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ABSTRACT

The motion of a single particle under the influence of the
ponderomotive force directed perpendicular to the external magneto-
static field is analyzed. By solving the exact equation of motion for
a specific applied electromagnetic field, the resultant ponderomotive
drift is compared with the prediction of oscillation center theory.
The regime of validity of oscillation center theory is discussed. It
is shown that for certain values of the amplitude and frequency of the
electromagnetic field, the particle motion is unstable and therefore

the concept of a ponderomotive force is meaningless.



I. INTRODUCTION

It is well known that a high frequency electromagnetic field may
exert on a charged particle a time averaged (ponderomotive) force. The
resultant particle motion is generally analyzed by means of oscilla-
tion center theory,! in which the position of the particle is split
into slowly and rapidly varying parts, x = ;c's + 'ff. Here 'is
describes the time averaged motion of the oscillating center, and ;f
the fast motion about the oscillating center. Assuming that
|Xel « |Xs| , the equation of motion can be separated according to
slow and fast time scales. Solving the equation of motion on the slow
time scale yields the time averaged motion of the particle under the
influence of the ponderomotive force. In the presence of an external
magnetostatic field %, the ponderomotive force parallel to §o
gives rise to acceleration in the direction along _150, while the
perpendicular ponderomotive force leads to a mutually perpendicular

particle drift.

The concept of the ponderomotive force has received much atten-
tion in the field of plasma physics due to its application to the con-
finement and acceleration of plasmas.! Recent studies have investi-
gated, for example, rf plugging?'? and low frequency mode stabiliza-
tion*'® in mirror devices. Since the collective nature of a plasma
under the influence of an rf field may play an important role in
determining the plasma dynamics, a single particle treatment may not,
however, always be appropriate. Indeed, it has been shown that the

ponderamotive force obtained from a fluid description of the plasma® '’

does not agree with that obtained from the oscillation center theory



described above. A detailed discussion of the origin of this funda-
mental difference between the fluid and single particle ponderomot ive

forces may be found in Ref. 8.

It may be concluded from a recent paper9 that the fluid result
for the slow drift caused by the perpendicular ponderomotive force can
be obtained from single particle theory. Using the oscillation center
approximation, a drift in addition to that determined by other
workers! was apparently derived, thereby rationalizing the difference
between fluid and single particle theory. That this additional drift
may not be obtained from single particle theory can be shown most con-
vincingly by comparing the fluid result with the solution of the exact
equation of motion for a single particle (i.e., without using the
oscillation center approximation). In the present paper, a specific
example of single particle motion under the influence of a perpendicu-
lar ponderomotive force is considered. By numerical integration of the
equation of motion, we compare the exact solution with that obtained
from the correct application of oscillation center theory. We are thus
able to show that single particle theory is not capable of yielding

the fluid result.

The use of oscillation center theory to yield the slow motion of
the particle tacitly assumes that the amplitude of the fast motion is
small. However, as this paper will show, the fast motion can in fact
become unstable for certain values of frequency and amplitude of the
rf field. Under these conditions, the concept of a ponderamotive force

is, of course, meaningless.



IT. MATHEMATICAL, FORMULATION
A. Equation of motion

In this paper we shall consider the motion of a single particle
of charge g and mass m under the combined influence of an electromag-
netic field and a uniform magnetostatic field (§o = gz Bp). For
the sake of simplicity we shall consider the specific example for
which the total electric and magnetic fields may be written as

E(x,#) = -8 B,bx ; B(t) = &,8,(1+5) | (1)

'J [+]

where b = b cos wt and b is constant. We shall ignore the self-
consistent contribution of the total fields due to the motion of the

charged particle.

The equation of motion for the particle in the above fields is

x = a(i+b)y (2)
:'y' : -nbx - .n.(l+g)5c , (3)
z = o (4)

where the cyclotron frequency @ = gBy/m. The particle motion perpen-
dicular to '150 is thus described mathematically in terms of two
coupled differential equations. It should be noted that these equa-
tions are nonlinear in the rf field amplitude but, for the present

choice of fields, linear in the particle position.



In the following, we shall normalize quantities by adopting o~!
and p @~! as time and distance units. The most appropriate choice for
the normalizing velocity p will become apparent in Sec. II C. We shall

use the normalized quantities:

X = _D.:)C/P 3 Y = _O.y/r) ; T=0+ and VvV = w/_O. . (5)

B. Oscillation center approximation

Splitting the particle motion perpendicular to Eo into slowly

and rapidly varying parts,

X+
)

A A
L - ex(xs"'x{-‘) + ey(ys"'yf) ’ (6)

Egs. (2) and (3) may be separated according to slow and fast time
scales, as is usual in oscillation center theory.l The fast time scale

equation is solved to O(b) to yield

. - 2bXs cog {1-NT cos (1+V)T
X¢ (1-9%) 2 ° 2
(7)
Yo = 2VbXs (o (U-VT gin (1+V)T
(1-v*) 2 2

In general, a linear combination of sin T and cos T must be added to
solutions (7) in order to satisfy the initial conditions for the
particle fast motion. However, this yields no contribution to the slow

(time averaged) motion, which is given to O(b?) by



o ;4 - x| (8)

From Eq. (8) it can be seen that the ponderomotive force perpen-
dicular to By gives rise to a time averaged drift in the y direc-
tion. It may be readily shown that this drift can be written, as is

usual, in terms of the single particle pondercmotive potential:!

2
dYs _ d9 where % = - | E(x,7)/8, | . (9)
dT d X 4+ (1-v*)

C. Exact solution

Equations (2) and (3) may be numerically integrated to yield the
exact solution for the particle motion perpendicular to % However,
using the Hamiltonian formulation, since y is an ignorable coordinate
the y component of the canonical momentum, Py = m p, is a constant
of motion. It is straightforward to show that Egs. (2) and (3) may

therefore be written, in normalized form:

X (1+B) - (108 )X, (10)
dT?
dy . 1 - (1+b)x . (11)



Equation (10), which describes the x component of the particle motion,

may be recognized as an inhomogeneous Hill equation.

Equations (10) and (11) must be supplemented by an appropriate

set of initial conditions. For definiteness, we consider

X(0)y = 1 ;3 dX(0) . 5 .4 Y(o) = o . (12)

o

This initial value problem may be solved by standard Runge-Kutta
numerical integration techniques, to yield the exact nonlinear motion

of the particle under the influence of the electromagnetic field.

ITI. RESULTS

A. Particle motion

The initial value problem defined by Egs. (10) - (12) has been
numerically solved for a number of different values of v and b. The
solution for a particular example (v = 0.9, b = 0.1) 1is shown in
Fig. 1. Under the influence of the fields, the particle exhibits a
fast orbital motion that is amplitude modulated at an intermediate
frequency vp. The slow time scale (ponderomotive) drift of the

particle in the (negative) y direction is also apparent.

The effect of changing the frequency v of the electromagnetic



field is demonstrated in Fig. 2. For the six cases shown, the
amplitude of the field is b = 0.1. It may be observed that the
particle motion is strongly modified by a change of frequency. For
certain of the values shown (v = 0.5, 1.0, 2.0), the motion is
unstable; the amplitude of the fast component increasing without
bound. Comparing the cases v = 0.9 and 1.1, it may be seen that the
direction of the ponderomotive drift changes sign as the frequency
crosses the cyclotron frequency (v = 1). For both of these cases the
amplitudes of the fast motion and ponderomotive drift are larger than
for the case v = 0.2 for which the frequency is further from the

cyclotron frequency.

Figure 3 illustrates the effect on the particle motion of a
change in the field amplitude while keeping the frequency constant
(v = 0.9). As the field amplitude is increased, the amplitude of both
the fast motion and the ponderomotive drift increases. For b = 0.6 y
the motion of the particle is no longer stable. Also evident from
Fig. 3 is that as b is increased from 0.1 to 0.5, the frequency vp

at which the fast motion is modulated decreases.

B. Comparison with oscillation center theory

Except for particular values of field frequency v, the numerical-
ly calculated particle motion agrees qualitatively with that predicted
by oscillation center theory provided that the field amplitude b is
sufficiently small. A more quantitative comparison can be obtained

from Figs. 4 - 6.



In Fig. 4 is plotted, for three values of v, the modulation fre—
quency vp, normalized to the values (1 - v)/2 determined from
oscillation center theory, as a function of b. For b <« 1,
Vm = (1 - v)/2 as is expected. However, as b is increased, a sharp
drop in vy is observed, being most pronounced for v close to 1. The
decrease of vy to zero results from approaching the instability
boundary: further increase in the field amplitude increases the growth

rate of the unstable motion.

The effect of the field amplitude on the magnitude of the
ponderomotive drift velocity is shown in Fig. 5. In this figure are
plotted values of the ponderomotive drift velocity dYg/dT, for three
values of v, obtained from both numerical integration and oscillation
center theory, Eq. (8). Again it may be seen that for b € 1 the two
calculations yield similar results. However, as b is increased so does
the discrepancy between the results. When the particle motion is

unstable, the concept of a ponderomotive Arift becomes meaningless.

Figure 6 shows a plot, for b = 0.2, of the frequency dependence
of the value of the ponderomotive drift velocity obtained from numeri-
cal integration, normalized to that calculated from oscillation center
theory. The points plotted in this figure are for values of v and b
for which the fast motion of the particle is stable. It is found that

unstable orbits occur in the vicinity of
y = 2 for integer m. (13)
m

The width of these regions of instability increases with the value of

b, and is largest for small values of m.
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From Fig. 6 it may also be seen that the values of the pondero—~
motive drift velocity obtained by the two methods diverge if
v o= 1 for integer n. (14)
N
Clearly for these values of frequency the application of oscilla-
tion center theory is not valid. Note that the ponderomotive drift
velocity arising from stable orbits near the frequencies given by

Eq. (13), with m odd, are well approximated by oscillation center

theory.

The origin of the regions of instability can be appreciated by

noticing that for b sufficiently small, Eq. (10) becomes an inhomo-

geneous form of the Mathieu equation:!?

2 2 + (o.-ZicoszZ)X = 0 (15)

where 2 = vT a =
2

< |
~

= -4b
and (i, '\—)—z

The well known stability diagram for the Mathieu equation reveals
unstable regions which, for small q, are in the vicinity of a = m? for

integer m. This condition can be seen to be equivalent to Eq. (13).

In oscillation center theory, the equation of motion is solved to

second order in b to obtain the ponderomotive drift. However, if b is
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non-negligible, higher order terms may yield a significant contribu-
tion. These higher order contributions to the ponderomotive drift are
particularly important if the frequency of the applied electromagnetic
field is a sub-harmonic of the cyclotron frequency. The nonlinearity
of the equation of motion leads, in this case, to oscillatory motion
at the cyclotron frequency, resulting in a resonant ponderomotive con-
tribution. Thus if Eq. (14) is approximately satisfied, oscillation
center theory will yield an inaccurate calculation of the full non-

linear ponderomotive force.

IV. CONCLUSIONS

By analyzing in detail a particular example, the motion of a
single particle under the influence of an electromagnetic field has
been investigated. It has been shown that the particle motion is
strongly modified by a change in the electromagnetic field amplitude
(if sufficiently large) or the wave frequency (if in the vicinity of

the cyclotron frequency).

Comparison has been made of the ponderomotive drift obtained from
oscillation center theory and from numerical integration of the equa-
tion of motion. Within the regime of validity of such a perturbation
approach, the oscillation center theory yields a good approximation to
the exact solution. However, it has been shown that even for a modest
field amplitude, the particle motion is unstable for frequencies in
the vicinity of twice the cyclotron frequency and its sub-harmonics.

In addition, the ponderomotive drift velocity calculated from numeri-
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cal integration diverges not only if the applied frequency equals the
cyclotron frequency, but also at the sub-harmonics of the cyclotron
frequency. In the vicinity of these frequencies, the application of

oscillation center theory is therefore clearly inappropriate.

The results of the present study reinforce the assertion of
Ref. 8 that the single particle and fluid (collective) ponderomotive
forces are fundamentally different. It has been shown that oscillation
center theory is complete (within the limits of its application) in
describing single particle behavior under the influence of the per-
pendicular ponderomotive force. It is not possible to obtain the fluid
result®'’ from single particle theory (whether oscillation center or

exact solution).
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Figure Captions:

FIG. 1:

FIG. 2:

FIG. 3:

FIG. 4:

FIG. 5:

FIG. 6:

0.9 and b = 0.1.

Particle motion for v

Particle motion for b = 0.1 and for the six indicated values
of v. The three examples on the left represent stable
orbits, while the three on the right are unstable., The total

time is the same (T = 290) for all examples.

Particle motion for v = 0.9 and for the four indicated
values of b. The total time is the same (T = 290) for all

examples.

Normalized modulation frequency as a function of b, for

three values of v: o ,v = 0.85; x v = 0.9; + ,v = 0,95,

Ponderomotive drift velocity as a function of b, for three
values of v: o,v = 0.7; x,v = 0.8 + ,v = 0.9. The solid
lines are the corresponding curves obtained from oscillation

center theory, Eg. (8).

Normalized ponderomotive drift velocity as a function of v
for b = 0.2. The vertical dashed lines indicate values of v
satisfying Eq. (14), while the vertical solid lines indicate

values of v satisfying Eq. (13) for odd m.
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