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Abstract

A new method is presented for computing global axisymmetric
instabilities of tokamak plasmas in a conducting shell. The method
uses a free-boundary equilibrium code to find displacement vectors
compatible with ideal MHD. It is applied to the computation of verti-
cal instability growth rates of highly-elongated, race-track shaped
plasmas. Results obtained for up-down symmetric configurations are
compared with ERATO calculations. The effects of plasma-wall distance,
plasma pressure and current profile are analyzed. In addition, the
gain in stability produced by asymmetric positioning of a given plasma

in a given shell is evaluated.



1. INTRODUCTION

The stabilization of axisymmetric modes in tokamak plasma is
becoming an increasingly important problem in view of recent evidence
that non-circular cross-sections may offer a decisive advantage with
respect to the beta limit (TROYON et al., 1984; SYKES et al., 1983;
STAMBAUGH et al., 1984: OKABAYASHI et al., 1984). The usual scheme for
stabilizing these modes consists of passive and active elements, to
deal with the fast and slow motions, respectively. The theory of
passive stabilization on the fast (Alfvén) time scale has been
investigated by many authors (JOHNSON et al., 1976; BERGER et al.,
1977; BOBBIO et al., 1983; HAAS et al., 1975; DOBROTT et al., 1981;
GOEDBLOED et al., 1972). There are basically two approaches: The first
approach (JOHNSON et al., 1976 and BERGER et al., 1977) consists of
solving the problem rigorously by computing all axisymmetric modes,
using an ideal MHD stability code (such as PEST, ERATO). This can be a
time-consuming exercise, however, especially when many different con-
figurations must be analyzed. The second approach tries to obtain an
approximate solution by using a simplified plasma model. One of the
methods in this class (BOBBIO et al., 1983) consists of decomposing
the plasma in a number of discrete current loops, and computing the
work done by the-f.x B forces, for an assumed displacement vector.
This method may give accurate results if the true mode structure
happens to be similar to the assumed one. It is known, however, that
axisymmetric modes in highly-elongated or bean-shaped plasmas may have

a very complicated structure.



In this paper, we propose an alternate method which combines the

accuracy of the first approach with the simplicity of the second.

2. THEORY

2.1 1Initial Equilibrium

Any stability analysis requires an accurate equilibrium solution
as a starting point. We use the FBT code (HOFMANN and JOYE, 1983) to
generate free-boundary axisymmetric equilibria. FBT exists in several
versions. The version which is used here has a built-in dipole and
quadrupole feedback for stabilizing the outer loop iterations. This
stabilization is necessary for obtaining a converged solution whenever
the vertical elongation of the Plasma cross-section is beyond a cer-
tain critical value (b/a ~ 2). Thé feedback is applied in the follow-
ing way: At the beginning of the calculation, initial estimates of all
poloidal field coil currents are specified. These estimates are usual-
ly obtained from a separate calculation (HOFMANN and MARCUS, 1984). In
addition, four limiter points are assumed. The code then maintains the
values of the flux function at the four limiter points equal to each
other, and assumes that the corresponding flux surface defines the
plasma surface. This is achieved by varying the total plasma current
and by superimposing two sets of correction currents onto the poloidal
field coil currents, at each step of the iteration. One of these sets
of currents produces a pure radial field, and the other produces a
quadrupole field. The converged solution then has v = ¥1im at the

four limiter points.



The source functions which we will be using in this study are

given by
p' = Cp(® + ,Q<I>2)
(1
TT' = op(® + 2%?)
where p is the plasma pressure, T = RBy, & = (¥ - ¥1im)/(¥Yaxis

- ¥Y1im) s Cp and op are constants and o1/cp
= Rozuo(( 1/8)-1). The parameter % defines the width of the current
profile and B8 is related to the poloidal beta, Bpol

= 8nf[p ds/ucI?.

2.2 Displaced Equilibrium

Let us first consider an arbitrary displacement (Fig. 1). The
limiter points are shifted vertically or horizontally (Hy, Hy, Hy, H,)
and the equilibrium parameters Brs & and By are changed by small
amounts, AB, AR and AB,. The‘displacement may be described by a vec-

tor ‘fl’, defined as




where B, is the toroidal vacuum field at R = Ro.

In principle, we wish to compute the displaced equilibrium with-
out changing the flux function on the shell, since the latter is
assumed to be perfectly conducting. For an arbitrary displacement,
this is, of course, impossible. However, the displaced equilibrium can

be computed if we add a perturbation to the flux on the boundary,

Axy=w+Dz+Q(zz+R2(0.5-109(§())) (2)
>

and if we change the plasma current by an amount Alp. This gives us
the four independent variables (W,D,Q,AIp) which are necessary to
fit the four new limiter points. The perturbation (egq. 2) contains a
constant term (W), a dipole field (D) and a quadrupole field (Q). Al-
though the perturbation is only imposed on the boundary, eq. (2), is
also valid inside the shell, since it is an analytic solution of
the currentless Grad-Shafranov equation, o) 2\y/ 222 +
R[(3/3R){(1/R)(2¥/3R)}] = 0. It should be noted, however, that inside
the shell, the perturbation of the flux function contains three terms,
i.e. AY as given in eq. (2), AYp due to the redistribution of the
Plasma current and A¥j due to image currents in the shell, The
dipole term in eq. (2) produces a pure radial field, whereas the
quadrupole is chosen in such a way that the field null appears at

R=%[Z=0-

Apart from the change in the limiter position (Hy, Hy, Hz, Hy)
the displaced equilibrium also uses new parameters g', %', and By'.
Those are obtained from the original ones by applying the corrections

. . . —-
specified in the displacement vector, H:



B' = B + AB
' = 2+ AR (3)
B' = B + AB

(0]

Note that a change in B, implies induced poloidal currents in the
shell and a change in % represents a modification of the plasma cur-
rent distribution. We assume that toroidal as well as poloidal image
currents can flow freely in the conducting shell, but that no currents

are induced on the plasma surface.

2.3 1Ideal MHD Constraints

We now wish to select those displacements which satisfy the con-

servation laws of ideal MHD. For this purpose, we define a vectorTI",

[ A®
v

AD

P
W
T = AWaxis
AS

where A®,; and A%, are the toroidal flux changes in vacuum and
plasma, respectively, W and A¥axis are the corresponding poloidal
flux changes, AS is the change in entropy and the remaining quantities

are defined in eq. (2).



——y —-
For small displacements, T is a linear function of H,

—
T

=AH (4)

The elements of the matrix A can be found by imposing particular dis-

placements, for example

[, ] [0 ] [0 ]
0 H, 0
0 0 H,
—— - —
H =|0], Hy =| 0 |, Hy =| 0|, ete.
0 0 0
0 0 0
..OJ .04 0 ]

and computing the corresponding —'I"’vectors.

We have tested the validity of eq. (4) by computing T vectors for
a large number of arbitrary displacements -ET. We find that if the maxi-
mun surface displacement is less than about 1/50 of the minimum plas-
ma-wall distance, then the deviations from linearity are less than
~ 1%. Under these conditions, the elements of the matrix A are inde-

pendent of the assumed ?

Clearly, if -’-I"= 0, the constraints imposed by ideal MHD are glo-
bally satisfied and the flux on the conducting shell has been left
unchanged (AY = 0). This is a special case, however, which corresponds

to a state of marginal stability, as will be shown below. In general,



we cannot impose T = 0 and obtain a nontrivial solution for ;; from
€q. (4). At least one of the elements in.g.must be assumed nonzero. If
we insist on satisfying ideal MHD constraints, there are only two pos-
sibilities, i.e. D+ O or Q # 0. If we choose D # 0, Q = 0, we obtain
a predominantly vertical displacement, since the boundary flux is per-
turbed by a pure radial field. This mode leaves the g-profile practi-
cally unchanged. If, on the other hand, we assume Q # 0, D = 0, we
obtain a droplet-ellipse defofmation which drastically changes the
g-profile. This mode may be important in resistive MHD, but it is
excluded in ideal MHD. Consequently, we assume D # 0, Q = 0, and we

- —.).
define a vector Ter

The displacement vector is then given by

——

H = a-lT. (5)
C



2.4 Growth Rate of the Vertical Instability

A rough estimate of the vertical growth rate can be obtained from

s ZnRIpBR

M H

(6)

where Br is the radial field given by BR = D/R, M is the total
mass of the plasma and H is an average vertical displacement. We

assume

H = 0.25 (H + Hy + 2H,) (7)

where Hy is the vertical displacement of the magnetic axis and H;, and
Hy are defined in Fig. 1. This procedure gives only a rough approxima-
tion, because we are not dealing with a rigid displacement. However,
the marginal point (BR = 0) is uniquely determined and its para-
meters do not depend on the approximation used for computing the

average displacement (eq. 7).

From a practical point of view, only the marginal point is impor-
tant. The exact values of the growth rates are irrelevant, since they
are in any case much faster than typical decay rates of image currents

in tokamak vacuum vessels.
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3. RESULTS

3.1 Comparison with ERATO

In order to compare our results with ERATO calculations (GRUBER
et al., 1981), we first consider up-down symmetric configurations. ILet
us assume an elongated equilibrium with b/a = 3, in a conducting shell
with rectangular cross-section (Fig. 2). Note that all linear dimen-
sions (a, b, ay, b,) are given in meters. We compute the growth
rate of the vertical instability by the method outlined above as a
function of the width (ay) and height (b,) of the shell. We then
compute the same growth rates, using the ERATO stability code (GRUBER
et al., 1981). In comparing the results of the two calculations
(Fig. 3), we see that the marginal points (2 = 0) agree almost exact-
ly. In addition, there is surprisingly good agreement in the values of
the growth rates, considering the rough approximation made in FBT.
Figure 4 shows the ratio between the vertical displacements on axis
(Hy) and on the top edge (H;) as a function of the height and width of
the shell. Again, we observe that, close to the marginal point, there
is good agreement between ERATO and FBT results. However, as soon as
we move away from the marginal point, the results disagree. This is p
of course, a consequence of the fictitious radial field, AY = DZ,
which is added in the FBT calculation in order to maintain the dis-

placed plasma in equilibrium.

3.2 Pressure Effects

The effect of plasma pressure on the growth rate of the vertical

instability can be seen in Fig. 5, where we show the result of a
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threefold increase in Bpol. The external coil currents were read-

justed, such that the plasma shape was unaffected by the change in
Bpol- We note that the pressure has very little effect on the growth

rates of the modes considered here.

3.3 Current Profile Effects

When the plasma current profile becomes peaked, the vertical in-
stability growth rates increase rapidly, as can be seen in Fig. 6.
Results are shown as a function of the shell width (ay) for three
different current profiles and for a shell height of b, = 0.58 m. It
is seen that a stable equilibrium, which is quite far from the margi-
nal point, such as the one with ay = 0.24 and ¢ = -0.5 in Fig. 6,
can be driven unstable by changing the width of the current profile by

only 5%.

3.4 Asymmetric Configurations

The results presented in the previous sections were obtained for
up-down symmetric configurations. Assymetric configurations may also
be of interest, for example during the early phases of a discharge,
when the plasma height is much less than the height of the shell. Such
a case is shown in Fig. 7. Starting from a symmetric configuration
(a = 0.8 my, b = 0.54 m, ay = 0.24 m, by = 0.90 m), the plasma is
shifted upward until it comes close to the top wall. For each of the
equilibria shown in Fig. 7, we compute the growth rate of the vertical
instability. The result is plotted in Fig. 8 as a function of the ver-

tical shift, AZ. The stabilizing effect of the top wall is quite
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evident. In fact, in this particular case, the instability can be
suppressed when the plasma-wall distance is less than approximately

3 am on the top.

Apart from improving the stability of the confiquration, the
asymmetry has several other effects on the structure of the mode. In
Figure 9 (B), we show the ratio between the vertical displacements on
the bottom and on the top of the plasma as a function of AZ. We note
that this ratio, which is always equal to 1.0 for symmetric cases, in-
Creases as the plasma approaches the top wall. In addition, the chan-
ges in the equilibrium parameters (AB and Af) become important for
asymmetric configurations, whereas they are negligibly small in the
symmetric case (Fig. 9 (A) and (C)). The effect of asymmetry on the
mode structure can also be seen in Fig. 10, where we show the original
and displaced flux surfaces for the two extreme cases (AZ = 0 and
AZ = 0.34 m). It should be noted that the displacements shown here are
30 times larger than those used in the calculation of the growth

rates.

4. CONCLUSION

It has been shown that a free-boundary equilibrium code can be
used successfully to study the positional stability of tokamak plasma
with noncircular cross-section. Growth rates of the vertical
instability have been computed for a race-track shaped plasma
(b/a = 3) in a conducting shell with rectangular cross-section. The
results obtained for up-down symmetric configurations agree with ERATO

calculations. Assuming several different shell heights, the maximum
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shell width for stability has been computed. It is shown that current
peaking has a very strong destabilizing effect, whereas plasma
pressure has practically no influence on the growth rates. Finally,
considering the case where the shell is much taller than the plasma,
the improvement in stability resulting from an upward shift of the
plasma within the shell has been computed. In the case of strong up-
down asymmetry, the "vertical displacement” mode also involves changes

in shape, beta and current profile.
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Figure Captions

Fig. 1:

Fig. 2:

Fig. 4:

Fig. 5:

Fig. 6:

¥ = ¥1im surfaces of the original (solid line) and dis-

placed (dashed line) equilibria.

Racetrack-shaped free-boundary equilibrium with b/a = 3,
B = 0.3, 2 = -0.5. The dotted line is the plasma-vacuum

boundary.

Normalized growth rate (92) vs. shell width (ay) for
various shell heights (by) . Comparison between ERATO and

FBT results.

Ratio of the vertical displacements on the magnetic axis
(Hy) and on the stop edge (H;) vs. shell width (ay) for
various shell heights (by). Comparison between ERATO and

FBT results.

Normalized growth rate (9?) vs. shell width (ay) for va-

rious shell heights (b,) and for two different values of

B.

Normalized growth rate (QZ) vs. shell width (ay) for
various current profiles. Radial current density profiles on

the midplane (2 = 0) are shown in the insert.
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Figure captions: (cont'd)

Fig. 7:

Fig. 8:

Fig. 9:

Fig. 10

Up—down asymmetric equilibria. AZ is the vertical distance
between the magnetic axis and the midplane of the conduct-
ing shell. Radial profiles of current density and plasma

pressure at the height of the magnetic axis are also shown.

Normalized growth rate (?) wvs. asymmetry parameter AZ
(= vertical distance between magnetic axis and shell mid-

plane).

(A) Normalized beta change, (B) stretching parameter H,/H;
and (C) current profile change A%, as a function of the

asymmetry parameter AZ.

Flux surfaces of the original (solid line with dots) and
displaced (solid line without dots) equilibria for the two
extreme cases: AZ = 0 (A) and AZ = 0.34 m (B). All displace-

ments have been enlarged by a factor 30.
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