January 1986 LRP 271/85

COMPUTATION OF MHD EQUILIBRIA BY A
QUASI-INVERSE FINITE HYBRID ELEMENT APPROACH

R. Gruber, R. Iacono and F. Troyon

Submitted for publication to J. of Computational Physics



COMPUTATION OF MHD BQUILIBRIA BY A QUASI-INVERSE
FINITE HYBRID ELEMENT APPROACH

R. Gruber, R. Iacono and F. Troyon

Centre de Recherches en Physique des Plasmas
Association Euratom - Confédération Suisse
Ecole Polytechnique Fédérale de Lausanne
21, av. des Bains, CH-1007 Lausanne/Switzerland

Abstract

To supply a precise and consistent solution of the Grad-Schliiter-
Shafranov equation to the ideal linear MHD stability code ERATO, a
quasi-inverse finite hybrid element code has been written. To fit well
the plasma surface and the region around the magnetic axis, adequate
coordinate transformations are made. A Picard iteration is used to
treat the non-linearity of the source term. One Picard step is carried
out by solving the weak form of the partial differential equation by
an isoparametric finite hybrid element approach (FHE). After each
Picard step, the nodal points are readjusted such that they fall on
initially prescribed flux surfaces. This enables us to accumulate the
nodal points in those regions where good precision is needed for the
stability code. While for a conforming finite element scheme a 4-point
integration is necessary, a 1-point integration is sufficient in a FHE
approach. Coding the FHE is very simple and easily vectorisable. For a
given resolution, the precision of global quantities, such as the
total flux, is the same for both methods but the FHE approach 1is

faster.



1. INTRODUCTION

Finite difference and finite element methods approximate the
exact solution ¥ of a second order partial differential equation in
the following way

ey - ¥ < ¢ )l (1

where h and 1 are measures of the discretization mesh size and the
order of the approximation, respectively. The size of the constant ¢
strongly depends on the choice of the coordinate system and on how
well the solution is approximated locally. For instance, ¢ becomes big

if the boundary is poorly represented.

To obtain a small Iy, - ¥i, one can choose between a high order
approach (1 big), a fine grid (h small) and a formulation leading to a
small value of c. However, the computational physicist is also
concerned about manpower necessary to achieve those goals and the
possibility of vectorizing the computer code. Often, these are reasons
why high order approaches are not considered. Also high order
approaches can lead to the Gibbs phenomenon (parasit overshoot
oscillations) for solutions which rapidely vary locally but are smooth
elsewhere (see for instance Ref. [1]). In such situations, mesh
accumulation helps to increase precision of the approximate solution.
For such cases a finite element method is to prefere to a finite
difference method where 1 is lowered for a nonequidistant mesh.
Besides h and 1, the constant ¢ in eq. (1) plays an important role for
the precision of the approximate solution ¥p. It is especially this
constant which we try to keep small in our approach. We minimize the

error of ¥ by:



a) Choosing a coordinate system to represent as closely as possible
the boundary and to fit the analytic behaviour of the solution Yh

around a particular point in the domain which can be the axis.

b) Readjusting the grid iteratively to fit physically important

surfaces.
c) Accumulating the mesh around these surfaces.

d) Choosing nonconforming isoparametric finite hybrid elements instead
of conforming isoparametric elements to reduce a 4-point integra-
tion scheme to a 1-point integration formula. This reduces compu-

ting time of the matrix elements and eases vectorisation.
This proceeding is applied to the fixed boundary Grad-Schliiter-
Shafranov equation describing the equilibrium state of a thermonuclear

tokamak fusion plasma (see Ref. [2]).

2. PHYSICAL PROBLEM

2.1 Equilibrium equation

In natural units [3] the static ideal MHD equilibrium equations

are:

i

¥p=(YxB)xB (1)

veB=0 (2)

Let us restrict to axisymmetric geometry for which the toroidal angle

¢ is an ignorable coordinate (Fig. 1). For this geometry, eq. (2) is



satisfied by:

B = Tve + Vo x VY. (3)

By dotting eq. (1) with V¢ and B respectively one finds that p
and T are constant on constant ¥-surfaces. Dotting eq. (1) with vy

gives the Grad-Schliiter-Shafranov equation in the plasma domain ©

vy d aT
rz_z - (=) = —r? £ -T — = er(‘i’,r) (4)
r? av dy

where r is the distance from the symmetry axis (see Fig. 1). We

restrict ourselves to the fixed boundary problem for which

at the plasma surface T.

To solve eq. (4) one can prescribe two arbitrary functions p(¥)
and T(Y¥). In general they are nonlinear functions in ¥. In practice
they are chosen such that cf (Y,r) = 0 at I and, as a consequence, the
trivial solution ¥=0 satisfies (4) and (5). To prevent this solution
we have to normalize our system by demanding, for instance, that the

total toroidal current

{7

[ £ ¢ « (VxB) d%x = fc;dzx =1 (6)

Q Q
be imposed. Here, d°x is the area element in Q. Condition (6) can be
imposed by scaling the source
*
T (7

and solving for A.



2.2 Variational form

Introducing U to be the set of all functions u ¢ LZ(Q)I),
LZU‘ € LZ(Q), u=0 at T and u <0 in Q, problem egs. (4-7) can be
written in its weak form (see Ref. [4]):

"Find a real number A and ¥ € U such that

é l.gy . ynd2x + A é J*d%x = 0 (8)
r

for all n £ U and that for a given I

A écjﬂ*dzx = I."

2.3 Coordinates to fit I' and axis

To fit the plasma surface precisely and to guarantee regularity
at the magnetic axis, a new coordinate system (&,6) is introduced. It

is related to the cylindrical coordinates (r,z) through

La
[}

Ry + /& Pp(6) cose

N
]

/& Pr(8) sing

The center of the coordinate system is given by =0,
corresponding to the point (Ry,0) in the (r,z) coordinate system. The
plasma surface I' is given by @=1. The given function pp(0) describes

the form of T.

2.4 Readjustment and accumulation of the mesh

To gquarantee reqularity of the solution at the magnetical axis

1) Lz(Q) means: uare integrable functions in Q.
sq



and to fit the physically relevent vy= constant surfaces, we
iteratively readjust the grid. At the end of each Picard step the
values of R; and & are recalculated such that the point r=R,, 2=0 fall
on the minimum of ¥ in Q@ and that the grid  points (aeij,ej,
j=1,Ng) fall on prescribed ¥j surfaces. This makes it possible to
accumulate the grid around singular ¥ surfaces, a proceeding necessary
to deliver a precise enough solution to the linear ideal MHD stability

code ERATO. We call this a quasi-inverse approach.

3. FORMULATION OF THE APPROXIMATE PROBLEM

3.1 Picard iteration

The nonlinear problem (8) is solved iteratively by a Picard
method. Let ¥K and AK be the approximate solution after k itera-
tion steps. Then ¥k*! and Ak*! are determined by:

"Find real number »\k*! and yk+l ¢ U such that?)

1
é_ vektle ynda?x + 2k A K nd%x = 0 (10)
4 v

for all n € U and that for a given value of I

RHL [ ff wkH a2 g

As an initial guess Y’ one often takes a previously calculated
solution in the same domain Q and for slightly different parameters in

the source function. In most of the practical cases, Picard method

2) S *K means: evaluate 7 * using YK,



converges. In the few cases that it does not converge, a continuation

method can be used (see Ref. [5]).

3.2 Conforming approximation

Let us subdivide the domain @ in Ny x N, or Ny x Ny mesh
cells and U, be a finite dimensional subspace of U. A Ritz-Galerkin
method  for  approximating the eigenelements (ykt! ktl) = of
formulation (10) consists to

"Find real numbers Apk*! and functions ypktl ¢ Up such that

kel 2 k *k 2 3
LA Enhdx+)\hécfh n, a2 x =0 (11)

[ 3 Qe

§

for all ny £ U, and that for a given I

}\t‘{-l édp;k—{»l dzx = I.“

In (r,z) coordinates U is the set of all functions Up € Lz(Q),

dup/dr ¢ L2(9), dup/dz & L%(Q), uh, = 0 at T and up < 0 in Q.
Formulation (11) then writes

"Find real numbers Ap¥*! and functions Ykt e Up such that

1 aw’;“ awﬁ“

bnh . bnh
ig r dr or 3z dz

X *k
) drdz + AS ‘gtfh n, drdz = 0 (12)

for all nhp € Up and that for a given I

)\r)?"l écf;k"‘l drdz = I."



In (2,0) coordinates @ = {0<&<1, 0<6<2xn}, I = {=2=1, 0<08<2x} and

Up, 1s the set of all functions up € LZ(Q), dup/da € LZ(Q),
dup/08 & L2(R), up(a=1,6) = 0, up(2,8) = up(e,642Lx), L
integer, and uy < 0 in Q. Formulation (11) then writes:

"Find real number Ap¥*! and functions ¥,X*! & Uy such that

1 ki1 g+ dor kel der
T2 6? on 1 9 )4 1 on an
| d= f [ ha(~—h_-_d§ _h_j(___h.-_"d9_h)jg
0 0 r aa d® 2= 26 er ok: 22 06 pr Q=
1 1 2%
_ k 2 *k

for all np € Up and for a given I

1
I Y

3.3 Non-conforming approximation

In addition to Up, let us introduce 3 finite dimensional

spaces:

U; is the set of all functions u) € LZ(Q), uy (z=1,8) = 0, uy(=,8)

u) (=2,8+2Ln), L integer, and u; < 0 in Q,

U, is the set of all functions u, € Lz(Q), du,/da ¢ L2(Q), u, (2=1,6)

0, uy(e,8) = uy(e,6+2Ln), L integer, and u, < 0 in @ and

L1}

U3 is the set of all functions uj ¢ L2(Q), du3/08 € DZ(Q), us (@=1,0)

0, uz(e,8) = uz(e,0+2Ln), L integer and uz < 0 in Q.

Formulation (13) can then be rewritten in a more complicated way:

"Find real numbers th"'l and functions ‘I’hk"'l € Upr Y1 € Uy,



¥, € Uy and ¥; € Uy such that?)

o¥, o, 1 ow,  der 3¥, . 1 om,  Jer a1,

1 2n &
T R g R Y G N A SR il S P
0 0o X d& d@ 2® 06 pr 0@ " 2@ 06 pr o=
1 gl 27 oxk
=_ A [ de 2 de 14

for all Ny € Ul’ Ty € Uz, N3 € U3, that

1 2q
[ a | (B -y ) e d=0 , i=1,2,3 (15)

for all g5 ¢ L%(9), i = 1,2,3

and that for a given I
1 1 25 2 *k,
_xﬁﬂ gd&g %,a/ﬁqkde= I." (16)
2

Note that formulations (13) and (14-16) are identical since the

integral conditions (15) imply that

¥; = ypkH i=1,2,3 (17)

However, they differ if the functions Eir» 1 = 1,2,3 are chosen

in a finite dimensional function space.

4. IOWEST ORDER FINITE ELEMENTS

4.1 Choice of finite elements

In a first step we subdivide the domain @ = {0<a<1, 0<6<2xn} into

Ny, x Np rectangular mesh cells. As functions mn, m;, M3, n3,

3)c]pl*k means: evaluate cfi*k using ¥;X,.
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€1+ & and £3 we choose bilinear finite elements defined by (i=1,...,

Na; j=1,ooo, Ne).

Nh = ej(a) » e4(8)

n1 = Ci-1/72(@) * cy-1/2(8)

up! = ej(@) * cy-1/2(0) (18)
N3 = Ci-1/2(2)  e5(6)

&1 = 82 5 83 = Ci-q/2(@) ¢ c5-q/200)

The finite elements cx(x) and ex(x) are

0 Xg < X < Xk
ck(x) = {1 Xeo) < X < X (19)
\ 0 Xk <x K< XN
0 ’XO<x<xk_i
.)_(.—_x_k:_l____ X <X € X
Xk ~Xk-1 r el K
ex(x) = (20)
k17X r Xk € X < Xgq)
Xk+17Xk
0 r X4 < X < XN

The unknowns ypk+!, ¥), ¥, and ¥3 are expanded in terms of

these finite elements:

N. N,
1 - &—1 3]
! (2,0) -l 1hg e ey

2

6 (21)
_Vim1/25-1/2 Sim172 ®) Syoq2 O

(-
¥; (2,6) =
i

H ~1'2

1

. 0
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v (20) =] L Y5172 €1l®) 5 (O)
Ne Np
¥3 (2,0) =]

§=gi‘1/23 Ci-1/2 (@) &5(6)

4.2 Conforming isoparametric finite elements

By choosing bilinear finite elements, egs. (21), to

k+l1
14

Yh the integrals in the formulation (13) have to be

by a 4 point Gauss formula.

represent

performed

Let us now discretize the domain @ into N, x Ny quadrangular

(non-rectangular) mesh cells. In this case we have to perform local

variable transformations (&,8) » (£,x) of the form

|1}

2(&,x) ay + a8 + azx + ayfy

6(E,x)

B1 + BoE + B3x + Buix

(22)

The eight parameters «) to «, and By to B, are determined by the

coordinates #; to &, and 6; to 8, (see Fig. 2)

= =X1 34""'&1

(23)

Ay = X, -, Ba= \91-81
d3 = XQ~X1 Pg‘: %Q'ez(
du = XHXE,—X,_-X;, ﬁq = 314'85-%2_" 3’4

In order to prevent problems concerning integration and unique-

ness of the transformation (23), we demand that all angles of the

quadrangles be smaller than =.
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By transforming from (#,0) to (£,x) the surface element becomes
de de = Jdedy, (24)

where

J = L
9 ot - BE oy
oz 06 06 da

= (ag + ayx) (B3 + BLE) = (By + Byx)(ag + ay&) (25)

is the Jacobian. In these new (§,x) coordinates the derivatives of any

quantity A become

0A 0A 0A
J__=( + g)__— + —_—
™ B3 + By o (Ba + Byyx) ox
(26)
0A dA oA
56 (aj 45) Y; (ap + oyx) »

One has to note that these formulae are still valid when the
quadrangle degenerates into a triangle as can happen at the origin of

a cylindrical coordinate system.

The finite elements have now to be understood in such a way that
Ck-1/2(Xx) be piecewise constant in £ or x and that ep(x) be
linear in ¢ or in y. The precise functional dependences of the
elements in the (&,0) plane can be found through the transformation

(22).

In practice, one knows the coordinates = and B of the 4 edge
points of a cell. These define the transformation egs. (23) and,
consequently, the Jacobian through eq. (25). The 4 point Gauss inte-
gration is performed in the (£,y) plane. To know all the quantities a
back-transformation is necessary to know the positions of the Gauss

points in the (e,6) plane.
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4.3 Non conforming isoparametric finite hybrid elements

Let us first consider the case of a rectangular (=,6) mesh.
Choosing for np, my, ny, n3, E1» £y and E£3 the elements of egs. (18)
and for ¥, ¥, ¥, and ¥; the expansions egs. (21), the
integral conditions, egs. (15) in the formulation eqs. (14-16)
correspond to

1

Yic1/25-172 = 7 (Biotger ¥ Yise ¥ Yiogg * ¥g)

V.. o= e vv) (27)
ij-1/2 2 ‘Fij-1 ij

¥, . = 1 (v, . +v..)

i-1/23 2 ‘Ti=13 ij

As a consequence, the derivatives of ¥, with respect to & and ¥

with respect to @ become centred finite differences

?H'_,?: i;-l jot \9'-_1 T ) = W':J“I + Wu - Wi—lj-l "‘Wl..-lj.
Cr AN AR T M .
2‘(XLJ - XC-IJ-I)
Y3 (Xi-ii-i ) Hies j—l.) = Yi4Ve - Yoo = Wiaf )
? 1% 1°2 Q(S;J’ - ja)

It is this fact which gave us the idea to call this non-confor-

ming approach "finite hybrid element method".

All the quantities in egs. (14) and (16) including n and ¥ are
now piecewise constant in each mesh cell. If, in each mesh cell, we
approximate all the coefficients, i.e. &, pr and dpr/d6, by their

values at the centre of the cell, the integrals in egs. (14) and (16)
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simply become

1w Ny Ng
A SS =2 20 Al %) (X ) (8- 84y)
o © =4 =l DA A (29)

Let us consider now the case of a quadrangular, i.e. non-rectan-
gular mesh. Again we perform a local variable transformation as given
by egs. (22). Choosing again all the quantities to be piecewise
constant ina(f,x) cell, a one point integration formula is again

sufficient and can directly be written in the (#,0) plane:

4 N, Ng
!dxof A 9)d9 = Z’: IZ ARy Sy ) Tii
here
i‘-&i-g =% (% g+ Xing +237)
@;-%1_5.: = 1'4- (S‘-_‘J‘_l + 9+ %4 9y) (30)

J-l‘-!ij-%- 2%[(9{.|j"et.j-|) (X xt -1y- |) ( l] v. 11 l)( 1. 31)]

The quantities in eq. (14) including ¥ become

_ - (31)
Y% Xy, i) = A [0 (g - e j-1)

+( b~ 9. |- ,)(% - '1)]



15—
,a___tll/_?_ﬁ_ (i;-.‘.j- )§(.-%_l‘- ) = _j————— [ (X"J.‘l_x“"j)(q/"j h %."J“')
+(X'|| lj)(q)lj -1 q/t IJ)]

For the test functions n one has to take the values at the centre
of the (g,x) cells and transform them back to the (#,0) plane. The
test functions attributed to the 4 nodal values ¥i-13-1, Yij-1s

¥i-1» ¥j§ in the mesh cell are
Ne=(2,4,2,1)
TN Ty 'y

?ﬂ.’: = (_ V-1 ‘Su L tu -] 91‘-11"9:'1'-1) - 9"1'-9'1' 1)- !) (32)

/
L 2%, I. 2T Tl
A A A "z
My _ ( LANTED SRS HEe SRR TS HRRS i ,J’..)
?8’ Z]—, ) ZI('_,-, ZI{,; ' a]- l
o i i k2

A practicle application of the finite hybrid elements with the
corresponding computer code is presented in Ref. [1] for the case of
the linear ideal MHD stability code ERATO for a toroidal geometry.

5. RESULTS

5.1 Solovev equilibrium

Let us first compare the conforming and the nonconforming hybrid
element approaches using the analytic Solovev equilibrium solution

given by

dp 2y /.22
—= = =2¥, (14+E°)/a“E
ay S

ar? (33)

—_—=0

avy



-16-

and the surface parametrization pp(6) by

a’ = E"2(1+pp(0)cose)? p2p(0) sine (34)

+ 0.25 (2+p(6)cose)? p?p(8) cos?e

Here, a, E and ¥g denote the inverse aspect ratio, the elongation
and the total flux. The position of the magnetic axis is at r=Ry=1.

Note that pp(0) = /1428 - 1 and pp(n) = 1-/1-2a.

In Fig. 3 we show convergence studies of the approximated solu-
tions corresponding to the set of parameters a=0.4, E=1 and dp/dv=-2.
We see that both methods, the conforming and the hybrid finite
elements, converge quadratically toward the exact values of vg=0.08
and Ry=1, the slope of the convergence curve for the hybrid elements
being smaller. This means that the value of ¢ in eq. (1) is smaller

for the nonconforming approach than for the conforming one.

For the case with a=0.4, E=2 and dp/d¥=-2.5 we see in Fig. 4 that
the conforming approach has similar convergence behaviour as the
hybrid one. In Fig. 5 we show the convergence behaviour of the quanti-
ty ¥g fixing either Nz=20 or Ng=20. The error for Ng=20 is
much smaller than that for Np=20. We find that Ng of the order of

~ 3Np is necessary for a balanced convergence study.

Fixing the elongation at E=2 and dp/d¥=2.5 and increasing the
aspect ratio such that a=0.25 the convergence properties of the
conforming approach are superior to those of the hybrid approach as we

can see in Fig. 6. This is due to the superior integration formula (4
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point Gauss integration formula) used for the conforming elements
which helps to better approach the plasma surface term including
(dpr/d6)/p in eq. (13). Comparing these results with those presented
in Ref. [4] using (r,z) coordinates, eq. (12), one realizes that using
(®,0) coordinates 3 to 10 times less intervals have to be taken in

both directions to obtain the same precision.

5.2 JET equilibrium

As a practicle application we calculate the equilibrium solution
for a JET (Joint European Torus) geometry. The parameters of the JET
tokamak are: Ry=2.96 m, a=0.423, T=10.4 Tm, E=1.68 and I=4.8x10° A.

For the two free functions of the source term we choose

b(W/gs) =384 (W)= 5.2 (¥/4s)®  Nfem
T*W/ys) = Mo - 285 (w/gs)® Tm?

which corresponds to a case with §=2.5% close to the Troyon stability

{1

(35)

f

limit [1,6]. The plasma surface I' is D shaped and given by

2.96 (1+acos(6+0.3 sing)) m

"

rr
(36)
2.96 « E a siné m

H

2r

The quasi-inverse solution (¥,8) found by adjusting = such that the
grid points fall on ¥=constant surfaces is represented in the (r,z)
plane in Fig. 1. The convergence properties for the conforming and
finite hybrid element approaches are shown in Fig. 7. As for the
Solovev case the finite hybrid elements have at least as good

convergence properties as the conforming elements.
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6. CONCLUSIONS

We have compared two finite element approaches, the conforming
and a non-conforming one by applying them to the
Grad-Schliter-Shafranov equation. It is found that the non-conforming
finite hybrid element approach mostly shows a better convergence
behaviour for the global quantities such as total flux or position of
the magnetic axis. This hybrid approach is easier to implement and
only needs a one point integration formula for the calculation of the
matrix elements. This property eases full vectorization of the matrix
construction. After their success in the stability problem (Ref. [1]),
the hybrid elements have also shown their superiority to the
conforming elements in the calculation of ideal fixed boundary MHD

equilibria.
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FIGURE CAPTIONS

Fig. 1:

Fig. 2:

Fig. 3:

Fig. 4:

Fig. 5:

Fig. 6:

Fig. 7:

The axisymmetric geometry for JET. Quasi-inverse solution

®2(¥,8) in the (r,z) plane using finite hybrid element.

Transformation from a quadrangular cell in the (#,6) plane to

a unit square in the (£,y) plane.

Convergence studies for the total poloidal flux ¥g and the
position of the magnetic axis R; for the conforming and finite
hybrid element approaches. Solovev equilibrium: E=1, a=0.4,

dp/d¥=-2. The analytic values are ¥4=.08 and Ry=1.

Convergence studies for yg and R; for the conforming and
finite hybrid element approaches. Solovev equilibrium: E=2,

A=0.4, dp/dy=-2.5. The analytic values are ¥g=.16 and Ry=1.

Finite hybrid elements: convergence studies in Ng for fixed

Np=20 and in N, for fixed Ny=20.

Convergence studies for VY5 for the conforming and finite
hybrid element approaches. Solovev equilibrium: E=2, a=0.25,

dp/d¥=-2.5. The analytic value is vg=0.0625.

JET geometry: convergence studies for yg and R, for

conforming and finite hybrid element approaches.
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