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ABSTRACT

The ponderomotive force exerted by a standing electromagnetic wave in
an infinite, magnetized plasma containing two ion Species is
examined. A perturbation analysis is developed to solve the nonlinear
wave equation subject to the constraint that the total number of
particles of each species is conserved. Detailed calculations are
presented for an ion cyclotron wave, for which large modifications of
the ion densities result from the influence of the ponderomotive
force. To determine the range of validity of the perturbation
analysis, the results are compared with those obtained by numerical

integration of the nonlinear wave equation.



1. INTRODUCTION

It is well known that gradients of an electromagnetic wave can
give rise to a nonlinear, time-independent (ponderomotive) force in a
plasma. This force causes modification of both the wave and the plasma
properties; for example, particles may be attracted, or repelled, from
regions of high electric field strength. Several practical applica-
tions of the ponderomotive force have been proposed. In particular,
for a multi-ion species plasma, preferential radio-frequency plugging
as a means of impurity control (HIDEKUMA et al., 1974; HIROE et al.,
1975), and isotope separation (WEIBEL, 1980) have been suggested.
These applications utilize the dependence of the ponderomotive force,
exerted by a wave with frequency in the vicinity of the ion cyclotron
frequency, on the ion charge-to-mass ratio.

It has been previously shown (FESTEAU-BARRIOZ and WEIBEL ¢ 1980)
that the ponderomotive force of an ion cyclotron wave in a two ion
species plasma can cause substantial spatial modification of the ion
densities for an appropriate choice of wave frequency and electric
field strength. FESTEAU-BARRIOZ and WEIBEL integrated numerically the
nonlinear wave equation to obtain the self-consistent electric field
and particle densities for a standing wave (with k = k” 2) in an
infinite, magnetized (B = Bog) plasma. As a boundary condition, a
large reservoir of plasma (occupying the half-space, z < 0) with each
species having its ummodified concentration was assumed. The wave
equation was solved in the half-space, z » 0. An injection, or
elimination, of particles of each species across the boundary z = 0
was required to obtain their steady state solutions. The problem that
was solved therefore consists of the convolution of two different

particle motions: the movement of particles within the wave between



regions of high and low electric field strength, and the particle
motion across the boundary z = 0 between the negative half-space (of
zero electric field) and the positive half-space (of positive average
electric field strength). The total number of particles of each
species was allowed to vary, indeed, the negative half-space retained
the unmodified concentrations despite a change in the concentrations
in the positive half-space.

In the present paper we consider two simplifications to this
problem. Firstly, we solve the nonlinear wave equation subject to the
physically more reasonable boundary condition that the total number of
particles of each species is conserved. This choice ensures that if
particles of a particular species accumulate at the maximum (minimum)
of the electric field strength, then there is a corresponding
depletion of particles from the region of minimum (maximum) electric
field strength. Secondly, we consider a perturbation approach which
yields analytical solutions of the nonlinear wave equation, and
therefore a better physical understanding of the electric field and
density modification than can be obtained by numerical integration.

We shall consider in this paper a standing, or cut-off, electro-
magnetic wave in an infinite, magnetized plasma. The wavefield is
assumed to have amplitude gradients only in the direction of the
magnetic field. We shall restrict the analysis to a purely electro-
magnetic wave (no component of oscillating electric field or particle
velocity parallel to the steady magnetic field): the electrostatic
(acoustic) wave will not be treated. However, both the left and the
right circularly polarized waves will be considered, with no restric-
tion on the wave frequency other than wavelength be sufficiently large



2. NONLINEAR EQUATIONS
Consider an oscillatory wavefield which has amplitude gradients
along the direction of a constant magnetic field, By = By 2, and an

electric field of the form
Ew(z,i-) = E(Z) (Cos w"',tsinw'f‘ , O) . (1)

Here, the upper (lower) sign corresponds to a right (left) circularly

polarized wave. Using the fluid equation of motion for species o,

ha_mq_(g_%ﬂ' + _L_Ar-vgq_) = nu_?r(f_:j+g°_x§) - VP,. , (2)

we obtain, from the perpendicular component, the fluid velocity

(3)

b

u = ?rE(E) (sinw"',;cosw'f‘,o)
m,(wtna_)

where Q; = (yBg/my; is the cyclotron frequency for species o.

From equation (1), Maxwell's equations yield the magnetic wavefield

d E (2) (:‘.‘cosw"‘ sinwt | 0). (4)

|
w d=z
The parallel component of eguation (2) describes the force balance

along the steady magnetic field:

Ne ?,a- ( EII + ‘.:(q—x _Bw) - ?_Er. = o . (5)



Since, for a circularly polarized wave, the fluid velocity and
magnetic wavefield are always mutually perpendicular, the vector
product gs(us x B,) is independent of time. This constant,
nonlinear (ponderomotive) force may be written, using equations (3)

and (4), as

?v_( u.x B,) = - 3 %, z (6)
Q2
where the ponderomotive potential ®&; is given by
2 3
@ - ?a' E () . (7)
[
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In steady state, the ponderomotive force exerted on a particular
species is balanced by axial pressure gradients and the time—

independent parallel electrostatic field, E which arises from the

[/

spatial separation of the different species. Writing

i
1\ 9
C

and Plr = ha-T

l

Q
™

we obtain from equation (5), assuming constant Ty s

”ri(‘lru+§¢) + T s = o | (8)

We therefore obtain for each species a Boltzmann distribution of

density,

H

n¢(z)

n. ex;a[- M’] . (9)



The particle densities and the electric field strength of the wave are
related via the wave equation. Using equation (3) to obtain the
current densities for each species, Maxwell's equations combine to

yield the following wave equation:

2

2 2 w
dE Lo fr -5 Fer JE - 0, ()
dz? c? — w(wia)
where Wpg = (xfxcq(,;2 /mceo)l /2 is  the plasma frequency for
species o¢.

The electrostatic potential U must satisfy Poisson's equation.
However, as noted by FESTEAU-BARRIOZ and WEIBEL (1980), if the wave-
length is much larger than the Debye length, the plasma may be assumed

to be charge neutral,

Z",,?,, = 0 . (11)

If we neglect very high frequencies (w » [Qel ), the wavelength of
an electromagnetic wave propagating parallel to the steady magnetic
field is small only in the vicinity of the cyclotron frequencies
(0 =|Qs] ). However, it is in these regions where kinetic effects,
for example, cyclotron damping (STIX, 1962) and transit time effects
(CONSOLI and HALL, 1963; DIMONTE et al. 1983) which are not treated by
our fluid approach, play a dominant role. Hence, we may assume the
validity of charge neutrality for the cases of interest in the present
study. Equation (11) may thus be used to eliminate the electrostatic
potential from equation (9).

We shall assume that the total number of particles of each
species is conserved, that is, the average density r—fc is constant.
This condition allows the determination of the constants Ngo in

equation (9).



In this paper, we shall consider a plasma consisting of two ion
species (6 = 1,2) having the same temperature (T; = T, = Tj). The

electrons (o = e) have a possibly different temperature, Te.

3. PERTURBATION ANALYSIS
Equations (7) and (9) when substituted into (10) yield a non-
linear differential equation for the electric field strength, E(z). We

shall solve this equation using a perturbation approach, assuming that

9.

) ES max QL_
T; H TC + T'

- [re1
»

is small.

Bquation (9) may be expanded to give the particle densities

correct to 0(52):

n.(z) = R‘r[; + A¢(E2~E’) - (AS+B)E*(E*- E*)

where the bar denotes the spatial average. The coefficients A; and

B, are defined, for the electron fluid, by

A = - I ( En €, + Rz €, + Ne &, )
e —
Te+1-i he (13)
— - 2
B1 = Tl nl nz (81 8')
e - = Y ’
Te + T: Ne Ne Ti



where
2

and similarly for ion species 2.

To calculate ngs to 0(62), we require E to 0(8). Taking the

first two terms of equation (12), we obtain an expansion of the wave

equation (10) to 0(8):

e, k‘[,+a(5‘-51]5 = 0 (14)

where

(15)

Note that since terms of 0(52) have been neglected in equation (14),

we have assumed

| A2+ BY| E* « A

Using equations (15) it may be shown that for the electron fluid, this

condition is equivalent to

l*E“] &K : (16)



If in equations (12) and (14), terms proportional to E2 and EF
are neglected and ﬁg is replaced by ng(z=0), we regain the
equations appropriate for the boundary condition used by
FESTEAU-BARRIOZ and WEIBEL (1980). The constraint that the total
number of particles of each species is conserved can be shown to have
only a slight effect on the electric field profile, but may influence
significantly the modification of the particle densities.

To solve equation (14) we must distinguish between two cases:

a) ko2 > 0 and b) kg2 < 0.

Case a) Standing wave, k02 >0

We shall consider the boundary conditions

E(Z:O) = Eo
dE (2:=0) = o]

dz

Here
2T
1 k
E* =k f E* dz |
2T

where k is the parallel wavenumber.

For this case, equation (14) is similar in form to that which
governs the motion of an anharmonic oscillator. It may be solved for
E(z) by successive approximations, as described by LANDAU and LIFSHITZ

(1960) , correcting the value of k at each approximation.

To 0(1):

E(z) = E, cos k_ z

©
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To 0(8):
2 3
E(z) = E, (' - «E, )cos kz + «Eo cos 3kaz , (17)
32 32
where 2
k = ok, (1 0+ “_EO)
8

From equation (12) we obtain, to 0(62):

n(z)= n {l + LA E'cosakz +[_L(A2+81)+_2_A¢ E:cos4k2},
T v 2 7 ° te © T 71 33 (18)

For a standing wave (k02 > 0) we note:

i) Since (Ae2 + Be2) > 0, the parameter «, which governs the
nonlinearity of E(z), is positive. Hence the finite amplitude of the
wavefield causes a decrease in the wavelength.

ii) Since the displacement current is negligible for cases of
interest (i.e., wavelength much greater than the vacuum wavelength),
from equation (15), As > 0, and therefore the coefficients of the
expansion (18) for ne(z) are positive. Hence the electrons move
from regions of low electric field strength to regions of high
electric field strength under the influence of the ponderomotive
force. This behaviour is independent of the wave frequency and
polarization: for example, electrons in the standing field of a left
circularly polarized, ion cyclotron wave move in the same direction
as in a right circularly polarized, electron cyclotron wave. This
effect is a result of the different nature of the ponderomotive effect
on electrons for different frequency regimes. For high frequencies
(Q1r 2 K w < lQel ), the electrons move as a result of the pondero-

motive force exerted upon them, while the ions do not respond to the
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oscillating fields but only to the zero-frequency electrostatic field
which results from charge separation. At low frequencies (w £ Q1+ Q3),
the ponderomotive force on the ions is dominant, and the electrons
move to maintain charge neutrality.

iii) For very low frequencies (0 <« [Q5]), the single particle
ponderomotive potential given by equation (7) becomes large. However,
charge neutrality ensures that A, =~ 0 and for a singly ionized
plasma e; = e;. Therefore no modification of the electric field

profile or the particle densities results from the finite amplitude of

the wave.

Case b) Cut-off wave, k02 <0

For this case, we shall consider only the positive z half-space, with

the boundary conditions

E(z=0)

"
m

E(z~-=)

"
(o]

Here ’

L~»x r

- L
E? = L I f E* dz
[]

Writing Y02 = —koz, we obtain from equation (14)

To 0(1):
-,z
E(z) = E, e
To 0(8):
2 ~¥,2 3 -3¢z
E(@) = E, (1 - °§§Eo)e + «Eo e . (19)
8
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From equation (12) we obtain to 0(62):

Tl eaaele )
(20)

n_(z) r‘\v{f +(1- %E:)AvE: e

For a cut-off wave (k02 < 0) we note:

i) Bquation (19) yields a decay length = (1 - aE02/8)/70. Therefore,
since a < 0, the finite amplitude of the wave causes an increase in
the decay length.

ii) Ae¢ < 0, and therefore the coefficient of the expansion (20) to
0(6) is negative. Hence the electrons move from regions of high
electric field strength (small values of z) to regions of low electric
field strength. This is the opposite behaviour to that obtained for a
standing wave. The difference results from the fact that at high
frequencies (Q;, @, € w < |Re| ) for which the electrons respond
directly to the ponderomotive force, the cut-off wave is left
circularly polarized. The ponderomotive force is therefore opposite in
direction to that of the right circularly polarized, standing wave.
iii) As for a standing wave, at very low frequencies (w « Q) ),
there is no modification of the electric field profile or particle

densities in a singly ionized plasma.

4. SPECIFIC EXAMPLES
From the analysis presented in section 3, it may be seen that the
effect of the ponderomotive force is greatest if the wave frequency is
in the vicinity of the cyclotron frequencies (however, not so close
that the kinetic effects mentioned in section 2 become important). We
shall consider specific examples of a left circularly polarized wave

with frequency in the vicinity of the ion cyclotron frequency (i.e.,
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an ion cyclotron wave). For this choice the ponderomotive effect on
the ions is large, and different for the two different species. The
wave nonlinearity therefore causes spatial separation of the two ion

species (WEIBEL, 1980).

4.1 Comparison of perturbation and complete nonlinear analyses

To determine the range of validity of the perturbation solutions,
the results calculated using the analysis presented in section 3 have
been compared with those computed by numerical integration of the
nonlinear wave equation (10). We show here the results obtained for a
neon plasma (composed of 90% Ne?’ ang 10% Ne22) with By = 0.3 T,
fle = 10%m~%, T, = 5 eV and Ti = 0.1 eV. The wave frequency was
chosen to lie midway between the two ion cyclotron frequencies,
w/2r = 218 kHz. For this set of parameters, k02 > 0, and we therefore
consider a standing ion cyclotron wave. Associating subscript 1 with
Ne2? and subscript 2 with Ne20, we find

él q(_ -

—

Te +T; Ti

mlin
~

and therefore § = |@,|/T;.

Figure 1 a shows plots of the normalized increase in the wave-
number, (k-kg)/ky, as a function of [®,] /Ti, calculated using the
perturbation analysis and also by numerical integration of the
nonlinear wave equation (10). In Fig. 1 b, similar curves for the
normalized amplitude of the third harmonic of the electric field,
E(3) /Eg, are presented. The corresponding modification of the
particle densities are shown in Figs. 2 a-c. Here is plotted the
normalized change in density, [ny(z)-n;] / ny, for two of the

values of z where n,(z) is maximum and minimum.
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Figures 1 and 2 show that within the range of validity of the
perturbation analysis, § = [®] /T; < 1, there is agreement between
the values calculated using the perturbation analysis and those
obtained from numerical integration of equation (10). Indeed, the two
analyses yield similar values for the changes in wavenumber and
particle densities at higher values of electric field strength,
|®] /Ti € 1, for which it is to be expected that the perturbation
approach is no longer valid.

Fron Figs. 1a and 1b it can be seen that both the change in
wavenumber and the third harmonic amplitude are very small even at
large values of |@,| /Tj. Fig 2c shows that there is also little
modification of the electron density. For the example considered, with
Te > Tj, the strong electron pressure resists any spatial
modification of the electron density (as seen from equation (8)).
However, Figs. 2a and 2b show that there is a substantial modification
of the ion densities. In particular, there is a large percentage
change in the minority (Ne22) species. This can be readily seen from

the perturbation analysis, since for 2, <« [A;], A, we obtain
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that is, the density change for one ion species is proportional to the
density of the other ion species. Physically, for the example
considered, the electron density remains approximately uniform and the
two ion species move in opposite directions under the influence of the

ponderomotive force, while still maintaining plasma charge neutrality.
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In Figs. 3 a-c is shown for three values of (&, /Ty (i.e., 0.5,
1.0 and 1.5 corresponding to E; = 43.5, 61.5 and 75.3 wvm~!,
respectively) the spatial profiles of the normalized electric field
and particle densities, calculated using the perturbation analysis and
also by numerical integration. These curves are shown for a complete
wavelength of the electric field.

It can be seen from Fig. 3 that, for the set of wave and plasma
parameters considered, the perturbation approach yields values for the
electric field and electron density that are very close to those
calculated using the full nonlinear analysis, even for the highest
value of electric field strength. The ion densities are also well
represented by the perturbation approach for |®&,] /Ty < 1.0. However,
for |o,| /Tf = 1.5 (well out of the range of validity of the
perturbation analysis), significant differences between the values

calculated by the two methods are evident.

4.2 Different plasma mixtures

Calculations have been made, using the perturbation analysis
described in section 3, for various plasma mixtures. In Table 1 we
present the results obtained for four different mixtures. The first is
the Nezz/Ne20 plasma considered in section 4.1. The second is a
mixture of the same ion species but with a majority of Ne?? ions. The
other two examples consider argon/neon and heliun/neon mixtures with
Ne?0 as the majority ion species. For all four cases the calcula-
tions were made assuming Bp = 0.3 T, He = 1016m‘3, Te = 5 eV and
Ti = 0.1 eV. The wave frequency was chosen to be the same for all
cases, w/2n = 218 kHz, as was the electric field strength, E;, = 43.5

vm~! (corresponding to 1&,| /Ty = 0.5, where subscript 2 denotes the

Ne20 species).
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We first note that the second mixture (neon mixture with Ne?2
majority) yields k02 < 0 for the parameters considered: we therefore
examine for this case a cut-off wave. For the other three cases, as
k02 > 0, a standing wave is considered.

As a quantitative measure of the effect of the ponderomotive
force on each particle species, we have defined the parameter
Ang = ngM@X _ pMin, I Table 1 we present the normalized
values, Ang; / ng, calculated for the electron and two ion species
of each plasma mixture.

For each of the mixtures considered, Table 1 shows that there is
a substantial modification of the minority ion density. The
modification of the majority ion density is more modest, as was
discussed in section 4.1. For the mixtures of argon/neon and
helium/neon the density modification is approximately half of that
calulated for the N’e22/Ne20 mixture. This is a result of the increase
in (w-R)): the wave frequency is sufficiently distant from the
minority ion species for the ponderomotive potential of this species
to be small. The ponderomotive force then acts directly on the
majority Ne?® species only, with the modification of the minority

species being a result of the plasma charge neutrality.

5. CONCLUSIONS
A perturbation analysis has been developed to solve the nonlinear
wave equation in a multi-species plasma subject to the constraint that
the total number of particles of each species is conserved. It has
been shown that this analysis yields good approximations for the
electric field profile and particle density modification, even for
substantial values of electric field strength. Using the perturbation

approach, a deeper physical understanding of the effect of the
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ponderomotive force of an electromagnetic wave on a mul ti-species
plasma may be obtained. Taking the ion cyclotron wave as an example,
large modifications of the ion densities result from the ponderomotive

effect in a two ion species plasma, even for cases for which there is

a significant difference of ion mass for the two species.
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FIGURE CAPTIONS

The normalized increase in (a) wavenumber and (b) amplitude
of the third harmonic of the electric field as a function of
electric field strength. The solid lines are calculated from
the perturbation analysis and the dotted curves from
numerical integration.

The modification of the particle densities as a function of
electric field strength at the maximum and minimum of the
electric field calculated from the perturbation analysis
(solid curves) and numerical integration (dotted curves).
Profiles of the normalized electric field and particle
densities for three values of electric field strength
corresponding to values of o] /T4 ¢+ (a) 0.5, (b) 1.0, and

(c) 1.5.
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ion species Nezz/Ne20 N’ezz/Ne20 Arl'o/Ne20 HeL’/Ne20

% conch 10:90 90:10 10:90 10:90

k 0.390 i0.395 0.411 0.414
Anl/_rfl 0.86 0.14 0.46 0.42

An, / i, 0.10 1.19 0.06 0.06
Ang / g 7.5 x 10~* 6.8 x 10~° 8.3 x 10~3 8.4 x 10~3

Table 1 : Comparison of wavenumber and density modification for four
different plasma mixtures
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