vector is orthogonal to the other flux
vectors. This orthogonality property is approximately preserved in the
presence of conductors and plasma due to the symmetrical placement of
the coils and flux loops. Thus the feedback control voltage for each
of the feedback current groups is chosen proportional to the inner
product of its flux vector and the flux state vector. For example, the

voltage driving the radial field currents is

VRp(t) = v Yrp * ¥(t) (6)

where y is a proportionality constant.

The STARTUP codel® is a free boundary axisymmetric simulation
code which models the resistive time-scale evolution of a toroidal
plasma, including its interaction with the poloidal field coils and
other nearby conductors. Circuit equations for the poloidal field
systems are solved simultanecusly with the plasma equations, allowing
realistic modeling of passive and active feedback systems. The plasma
is modeled as a distributed current resistive fluid whose shape and
size change dynamically during the evolution to remain in near MHD
equilibrium, with a single point of ocontact with the limiter or
magnetic divertor. Flux surface averaged transport equations evolve
the two-fluid adiabatic variables, the rotational transform, together
with the entropy and number density for each species. The computation
is carried out numerically on a background Eulerian grid on which grid
points may be one of three types : conductor, vacuum, or plasma. The

vacuum is modeled as a cold (here 2.5 eV) pressure-less plasma. The



plasma flux surfaces, including the moving plasma/vacuum interface,
are continuously contoured to compute the surface averaged metric
quantities. The computational boundary is magnetically transparent,
with the plasma contribution to the boundary flux being up-dated using

a multipole expansion of the distributed plasma current.

The disparate time scales in the equations are handled numerical-
ly by artificially enhancing the ion mass and viscosity to slow down
and damp Alfven waves, and by substepping the flux-diffusion and fast
Alfven terms. The Alfven velocity has been reduced by a factor of po=
4500 in the runs reported here, and a normalized viscosity coefficient
of v=8.0 was used. We have verified that these artificially large
parameters do not affect the motion of the plasma on the L/R time
scale of the passive coils when realistic values of resistivity and

inductance are used.

The vacuum vessel is modeled as a discrete set of 72 conductors
spaced 0.05 m apart. The time constant of each conductor is 12 ms,
corresponding to a vacuum vessel of thickness 0,025 m with a resisti-
vity of 10~/ ohm-m. Independent induced currents develop in each of
the 72 conductors, however a constraint is imposed that the sum of the
72 currents always equals zero. This constraint models a gap in the
vacuum vessel to allow more rapid penetration of the OH flux. The time

constant for response of the feedback systems is also 12 ms.

If the plasma becomes ideal MHD unstable during its evolution,
this instability will grow on the modified Alfvén time, which is an

order of magnitude faster than the resistive decay time of the conduc—



tors or the time scale over which the preprogrammed or feedback
currents are changing. This instability motion is thus readily distin-
guished from the stable resistive evolution. As a check, we rerun a
stable evolution sequence twice, once with the Alfvén velocity reduc-
tion factor p set to 3000, and once with the artificial viscosity
parameter v = 12.0. These should give results that are indistinguish-
able from the original run, verifying that plasma inertia is unimpor-

tant and thus ideal MHD instabilities are absent.

The computation is initialized to the equilibrium configuration
shown in Fig. 2a. The plasma is shown to evolve in a stable manner
through the states shown in Figs. 2b through 2d. Examination of the
currents required in the feedback systems shows that a maximum feed-
back current of 20 kA was required to maintain positional control of
the plasma during the evolution. The plasma was thus evolved up to the

maximum 4/1 elongation with axisymmetric stability found at all times.

We plot the Z-position of the plasma centroid versus time as
curve A in Figure 3. Curves B and C show the result for the same
calculation repeated with the mass enhancement parameter p = 3000 and
with the artificial viscosity v = 12. The near identity of these three
curves verifies the axisymmetric stability during the calculation. For
comparison, we plot additional curves D, E, F in Figure 3 correspon-
ding to rerunning the original calculation with the feedback systems
turned off and the vacuum vessel walls removed at times t;, t3 and
tg. (Table I.) In these cases, axisymmetric instability on the ideal

time scale is evident.



To demonstrate the separation of time scales in the simulation,
we plot in Fig. 4 simulation results for .154 s < t < .163 s of the
Z-position of the magnetic axis vs time for the standard case (feed-
back and walls), an ideal MHD unstable case with the conducting walls
removed at t = ,154 s, and a resistive unstable case with the active
feedback system shut off at t = .154 s. The disparate time scales are

evident.

In conclusion, we have found and simulated a method for obtaining
highly elongated tokamak plasmas on the 10~! sec time scale by using a
combination of preprogrammed currents, passive conductors, and an
orthogonal feedback system. The equilibria all have gy =~ 2 at the
limiter and broad, but not hollow, current profiles consistent with
the MHD evolution equations assuming classical Spitzer resistivity.
The continuously-evolved equilibria between a near-circular plasma and
a 4/1 elongated racetrack plasma are all stable both to ideal and

resistive axisymmetric MHD modes.
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TABLE I. Preprogrammed currents (kA) in each of the 16 EF coils,
pPlasma current and elongation at 8 reference times. Linear
interpolation is used to define currents at intermediate times.

t ty t3 ty ts tg ty tg
I, 162 164 39 -8 -110 -134 -133  -104
I, 0 -112  -78 -8 -106 -127 -119  -96
I; -40 66 =53  -58  -60 =71 -68  -48
I, 174 218 232 224 228 199 220 240
Is 123 91 79 71 96 99 96 105
Io -148 -107  -88  -93  -101 -94  -103  -108
I; -140  -254  -198 =153 =151  -167 -168  -154
Ig 88 80  -41 -173  -207 -174 -198  -203
I 0 0 -9 -4 -166  -251  -234  -203
I,, O 0 65 74 90 72 -58  -154
I, O 0 0 0 0 0  -61 -108
I, O 0 0 0 0 0 132 105
I3 O 0 0 0 0 133 240
I,, O 0 0 0 0 o -28  -48
I;s O 0 131 54 176 72 -39 -96
I, O 0 49 140  -78  -131  -127.4 -104

Ip 332 541 584 763 1069 1174 1425 1700
2.25 2.5 3.0 3.25 3.62 4.0

A

—
o)}
N
o

TABLE II. Z-position of control flux loops used at 8 reference times.
At intermediate times, ocontrol flux is interpolated using loop
positions in table. Flux loops 1, 2, 6 have R = 0.62 m, flux loops 3,
4, 5 have R = 0.98 m, while flux loop 7 has R= 0.8 m, Z = 0.72 m.

Loop #  t; t, t, t, tg tg t, tg
2and 3 .513  .440  .480  .500  .550  .560  .560  .560

1 and 4 .430 .360 .315 .250 .180 .135 .070 .000
5 and 6 .353 0280 0150 0000 —.19 —.29 -.42 —056
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FIGURE CAPTIONS

1. Computational grid, coil, vessel and flux loop geometry.

2.

Flux surface geometry for a stable evolution sequence at

(d) t = tg = 0.210 s.

Simulation results of Z-position of magnetic axis vs time for
physical sequence with mass enhancement and viscosity parameters
(a) uw = 4500, v = 8.0; (b) p = 3000, v = 8.0; (c) p = 4500,
v = 12.0. Curves (d), (e) and (f) illustrate ideal MHD instability

when passive conducting walls are removed.

Simulation results of Z-position of magnetic axis vs time for
different conditions illustrating time scales of stable formation,

resistive instability and ideal instability.
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