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ABSTRACT

The influence of the resonator geometry on the design of quasi-optical
gyrotrons is presented. Basic equations and relevant properties of
quasi-optical resonators are reviewed. Since confocal resonators
radiate an equal amount of power from each mirror, non-confocal reso—
nators have to be used in order to maximize the output-coupling on one
side. Technical constraints on ohmic power losses and mirror diameter
are discussed. Using numerical solutions of the quasi-optical
resonator equations, the influence of the actual electromagnetic field

profile on the electronic efficiency is calculated for several cases.



1. Introduction

The quasi-optical resonator [ 1] holds interesting potential advantages
for high frequency, high power gyrotrons. Efficiencies up to 40% have
been calculated [2]. The peak thermal loading on the mirrors at opti-
mum values of the electric fields is below 2 kW/cm?, a value which is
within the present technical cooling capabilities. In a high power,
long pulse or CW quasi-optical gyrotron, the resonator will operate at
high longitudinal mode numbers: the frequency spacing between neigh-
bouring modes is very small, thus ensuring the tunability of the de-
vice. The problem of longitudinal mode competition has been addressed
by Bondeson et al. [2] who have shown that single mode operation can

be achieved.

Within the framework of the gyrotron development programme for the
heating of fusion plasma, the Centre de Recherches en Physique des
Plasmas, in collaboration with the Laboratoire d'Electromagnétisme et
d'Acoustique of the Ecole Polytechnique Fédérale de Lausanne and an
industrial firm, BBC, Société Anonyme Brown, Boveri & Cie, Baden, is
developing a quasi-optical gyrotron and gyroklystron operating at
120 Giz and a power level of 200 kW. The pulse length will be long
enough so that the time scale required to reach the single mode, typi-
cally around 100 ps to 1 ms [2], is achieved. The design of the gyro-
tron and its ancilliary systems will allow a pulse length up to
100 ms.

As for all gyrotrons, the optimization of the efficiency of the inter-

action between the wave and the electron beam is of crucial impor-

tance. In the previous calculations [1,2], the electric field profile



is assumed to be gaussian, which corresponds to a resonator with
mirrors of very large radii. However, in pratice, the mirrors will
have finite size and consequently the field distribution may depart
from a gaussian profile. Assuming a plane wave in the interaction
region may no longer be true. Another important problem is the output
coupling of the electromagnetic wave energy. Coupling through holes or
annular apertures [3] in the mirror of a non-confocal resonator has
been implemented. Diffraction losses due to finite size mirrors can
also be used provided some focusing elements are included. In both
cases, the field profiles at the mirrors are modified and the power
transmission coefficient as well as the field profile at the beam

waist are affected by the output coupling structure.

The prerequisite for the design of the quasi-optical resonator is a
thorough understanding of its properties (e.g. the one and two-way
power transmission coefficient, the complex field profile in the reso-
nator). This knowledge and the engineering considerations will lead to
the selection of the parameters of the resonator and then to the com—
putation of the efficiency ne of the energy transfer between the
wave and the electron beam. We wish to report here on these various

aspects of the problems which are encountered by any designer.

The paper is organized as follows. The basic equations that are used
to compute the electronic efficiency ne of a quasi-optical gyrotron
are presented in a self-consistent way. The electromagnetic field
which governs the electron orbits is computed from the current density
jx due to the electron motion [2] and the formalism also takes into

account the reflecting boundary conditions due to the presence of the



quasi-optical resonators (Section 3). Numerical analyses of their
relevant properties and design criteria will also be discussed.
Finally, in section 4, we shall illustrate the effect of a real mirror

geometry on the electronic efficiency.

2. Basic Equations for the Quasi-Optical Gyrotron

The quasi-optical gyrotron configuration is sketched in Fig. 1. By
assuming a linear polarization for the electric field in the x-direc-
tion Ex, the electron guiding-centre motion can be described by the

following complex first order differential equation:

dz Yfr
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for the complex perpendicular momentum,

6
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where y = N (yB_L)Z + (yﬁn)ziis the relativistic factor, w, k are
the wave frequency and wave number of the R.F. field, @ is the non-re-
lativistic electron cyclotron frequency, and © is the particle momen-
tum space angle. The equation (1) is straightforwardly derived from
orbit equations given in Ref. [1] in the case of the uniform external
magnetic field (Q/w = const.). The parallel particle momentum yBy is
thus a constant of motion. By neglecting space charge effects in the
electron beam (?-_E? = 0), the electric field Ey can be calculated

fram Maxwell's equations:



(9 ¢ k™) Ex = (wpmoj, (3)

where the current density jy is calculated by solving Eq. (1) for an

ensemble of electrons. For a "pencil" beam, jx is given by

Bx
Jx = =1, < —5-/7 YT 5(3) (4)

where Ip is the beam current intensity and the bracket <...> denotes

the ensemble average.

The efficiency of converting the electron beam power to R.F. power is

equal to

<Yout = ¥in >
< im=-4>

(5)

1
®
{

where yin and yout are the relativistic factors for the electrons
flowing into and out of the open resonator. In principle, by solving
Bg. (1) for a collection of particles coupled to the wave equation (3)
with appropriate boundary conditions, we readily obtain the efficiency
by performing an ensemble average over the particles. However, solving
directly the partial differential equation (3), with open boundary
conditions (since the resonator is open), is not an obvious task. The
problem becomes more tractable by using an approximated Green-function

formulation [4] which leads to a formal solution of By. (3):
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3. Properties of the Open Resonator

3.1 Outline of theory

The modes in an empty resonator are determined by solving the two
homogeneous integral equations obtained by expressing Bg. (6) without
the source term (jx = 0) for the two mirrors which represent the
resonator boundary surface. When the transverse cross-section of the
radiation beam with respect to the resonator axis and the distance
between the mirrors are much longer than the wavelength, the homoge-
neous equations reduce to the Huygens-Fresnel equations which can be

written in the form:

_ikd . .
(w6 - ie f Kiv,m) wy(h) dr (7a)
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The geometrical quantities are defined in Fig. 2. The 2-component
-y
vector rj denotes the ocoordinates of mirror j, normalized to

ro = /d/k, 4 is the mirror separation, Ry the radius of curvature



of mirror j, and Sy the surface of mirror j. In our notation, the
wave number is a complex quantity k = k. + iky; where ky = 2n/A,

A is the wavelength and ki accounts for the diffraction loss.

Since the pioneering work of Fox and Li [5], the open resonator equa-
tions (7) have been extensively studied over the past 25 years.
Various mirror geometries have been proposed and it is not our purpose
to give a full account of the theory here. Comprehensive reviews and

extended reference lists can be found in [6], [7] and [8].

For a circular mirror of radius ajms the Fresnel number is defined

as

N, = —— ,(§= 1) (8a)

The resonator Fresnel number is the geometrical mean of N and N,:

NVV\ T v Nq NL = a"‘w‘ O‘Z.VV\ (8b)

Ad
The kernel in BEgs. (7) does not depend explicitely on kd. For a given
resonator geometry, the eigenmodes are obtained by reducing the
Egs. (7) to an eigenvalue problem where the eigenvalues

2 . s13.2 . . , . :
Y® = (-ielkd)® are associated with the eigenfunctions (u; ,up). We

impose the normalization condition



The eigenfunctions depend on two indices, 1,p (mode TEM1p) . The
field profile u(r) inside the resonator (for instance at the electron
beam) can be calculated by using again the Huygens principle. For a

given mode the electric field of the standing wave can be written as
- -
Ee(¥) = Esutd) = Eofuat) « wo(?y] (10)

where u and u denote the waves coming from mirror 1 and 2

respectively. From the argument of y? we get the resonant wavelengths

qj;& = Z_krd =z gra (Ya) + 7'1'(2‘11‘1) (11)
where q is the longitudinal mode number. The full notation for a mode

is thus TEM] pq.-

In the remaining part of this section we assume that only one mode is
excited in the cavity so that we can easily relate Ey andlyl2 to

measurable quantities.

We define the transmission through mirror j by

gl‘*a‘i’“ d*r,
T, Sa (3=02) (12)
J ° 1 - g 2 ) W=
|yl A%
’R'L




The conservation of energy requires that
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Therefore,

Ta= 4=

T, - 1- l\“l/l e

where T = [ lwardn | / | L\uu‘d"m
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Ty and T, are called one-way losses. The two-way loss | is the

fractional loss during a full round trip of the wave.

T = T4 + (4-T4)T7_ = 1~ leq (15)

When losses are small, T becomes equal to the total transmission

The power radiated around mirror j is given by

PJ = S 4 ‘RQ(EX%*)IdZQ ’(J:»"z) (16)

2 po

R*-S;

where B = E/c.
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With our normalization, the total power radiated outside the resonator

can readily be expressed as

2
-2 L A oA 2 T
- = o Eo —_— - A = Eo (17)
PePeR = o IE (m‘ ) 7 SFTerTE

(Zo = poC = 377 Q).

For small losses, ‘y!z is close to 1 and P tends to TroziEOiz/(4ZO).

The losses due to ohmic dissipation in the mirrors are given by

L‘ S J ———_2 lE(r) zdz?“ (18)
4
where ¢ is the conductivity (5.80 « 107 @-lm~! for copper) and & is

the skin depth. (6§ = (wpoa/Z)‘l/z, w/2n is the frequency). With

our normalization, the total ohmic losses are

2
L =L.\+L. ':__'_l_ro_____. E = (19)
YR 2;‘6"’8 ‘ol
As the field spills around the mirrors, it is generally impossible to
recuperate all the power diffracted. We define the power collected

Poyr and the output-coupling efficiency e by

P = | o R (B xR¥)| d'y (20)
S,
e _ P<>0'1" - ?oo‘u’

Pat fp:_ P
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where Sh is the surface through which the energy is coupled out of

the resonators.

In steady-state operation of the gyrotron, the power radiated or dis-—

sipated must balance the power brought in by the electron beam.
De LV = P+L (21)

where I is the intensity of the electron beam, V the accelerating vol-
tage and mne the efficiency of the power transfer from the beam to

the R.F. field.

From Bgs. (17) and (19) it is seen that the ratio of the ohmic losses

to the power radiated are independant of ry and E,.

L,o_u_ mCUenn) 50 7 W4 (00)
P i ZOC'S T i ZO‘AO- _r

(22)

If the two-way loss T is small (|y |2 close to 1), the ohmic losses are
proportional to the ratio Poyp/T. Oonsequently, a quasi-optical
gyrotron has the same ohmic losses if Pgoyp = 200 kW and T = 2%, or

Poyr = 1 MW and T = 108.

An important experimental quantity is the quality factor Q of the

resonator which is defined usually by
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Energy stored inside the resonator

total power loss (23)

Q=w

The energy stored in the open resonator can be written as the product

of the circulating power multiplied by the transit time d/c.

W= % [ S &oiQe’(ExE*)dlrﬂ +f ﬁ;lRe(E"E*)IdI&} -

S4 S,
d o 2 €o v 2 2 (25)
W = Z 2 2. \EO\ = 3 \Eol ‘o

Then, using (17) and (19)

~4 P+L el T 4 ]
_ - —_ (26)
@ wwW T dw [ X iE(Aa+viviy) Y ZeoS

In the limit of small T and no ohmic loss, we recover the well-known

formula [2]
Q _ 2 AUD G 7T d’ (27)
= z  —

One must not forget that Bgs. (12) through (27) are no longer valid if

more than one mode is present in the resonator.

We now specialize some of the above formulae to the TEMy, mode of a
resonator with circular mirrors (without a hole). When the mirror

radius is large compared to the spot size, the TEMyo loss is small
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and the field is nearly gaussian with azimuthal symmetry.

WS"E):“;"‘% ”’(P[‘(&-—rj)ll y La=1,2)

(28)

(29)

where ro = /d/k, wj is the spot size on mirror j, w, the beam

waist and the radial coordinate r is normalized to rg. From [6] we

derive

Woz - 7_Y‘°" \/3432_(4- 34‘3:?
(44 v %2 -2 gugs |

2 . [ 9. A )
Moz J‘ﬁ:m
lfs« 4

WZ. = 2V 7‘: 4_%431

The electric field on axis at the beam waist is

Yo

2
Ec: Ex(O\ = Eo r7-r— Wo

(30)

(31a)

(31b)

(32)

In terms of E. we have for the power diffracted (17), the ohmic

losses (19) and the energy stored in the resonator (25):
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I 2 2 T (33)
P- Wo \Ec
8 2o \Ec| Wiz (4+ )
{ (34)
L = ———2—————— Wol \Ec‘l
238
(35)

W = %‘ € [Ec (P w2 d

3.2 Numerical calculations

We have used different methods to solve numerically the resonator
equations (7). In the iterative method [5] the field distributions on
the mirrors are alternatively computed until convergence is achieved.
The mode with the lowest diffraction loss, usually TEM,,, can easily
be calculated. For axisymmetric resonators the Egs. (7) can be reduced
after integration over the azimuthal angle, to an eigenvalue problem
by either expanding the kernel [9] or discretizing the integrals. The
TEMoo and higher order modes are obtained simultaneously by matrix
diagonalization. The kernel expansion method is limited to Fresnel
numbers less than two due to round-off problems. This limitation does
not exist in the integral discretization method, where the Gauss-

Legendre integration rule turns out to be the fastest [10].

In what follows, we restrict ourselves to circular mirrors of spheri-

cal curvature.



- 15 =

Confocal resonator

The mirror radii of curvature are equal to the mirror separation
Rj=Ry=d and thus g;=g,=0. It can be shown that the diffraction iosses
depend solely on the resonator Fresnel number Ny = ajpcazp/Ad.
In References [9] and [11], the influence of a circular hole was
studied. The output-coupling efficiency e depends on the hole radius
3o and remains always less than 50% (Fig. 3). With the selected
resonator dimensions, the optimum efficiency is obtained for a hole of
1.5 mm radius. For larger holes, the Tl'::M10 mode becomes dominant,
but its coupling efficiency is very low since the TEM,; profile is

proportional to r at the mirror centre.

In practical situations, the thickness of the mirrors has to be taken
into account. The output hole may behave as a cut-off wave guide which
will modify the calculated quality factor Q and coupling efficiency.
In addition, since the properties of the confocal resonator do not
depend on the individual mirror radii but only on their product, one
cannot increase the coupling efficiency beyond 50% by increasing the
size of one mirror. Note that a coupling efficiency less than 50% is
obtained because the diffraction losses are equal at both mirrors,
which has been confirmed by numerical calculations with mirrors of
different radii. This effect can also be proved analytically [12]. In
conclusion, a quasi-optical gyrotron with a confocal resonator will
always emit radiation equally from both mirrors. This may alleviate
the power handling capability of the output windows, but also implies

other constraints on the transmission line. For a typical output
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transmission T of about 1% - 2%, coupling through a central circular
hole does not seem adequate, not only because the coupling efficiency
is below 50% but also because of the unrealistically large microwave
power flowing through it. Moreover, the presence of a central hole
perturbs the TEMy, mode more than the TEMyg: transverse mode

selection by diffraction losses [ 1] therefore no longer applies.

Non—-confocal resonators

We have discretized the integrals in Egs. (7) to compute diffraction
losses of the TEMp, mode at both mirrors for a non-confocal axisym-—
metric resonator. It can be shown [13] that such a resonator (without

coupling holes) depends only on three parameters: Npy, Gy, Gy where

G - a'1“4 (,1 i ) a'\w\
A 1 alw\ = - RA a’lM

o g fam (4o ) S (36)
2 3"' (v S i R/ GRaw

With no loss of generality, we can assume that mirror radii are equal:
ajm = agp. The partial transmission T; is plotted in Fig. 4 as a
function of the parameter G,, for several values of G;, while the
total transmission is fixed at 2%. It is seen that for low values of
Gy, Tp can become close to 2%. Therefore, it is possible to make a

resonator with asymmetric diffraction losses.
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For non—-confocal resonators, calculations have also shown that coupl¥
ing the power out through a central hole is not the best method.
Although a little higher than for confocal resonators, the maximum
output coupling efficiency always remains about 50%. If the hole size
is increased, the TEMy, profile tends to decrease at the centre and
to spread towards the mirror edge all the faster when the mirror
radius is larger. As an alternative, output coupling through annular
slots has been implemented [3]. The TEMy, mode is then only slightly
perturbated and diffraction around the mirrors can be kept small. If
we consider, for example, a 50cm long resonator with A = 2.5 mm, with
mirror radii ajm = aym = 6cm (Np = 3.92), and G = G, = 0.5. An
annular slot 3.4 to 4.7cm in one mirror results in a coupling effi-

ciency of 71.5% for a total transmission T = 1.82%.

3.3 Constraints on resonator dimensions

Iet us consider a non-confocal resonator without output coupling
holes. As mentioned in section 3.2, its properties depend only on
three parameters: Ny, Gy, G;. We can restrict the possible range of

these parameters by the following considerations:

(1) The spot sizes on the mirrors must be less than a certain
value Wpax. This ocondition arises naturally from prac-
tical considerations concerning the mirror sizes since the
resonator has to fit into a vacuum vessel of limited

dimensions.

(ii) The thermal load per unit area due to ohmic losses cannot

exceed a certain value Pyax (watt/cm?).
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For small diffraction losses (T = 2%), we can assume that the field
profile of the TEM,, mode is gaussian within a good approximation
(Egs. (28) and (29)). In order to translate analytically the above
conditions, we take the expression (31) for the spot size wj. As
discussed in [13], this expression is a very good approximation of the
true spot size in the case of a resonator with mirrors of equal

radius, as long as the diffraction losses are small.

One can obtain an approximate expression for w; for an arbitrary
resonator by considering the equivalent resonator which has mirrors of

equal radius.

resonator 1 resonator 2
radii a a a'
Im" “2q m
dir 92 qt, g3
spot sizes:  w, w, ' wi, w

From the equivalence between the two resonators, we obtain

3 ' 2
. ) alm a2m ) (am)
m da da
- alm - '
G = — 9 =g (37)
a2m
az
m
G = — g2 = g
d» 2
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The diffraction losses, which depend essentially on the ratio of w/a,

are identical for both resonators. Therefore,

WA = \Wa and W% - W'L
Oava (- VY ALrwa alw
and hence W, « o 1 [ Fam (38)
o' - Rawm 4
By using (30), (37) and (38), we obtain
2 Rawm L\/_L ————-—-1 = 2r® 9 1 (39)
Wy = Oe ve 2% G« 1-GaG. , ° 314 4 -949.

This expression is identical to (31) and in this analytical approxima-

tion the spot size of the non-confocal resonator does not depend on

the mirror radii. However, it must be remembered that Eg. (39) is only

valid as long as the spot size is somewhat smaller than the mirror

radii, which has to be the case if the diffraction loss is small. For

the confocal case, the equivalence relations and the assumption (38)

lead to

(40)

where it is apparent that the spot size depends explicitly on the

mirror radii.

For a gaussian beam, the maximal thermal load per unit area (at the

centre of the mirror) is related to the total dissipation Ly by
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L, -

7T
$ T2

W: P\M&x (47)

The above conditions, therefore, can be expressed for mirror 1 by

1
20t

94 (42)
_—cr (L g0 - TC o
Wz'w.u N \/37’ (4 8‘\3L) NS ¢

with a similar expression for mirror 2 obtained by exchanging g; and
go. To 1illustrate the allowed domain in the (g,,9,) plane, the
boundary curves corresponding to (42) are plotted in Fig. 5, using

reasonable values for Wpax and Ppgx. The resonator stability

conditions

©$ 9.9, (41-949,) ¢ 1 (43)

must also be satisfied otherwise the diffraction losses would be too
high to obtain an operating point for the gyrotron. As is apparent
from (42) and (43), we obtain another possible domain for (g;,9,) by

reversing the sign of both g; and g,.
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Another criterion which is of importance for the design of a resonator
is to have a plane electromagnetic wave in the interaction region. In

other words, the beam waist is at a prescribed distance d; from

mirror 1.

S B(4-394) (44)
d 34 *3; - 2843;

Curves corresponding to various ratios d;/d are plotted in Fig. 6 as
well as curves corresponding to a constant spot size. It is seen that
as the beam waist gets closer to one mirror, the spot size on this

mirror decreases, hence the thermal load increases.

Finally, it is desirable to minimize the mirror radii for a given
thermal load. Fig. 7 is a plot of the resonator Fresnel number as a
function of g in the case of equal curvatures (|91| = |gz| = g), the

total transmission being fixed to 2%. One sees that the Fresnel number

increases sharply for values of g above 0.7.
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For a symmetrical resonator the beam waist (30) is given by

2 by 4*‘3 (45)
A-3

By choosing negative values of g one reduces the beam waist and con-
sequently the length of the interaction region. Values of g in the

range -0.5 to -0.8 seem to be a good compromise.

4. Beam-resonator coupling

The usual approach [1], [2] and [14] to study the non-linear steady-
state operation of the quasi-optical gyrotron is to integrate the
electron orbits (Bg. 1) with an assumed profile for the R.F. field.
Single mode approximation is imposed by taking into account only the
lowest order empty resonator mode, i.e. a gaussian TEMyo mode. The
electronic efficiency at the operating point is then determined by the
balance between the resonator power losses and the power transferred

from the electron beam to the electromagnetic field.

In order to investigate the influence of the perturbations induced by
the finite size of the mirrors and the beam, we have used a self-con-
sistent method: equation (6) is solved for the electric field Ex
while the current density jx is computed iteratively from the elec-
tron orbits. We have written a numerical code based on this idea. The
main steps are as follows:
- First the resonator equations (7) are solved by the iterative
method described previously (see section 3.2). Only the axisym—

metric mode with lowest losses is considered.
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- The obtained profile is normalized and scaled by an initial value
of the electric field at a particular point in the resonator (for

instance at the centre of mirror 1).

- The iterative procedure consists of:

i) calculating the electric field at the position of the
beam.
ii) integrating the equation of motion (1) for an ensemble

(typically 60) of electrons with initial momentum angles
distributed uniformly in [0,2r].

iii) computing the current density by using Eg. (4) which
corresponds to a pencil beam and recalculating the field

distributions on the mirrors according to Bg. (6).

The iterative procedure is repeated until the electronic efficiency
converges to a stationary value. The field frequency is adjusted
slightly every 4 iterations so that the phase shift vanishes after a
round trip of the wave (resonance condition). Typically 200 to 400
iterations are required to achieve convergence. The interaction region
extends from -3r, to +3rg and about 100 integration steps are

needed to obtain a good accuracy.

Electronic efficiencies calculated with this method are shown in
Table 1 for several resonator geometries and various values of Q/w.
For comparison, we have included the results obtained by the simpler
method which assumes a gaussian plane wave in the interaction region.
Self-consistent calculations show that ne is indeed quite sensitive

to the resonator shape. This can easily be understood since
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the radiation beam waist w, depends strongly on the mirror curvature
and the mirror diameter. Highest efficiencies ne correspond to
values of w, smaller than ry. A precise determination of the opti-
mum beam waist would require plotting ne as a function of Q/w for

various values of w, which would be very expensive in computer time.

The mode pattern and ne as a function of z are shown in Figs. 8, 9
and 10. Since the resonators considered here have quality factors of
the order of 120,000, no differences between empty resonator and

loaded resocnator field profiles are observable.

The self-consistent approach becomes quite computer-time consuming if
effects such as the electron velocity spread or a realistic profile
for the electron beam (annular beam) are taken into account, since a
larger number of trajectories are necessary to reach a stationnary so-
lution. For high-Q resonators, since the beam does not perturb signi-
ficantly the empty resonator mode, the R.F. field needs only to be
scaled at each iteration. Moreover, by using more elaborate methods to
solve Eq. (21), the operation point could be found in a smaller number

of iterations.



- 25 -

5. Conclusion

The knowledge of the basic properties of open resonators is a prere-
quisite for the design of a quasi-optical gyrotron. In connection with
our development programme of a 120 GHz, 200 kW quasi-optical gyrotron,
we have implemented various numerical codes to solve the resonator
equations and to compute important quantities, such as power transmis-
sion and field profiles for given geometrical parameters. Design cri-
teria have been discussed. It appears that ohmic losses in the mirrors
impose conditions on the allowable domain of parameters (g;,d,). A
self-consistent calculation of the electronic efficiency has also been
performed, demonstrating the importance of the resonator geometry.
Although not shown in this work, the coupling structure (holes, annu-—
lar slots), which can perturb significantly the R.F. field profile, is

also expected to influence the electronic efficiency.
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Figure captions:

Fig. 1 :

Fig. 2 :

Fig. 3 :

Fig. 4 :

Fig. 5 :

Fig. 6 :

Schematic diagram of a quasi-optical gyrotron.

Open resonator with circular mirrors of spherical curva-
ture. The sign of the curvature radius is positive if the
centre of curvature lies towards the inside of the resona-

tor.

Transmission T (two-way loss) in percent for the two least
lossy modes TEMyo and TEMjg and coupling efficiency of
the TEMpo as a function of the hole radius. Resonator
parameters are d = 50cm, A = 2.5mm, a = a,y = 35mm

(Np = 0.98).

Parameters (Ny, G, G;) of a T = 2% transmission resona-
tor. T} and T, are partial transmissions around mirror 1

and 2.
Domain in the (g;, g,) plane satisfying condition (42) for
the following case: 4 = S0cm, A = 2.5mm, Wpax = 3.0cm,

Phax = 1.5 KW/cm? , for copper mirror L = 9.6 kW.

confocal

Solid line: curves of constant spot size, wgo
spot size = /m . The peak thermal load of a confocal
resonator with L = 9.6 kW, d = 50 cm, A = 2.5 mm is
approx. 1.5 kW/anz.

Dashed line: curves of constant ratio 4;/d.
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Figure captions (cont'd)

E‘ig. 7 Fresnel number of a symmetrical resonator versus g =|gl‘

= lgzi for a fixed transmission of T = 2%.

Fig. 8 : Thick line: electronic efficiency as a function of z/rg
£19. © ¢

Thin lines: amplitude and phase of the electric field at
the centre of the cavity, normalized to Ec = 14.3 MV/m.
The resonator is confocal with Nm = 0.7244 (entry 2 of
Table 1 with Q/w = 1.088). The beam waist is 0.9 rg

instead of ry, due to the finite size of the mirrors.

Fig. 9 : Same as Fig. 8 but for a non-confocal resonator with
g = 0.6 (entry 7 of Table 1 with Q/w = 1.108).

Ec = 4.38 MV/m.

Fig. 10: Same as Fig. 8 but for a non-confocal resonator with
g = -0.6 (entry 8 of Table 1 with /w 0 1.088).

Ec = 17.0 MV/m.
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Quasi optical resonator

Electron beam

SCHEMATIC OF A QUASI-OPTICAL
RESONATOR

F16. 1



S

Open resonator with spherical mirrors

FIG., 2
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