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1. INTRODUCTION

This series of lectures is intended to be an introduction to the
theory of Alfvén Wave Heating (subsequently AWH). It will largely be
based on the studies we have performed in the last few years in Lausan-
ne, and is not meant to be a general review of work in the field. Espe-
cially, kinetic aspects of the theory will only briefly be touched
upon. For these aspects the reader is referred to the pertinent litera-
ture [1,2].

A good deal of the work we have done is numerical. In fact , the
mathematical complexity of the problem in real geometries made the
numerical treatment a necessity. To us, it seems to be essential to
have a good basic knowledge of the underlying physics in Alfvén Wave
Heating, especially what concerns the phenomenon of resonant absorption
(and linear mode conversion) and the concept of global modes. The com—
puter can do the rest, once these two items are understood.

The frequencies used for Alfvén Wave Heating of present-day devi-
ces lie not too far below the ion-cyclotron frequency of the filling
gas. They might well lie above the cyclotron frequencies of certain
partially sEripped impurity ions. The complete theory of Alfvén Wave
Heating therefore might imply features of the theory of ICRF heating
( ion—cyclotron—range-of-—frequency) . Moreover, the ion-ion-hybrid mode-
conversion scenario of ICRF in the cold plasma model has perfectly the
same formal origin as the phenomenon called "Alfvén Wave Heating". We
will therefore include a certain number of remarks concerning the ICRF

heating scheme.

The classical and most simple problem of absorption of RF eneré;y
due to plasma inhomogeneities is the interaction of an electromagnetic
wave with the ionosphere [3]. This problem has become topical once more
In the seventies in connection with laser-plasma interaction [4].

Let us rapidly review the main features of the 3 mentioned cases
of resonant absorption. In the laser case we have a short-wavelength
(A) electromagnetic wave incident onto a plasma whose density increases
towards the interior ( Fig. 1.1). The characteristic length of the den-

sity variation is L.



Fig. 1.1
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If the incidence is not perfectly perpendicular to the plasma sur-
face the wave is reflected at the turning point xp before it reaches
the "resonance point" xg, where the wave's frequency matches with the
local plasma frequency wpe. If, however, the angle of incidence is
small enough (i.e. xp near to xg), some field tunnels through from
Xy to xg where it resonantly excites plasma oscillations. Their
amplitude grows in time until either collisions or temperature effects
limit the growth. The energy flow from Xp to xg is independent of
these amplitude-limiting effects as long as the collisions are not too
frequent nor the temperature too high. In this situation one says that
the incoming "energy-carrier" wave has lost energy by resonant

absorption.

The resonant point xgr (and X7 as well) can be moved throughout
the plasma when the frequency is variable. One says that the Langmuir
oscillations have a continuous spectrum : for any frequency « in the
range |0, max wpe(X) | one can find a highly localized perturbation of
the plasma which oscillates at that frequency. This density pertubation
is called a "singular eigenmode".



Due to the fact that A « L the energy-carrier in Fig. 1.1 can be
described in the geometrical optics (WKB) approximation. Only in the
neighborhood of xp and XRs where WKB breaks down, one needs to sol-
ve a differential equation. The situation in Alfvén wave heating is
entirely different, Fig. 1.2. Large scale antennae excite global oscil-
lations of the plasma column. The pertinent wavelength A in the minor
radius direction r is of the order of the inhomogeneity scale length L
which is the same as the plasma minor radius I'p. The WKB-method is
not applicable. The global modes of the fast magnetosonic wave play
the role of the energy-carrier here. The oscillators which store (or
dissipate, or convert) the energy are localized shear Alfvén waves in
this case. Like the Langmuir waves they have a continuous spectrum as
can be seen from their simplest dispersion relation o = va(r)ky(r),
where VAZ(r) = ?1:32(1:)/411;;:(1:) is the Alfvén velocity, 'E:) the ma-
gnetic field, p(r) the mass density, and kj(r) the wavelength paral-
lel to R,.
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Fig. 1.2



While analytical methods allow one to obtain quite accurate quan-
titative results in the laser case, not more than qualitative results
have been produced analytically in the case of AWH. The main reason is
that in AWH all the details of the profiles By(r) and p(r) enter into
the differential equations, whereas in the laser case the profile

Ne(X) enters merely into the WKB solution.

The heating in the ion-cyclotron range of frequency resembles
strongly AWH since the same energy-carrier, the fast magnetosonic wave,
is used. The antennae are of similar size. The frequencies, however,
are higher and the radial wavelengths are somewhat shorter. The wave—
lengths in present-day devices are, however, still comparable with the
minor radius Ipi the WKB-approach is highly questionable therefore.
Another pronounced difference is that the excitation of global modes is
usually avoided. It seems that the resonant absorption process at the
ion-ion hybrid layer is strong enough to mask any resonance with a
global mode of the column.

The lectures are structured as follows. In chapter 2 we outline
the main ideas which are used to model theoretically the laser-plasma
interaction. In chapter 3 the cold-plasma equations which can be used
for a description of AWH and for ICRF mode-conversion heating are deri-
ved in detail. Subsequently, they are presented in different limits
which make them appear in different forms known from published litera-
ture. At the end of chapter 3 we discuss the different types of singu-
larity possessed by the different equations. Chapter 4 is devoted to
the problem of the wave excitation and includes the discussion of the
antenna, the vacuum and the boundary conditions. We then solve the
eigenvalue problem (free oscillations) in a homogeneous plasma, i.e.,
we look for the global modes. At the end of chapter 4 their role in
heating is discussed on the basis of the results obtained so far.
Throughout chapters 2-4 knowledge of neither numerical methods nor the
numerically obtained results is required. The numerical methods are
briefly discussed in chapter 5. Finally, chapter 6 is a guide through
our published work on AWH, and chapter 7 is an outlook to future ICRFP~

work.



2. LASER-PLASMA INTERACTION

(as the oldest, simplest, and very instructive example of resonant
absorption).

2.1 Basic equations

In this chapter we follow largely the description given in Ginz-
burg's book |3]. A simplified version is given in Ref. 5.

Let us adopt slab geometry. Specifically, we assume a semi-infi-
nite plasma at x > Xp whose density, ng(x), increases to the right,

Fig. 2.1.
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We assume that a plane wave with frequency w impinges on the
plasma. Since the equilibrium depends merely on x, we can represent the
wave fields in and outside the plasma by ~ f(x)exp[ i(kyy + kzz -~
wt) ]. The equations for the anplitudes f(x) = (5,?) are given by
Maxwell's equations in the form

. A

mt§=-—£%feE} (2.1)
—dp . —p

ot E = /8B, (2.2)

where the dielectric function & has the form

€ = - o;e/wz-) (2.3)

and Woe =Y4nezne(x)/me is the plasma frequency.



Without loss of generality, we can restrict ourselves to the case
where k; = 0. If we use the quantity

- -
H= (€8 (2.4)

instead of ‘é’, the egs (2.1) and (2.2) take the explicit form

i
%GEX = iéj”&
@

R EE, = -dha /dx r (2.5)

He = (ky &

Hy = -dg; /dx (2.6)

The first equation of (2.5) allows one to eliminate Ey in the
last equation of (2.6). Similarly Hy in the last equation of (2.5)

may be eliminated using the first equation of (2.6). In doing so one
obtains two decoupled systems of equations

diy /dx = (F e -ki)E, }
(2.7)
olE';/dx = - #3
and
'cc"?i € d€y /dx =(§€:"k§) Kz
dHz fdx = - & ¢ (2.8

ey ).

The fact that (2.7) and (2.8) do not have common field components
allows us to define two independent polarizations. Traditionally, they



..

are called s- and p-polarizations

[}
i
]

s-polarization H, # 0, Ep # 0 (By = Hp = 0) => Eg =0 (2.9),

0 (2.10).

[}

p-polarization E, # 0, Hy # 0 (Hy = E; = 0) => Hy

The waves corresponding to these two polarizations behave quite
differently. In the s-polarization, the electric field remains trans-
verse to the direction of wave propagation all along the wave path.

This wave is therefore a pure electromagnetic wave.

Formally :

dir B = d&fdx + ilyky = o

as can be seen from (2.9). In the p-polarization the components Ey
and E:y are different from zero, and therefore, in general, div Ez 0.
The wave has an electrostatic component and can couple to the Langmuir
oscillations. There is another distinct formal difference between the
two polarizations : the equations (2.7) are regular whereas the system
(2.8) has a singular point at e(x) =1~ wpez(z-()/m2 = 0, i.e., at the
point where the driving frequency w equals the local plasma frequency.
The case of the p-polarization has much in common with the Alfvén Wave
Heating problem. The equations (2.8) have the same structure as the
equations pertinent to Alfvén Wave Heating in a plane geametry [6].

2.2 S-polarization

For the sake of completeness, we discuss not only the p~polariza-
tion but also the s-polarization. In doing so, it is possible to give
an introduction to the analytical theory of wave propagation in weakly
inhomogenous media which is one of the theoretical tools in RF heating.
Though not very useful for Alfvén Wave heating it is, on the other
hand, widely used for ICRF heating to which, after all, Alfvén Wave
Heating belongs. This theory is based on the assumption that the perti-
nent wavelength A is much smaller than L, the characteristic length of

the density variation.
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From the egs (2.7), pertinent to the s-polarization, one can ob—
tain the corresponding 2nd order equation

dzgik o 2
Iz Tt ('g:: é(X)——ké,)Eé = O. (2.11)

In a sufficient distance from the turning point X7, where

(wz/c2) (xp) = kyz, this equation can be solved in the approx ima—
tion of geametrical optics (WKB), i.e.,
const 0,
E; = Az exfc[ Skxalx + ksfj‘““’é} ) (2.12)
where
L _‘*_’f l(l
ke = =3 €(x) - y - (2.13)

The eq. (2.12) holds under the condition [k'y| « |k¢?| and
[kx''| « Iky®| , that is, away from the turning point xp and for
sufficiently slowly varying e(x). In the neighborhood of the turning
point one needs an exact solution of eq. (2.11).

Let us assume that the electron density ng(x) varies linearly in
the neighborhood of the turning point. In order to have a unified nota-
tion for the s- and the p-polarizations, let us also choose the coordi-
nate system in such a way, that Ng(x) = (1+x/L)ny with mpez(x=0)
= wpe02 = 4ne2ne(x=0)/me = w2, Using this assumption we can write

2 2
Ky = %“%{‘(1*{—)-&3 = -—‘%‘3 f—-—k; =—f<§—f~—k§' . (2.14)

Here ko = w/c denotes the vacuum wavenumber. The turning point
is situated at xp = -L kyz/ko2 = -L sin’6 where 8 denotes the
argle of incidence at the plasma boundary, see Fig. 2.2.
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Fig. 2.2 'Electromagnetic wave incident on plane slab

The wave equation (2.11) assumes the simplest form under the vari-

able transformation

£ = (_‘Ei)% (x+Lsin'6) (2.15)
namely,
o€,

e i $E = o (2.16)
This is the Airy equation.

The two linearly-independent solutions are Ai(¢) and Bi(f) (see
Abramowitz and Stegun |[7]). Both functions are bounded and oscillatory
for £ < 0, and monotonic for & > 0. Bi(Z), however, diverges for £ » =
as 5‘1/“ exp (2/3 53/2) and must therefore be excluded as a physi-
cal solution. The physical solution is given by Ai(g), Fig. 2.3, only.

r AL(E)
RV
Fig. 2.3
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Far away from the turning point, { = 0, the WKB-approximation is a
good approximation. For large-enough { we expect therefore that Ai(g)
has the form of the WKB-solution, eq. (2.12), evaluated with the linear
density profile. That this is indeed so, can be seen from the asympto—

tic expansion of Ai(f) and the explicit expression for [kydx using
the linear density profile.

For |g| » = we have [7]

fr>o0: A(f)~ 2(—?2_-'/: JE“/" ex‘o(*;% §%) ) (2.17)

- - ¥,
gco: A~ h £ & s [§(-€) ‘4 %’-] (2.18)

For the identification with the WKB-solution let us first combine
(2.14) and (2.15) to

ke = - (Zké}%f (2.19)

We then find by using (2.15) once more
4 f 3
fleoe = [V-Fdf =-5(-£)"™. (2:20

We see that £~!/" in (2.17) and (2.18) is the same as VL
in (2.12) and also that we have the same exponential dependence.

One can now perform the so-called matching procedure where the

Airy solution is matched to an in-coming WKB wave of given amplitude,
e.g.

& (~§1>V4 op 14 (-6)"] 2.21

and an out-going wave with an amplitude which is to be determined

E:‘éz (.2)'/4 oxp [c% (—§)%‘I ‘ (2.22)
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In the present s-polarization case the problem is trivial. We
find R = -1, or {R} = 1, which corresponds to total reflection. This
result was to be expected from the fact that in the s-polarization the
wave is purely electromagnetic and does not interact with another wave
nor does it propagate further into the plasma.

2.3 P-polarization

Let us now try to get an understanding of the coupling between the
electromagnetic wave and the Langmuir oscillations. From egs (2.8) one
obtains

a4, Pedx  dia
_;;_Z% - 6" o +(%’£e~f<§)ﬁ,} = o. (2.23)

We remark that if the inhomogeneity is weak, i.e., if de/dx is
small in some sense, 9. (2.23) is identical with eq. (2.11) for E,.
For a linear density profile the solutions of eq. (2.23) will be Airy-
function-like somewhere between the plasma edge and the turning point.

Bg. (2.23) is more difficult to solve then Airy's equation. We
therefore refrain from seeking a solution but discuss it qualitatively
(along the lines proposed in Ref. 5). From Airy's equation we know that
the characteristic length in the neighborhood of the turning point is
~(L/k02)1/3. Hence the first term in (2.23) has the characteristic
size {kOZ/L)2/3Hz, whereas the second term is, wusing (2.13) and
(2.14),  (1/x)dHy/dx ~ (1/Lsin®0) (ks?/L)1/H,. The second term
is negligible in the neighborhood of the turning point if L sin?s.>»
(%2)1/3' i.e., if the distance between the turning point and the
resonance point (e = 0, y = Wpegr X = 0) is larger than the wave-—
length near the turning point. In this case the field decays exponen-
tially towards the resonance and the excitation at the resonance point
is exponentially small. Conversely, if (I_;/koz}l/3 ~ L sin®6 the
field does not decay substantially before reaching the resonance and
the resonance has to be taken into account.

The discussion of the resonance is facilitated by the fact that
the field component Hz does not diverge at ¢ = g as one could guess
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from the pertinent 1st order equations (2.8). Noting that under the
assumptions made for eq. (2.14) one finds ¢ = -x/L and

A _ L g?l_/é _ L
Adx2 X dx '5'5.7:‘ * 3)53 =0O. (2.23")
Expanding the solutions around the singular point x = 0 [8] one
finds one regular, w;, and one singular solution, wy,
”‘ = ’“K -+ ?kt 4*
(2.24).

R S .

We conclude that H, is finite at x = 0 with dH,/dx = 0. The
value of Hz(0) or rather the ratio of Hz(0) to the incoming wave
amplitude at the plasma boundary Hzin can only be obtained from the
global solution of (2.23). The result obtained from an approximate so-
lution is given in Ref. 3, more recent results are to be found in Ref.
4. The essence of the results is that HZ(O)/HZin has a maximum at
small angles of incidence, specifically at (koL)l/3 sin 8 =~ 1 with
a height of ~ (2n kgL sinze)‘l/z.

We are now prepared to discuss "the excitation of the Langmuir
oscillator" near the resonance point. First we deduce from {2.5) and
(2.8) the behavior of the electric field components near the singula-

rity :
Ex = i Lsu® L) /kyx | (2.25)
Eq = L stn'd Hy(o) Ioﬁx : (2.26)

We see that Ey is the dominant component, it diverges as 1/x.

This singularity disappears if more physics such as collisions or
temperature effects (Langmuir waves instead of mere oscillations) is
introduced or, if an initial value problem is solved instead of the
driven steady-state problem. Let us first consider collisions. With

collisions the dielectric function assumes the form
2

I
€= 1T Ty o (2:27)
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where v stands for the electron-ion collision frequency. In the neigh-
borhood of the resonance it becomes e ~ -X/L + iv/w and hence with the
help of (2.4) we have instead of (2.25)

. X
Ex = sub 85(0)/(2--2-2) , (2.25')
which is finite everywhere in xe R .

Noting from (2.27) that the field suffers from collisional damping
with a rate of v/2 we can calculate the total time-averaged collisional
power loss per area

gt o\ P j 2
X I~ e .
P/A4 = ;-zj s [Ex] " olx (2.28)
The explicit factor 2 stems from the fact that the energy density
in the Langmuir oscillations is given equally by the electrostatic
energy and the particle sloshing energy. On using (2.25') one obtains

2 L /2
P/A = Laxpe sin’f 18, (01" | % ("’L) dx . (2.28").
8 x2 + (Z[)?

Here we have the most important result in connection with resonant
absorption. Since the integrand is a representation of the &-function,
we see that the absorbed power does not depend on the strength of the
collisions (at least as long as they are not too frequent to invalidate
our local investigation around the resonant point).All they determine
is the height and the width of the resonant layer. If this layer became
too broad the local approximation would break down. In mathematically
formal papers on resonant absorption collisions are even not mentioned.
It is sufficient to use the argument of causality which prescribes the
manner in which poles have to be treated.

In an initial-value approach, where causality is automatically sa-
tisfied a problem never arises. Had we tackled the present problem via
a solution of the pertinent equations of motion in time we would have
found that the field amplitude at the resonance grows linearly in time

whereas the width of the resonance decreases as 1/t.
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The energy content in the resonance layer therefore would grow
linearly in time. This process of energy accumulation proceeds until
the collisional damping balances the energy flow into the resonant re-
gion. The quantitative value of the energy flow into the region does
not depend on the presence of the collisions at all. Without collisions
one could name the phenomenon "resonant accumulation" of energy instead

of resonant absorption [9,10].

To complete this introductory chapter on resonant absorption let
us consider the effect of finite temperature following Ref. 5. The pri-
mary effect of temperature is to introduce spatial dispersion into the

dielectric function
2 2.2
€= 1- X (1+3K8A) . (2.29)

This result is obtained for a plane wave ~exp(ikx) in a homoge-
neous medium. In the general case of an inhomogeneous medium k has to
be replaced by d/dx with the result that the first equation of (2.5) is
now a differential equation and not simply an algebraic equation like
(2.25). Using (2.4) and the fact that x/L < 1 and k’Ag° « 1 we obtain
approximately

d’€, .
333 dx{ - 'zx"E,‘ = - B, (0)snb. (2.30)

For vanishing temperature, i.e., Ag » 0 eq. (2.30) reduces to
(2.25) as expected. Eg. (2.30) has the form of an inhomogeneous Airy
equation. This time it describes Langmuir waves generated in the
resonant region and propagating to the left towards the plasma
boundary. Near the resonance their characteristic wavelength Ax is
(L ?xdz )1/3. The field reaches a maximum height of approximately
A3® Epax/b%% = B,(0) sin 6 or

Epox = B, (0) s b (L/Ad)‘%) (2.31)

respectively. The energy flux, S, away from the resonance layer can be
estimated from S = Vg (1/8%) {Esz, where vg = 3k }‘dzwpe

denotes the group velocity. Ignoring the numerical factors we obtain
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S = L cope sin?g (2.32)

[Ba(0) |2
T

a quantity which has the same order of magnitude as the power dissipa—-
ted by collisions, ed. (2.28'). In a real plasma it will be a question
of parameters which phenomenon, dissipation and subsequent heat trans-—
port or dispersion, takes care of the evacuation of the energy flowing

into the resonant layer.

2.4 Remarks on papers directly relevant to Alfvén Wave Heating

The most important sources of the original works on Alfvén Wave
Heating by Grossmann and Tataronis [ 11 | were the papers by Barston [12]
and SedlaCek [13]. Barston discussed with a considerable amount of ma-
thematical rigor the second order differential equation for Ey which
follows from (2.8) :

wle /c* AE, &
cé w‘g/cz-érz dxs + P € E), = 0. (2.33)

Barston. neglected the contribution due to the incoming electroma-
gnetic wave by approximating the denominator by ..ky2 and solved the
problem as a normal-mode or eigenvalue problem which yields a conti-
nuous spectrum and singular eigenfunctions. Sedla&ek then tackled the
problem as an initial value problem and showed the equivalence of the
two approaches. The complexity of the mathematics especially in Sedla-
Zek's paper demonstrates the absolute need for numerical solutions in
the case where WKB is not applicable. Numerical solutions can be easily
obtained and provide, after all, at least as much physical insight as
complicated analytical treatments.

Hasegawa and Chen's [6] initial equation [their eq. (15) in the
PRI~paper| reduces in the limit of low B to an equation which has
exactly the form of (2.33). They were able to cope analytically with
both the energy carrier wave and the absorbing wave (or rather oscilla-
tion) in the case of a linear profile of ¢ in slab geometry.
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3. COLD-PLASMA EQUATIONS RELEVANT TO ALFVEN AND ICRF HEATING

3.1 Derivation of the basic equations [ 17]

3.1.1 Preliminary remarks

Historically, Alfvén Wave Heating has first been treated in the
approximation of ideal MHD Ls,l%}. It has been found, however, that
several features of existing experiments [14,35,16} could not been ex-
plained by ideal MHD theory. Subsequently it was possible to model the—
se features within the framework of cold-plasma theory, or equivalently
within the framework of MHD including the Hall term in Ohm's law |17,
2]. The new effect included in this model was that due to a finite va-
lue of w/wecj. Since finite-p effects are unimportant in a theory of
Alfvén Wave Heating for tokamaks we derive here directly the relevant
cold-plasma equations. In the next section (sect. 3.2) we shall discuss
the low-§ MHD limit in order to provide a complete picture. The cold-
plasma equations have the additional advantage over those of ideal MHD
in that they are pertinent to ICRF-heating of a multi-species plasma in

the mode~conversion scenario.

Also, we confine ourselves to cylindrical geometry. The equations
relevant to slab geometry will be obtained by simple arguments in the
next section (sect. 3.2). As to toroidal gecmetry, it has many features
in common with cylindrical geometry. Some specifically toroidal effects
will be touched upon in the last chapter (chapter 6).

3.1.2 Equilibrium and approximations

Before deriving the linear wave equations we have to specifiy the
state of the plasma we intend to perturb, i.e., the equilibrium. lLet us
start by defining the equilibrium quantities as functions of the radial
cylinder coordinate r. We will denote by ii;(r} the magnetic field,
and by njo(r), neo(r), Vipo(r), Vee(r) the ion and electron den-
sities and mean velocities, respectively. The index i runs over all ion

species with charges g; and masses mi. We assume the electric field
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E’o to be zero. These quantities have to satisfy the stationary equa-

tions of motion

- —
men&(V%‘V)Ugc = -V - neo%- B;,xé:, , (3.1)
. -
m;nto(i}:.o09)z}:° = - VF‘:0+ nf:o%‘ %X% s (3.2)

and the quasineutrality condition

z G Mo = Neo (3.3)
[4

The left-hand sides reduce to - mnveg?/r since div ngv, = 0

v ‘ el —lp - boand o —
implies (Vgp*&p) = (Vio*€y) = 0.

Now we introduce the essential approximations for the derivation
of our equations. We intend to neglect systematically terms of order 8,
i.e. we neglect the pressure terms VPeo ® VPio = 0. If we make the
additional approximation Bog/Boz € 1, Byy =~ const (tokamak
approximation), terms containing voez are also negligible. With this
the egs (3.1) and (3.2) reduce to Veo X By = 0 and Vjo x By =
0, i.e. the velocities are parallel to the field (force free i),
Finally we sﬁppress the equilibrium mass flow by setting ﬁo = 0.

The appoximations which we will need in the remainder are

B const, | 0|4t BeVg ulv|%e) 5 B, o

and we will work up to Ist order in Bog/Bo oOr V, respectively.
That this is important, we know from our original numerical MHD stu-
dies. The terms containing Vo we will call the "equilibrium-current

terms”.

3.1.3 Perturbed current

If we were willing to drop terms of the order Bog/By all toge-
ther the expression for the perturbed current could be copied from a
text book. Since we are not, we have to derive it.
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Let us start with the electrons and calculate their perturbed ve—
locity ve in terms of the perturbed fields E and B. First we assume
that their mass is negligible and obtain from the equation of motion

—

C = g—v-é't.};x‘éo*%g,xg. (3.5)

We have no equation for @ -‘{r’e because we have assumed me= 0,
i.e., infinite mobility along the magnetic field. Consequently 'e'ﬂ-—g =
0. All this is reasonable as long as the driving frequency w is not too
high; specifically w « wryg (lower hybrid). Note that we will never
need &+Ve = vey. The operation e;x on eq. (3.5) yields

-
- eﬂxg - -+
Ve-16,8 =-cC B +~§—(B~B,e,,)‘ (3.6)

The first term on the right-hand side is the ExB-drift, the second

term is the equilibrium current term.

In Maxwell's equations we will need the current in perpendicular
direction in the form (4n/w)¥. We therefore directly calculate the

electron current

‘J:a” jeqaf"“e%({f’é%’é{é}) (3.7)

in this form. From eq. (3.6) one finds

. a\_ MMeneC . > 4 B-By &
(a5 e 2 F BB R

To give (3.8) its final form we remark that dnenpgec/By =
&“‘piz/wci + where wpj and wei are the ion-plasma and the ion-
cyclotron  frequencies, respectively, and -engoVp = Joi =
¢/4n rotg§o is the equilibrium current. Hence,

2
DS S o t g
g(fe'swe«FZ o GrE+ S B (Z pz) . )

{
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Now let us turn to the ions. Since they do not carry any equili-
brium current, their perturbed velocities and current are given by the
text-book expressions. For completeness we give at least a few inter-
mediate expressions. The equation of motion is

.- o = % > =
mwy = E + me U xBo, (3.10)

where we have assumed that the perturbed quantities vary as
exp| i(mo+kz—wt) |. First we note that &*¥i = 0 because ¥,-E = 0.
The operation 'B'b X on eq. (3.10) and the replacement of the resul-
ting B,o X vl term on the left-hand side by eq. (3.10) yields

« g 2~ E
G = —2 % f & (3.11)

c - C
- (&F CAL

The ion current ¥j = qjnjo¥; is then

2
Eﬁ)z :

4T - ’ ( ‘* &) Wes - =
e S ..~ T A - E. .
o c= LT-(&)Z f‘(&)z €y »x (3.12)
For the electric induction

. E= E*ri%-('fe-je,,‘é; +‘Z':;‘:) (3.13)
we obtain

mu

.E = SE + iDExE +i & mt” (B-%,8). (.19

The quantities S and D are defined as in Stix's book [18] (under
the assumption mg = 0) :

¢\ 2
(%) c"-Z‘ ¢

. (3.16)

3 (#)' 2 58
R

O (&)
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The expressions containing the mass fraction fj = njgmi/
njomj  follow  from  the  relation wpi z/wciz = {c:z/\;’A2 JEi s
where va denotes the Alfvén velocity, \?Az = 502 /(4m)niomi) .

Note that in general both fj and vp are functions of radial posi-
tion. The cyclotron frequency, on the other hand, does not depend on r
in the low-8, cylindrical, tokamak approximation. In slab geometry,
wei may depend on the coordinate x.

Let us remark that the equilibrium-current term in eq. (3.14) is a
simple additive correction to the classical dielectric tensor. This

feature remains true in toroidal geometry.

3.1.4 Magnetic coordinates

Usually the discussion of physics is simple if one is able to
describe the phenomena in question with simple equations. Here, our
goal should be therefore to derive wave equations with the simplest

possible structure.

As a guideline we can take ideal MHD in cylindrical geometry where
it was possible to bring the equations into a very transparent form
{19} by using the appropriate variables : Er = (i/w)vy, the displa-
cement in radial direction, and p = 'é:).'é“, the perturbed pressure. We
would therefore expect By and E (from MHD Ohm's law : E =vyBy/C)
to be good variables. The direction €, is defined by & = & x 2.

We shall write the Maxwell equations in the orthogonal right-

handed curvilinear coordinate system defined by

a) é::é;xgr) g, = Eo/g , (3.17)

Any vector in this system has the representation

-’
ﬂ=/4ré’:.+/41é:+ A'é;:’-/%/qﬂé;;. {3.18)
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For Maxwell's equations we will need
-l
ro'l»ﬂ'—-'Z(ﬁ/uMé;—-a;x Vﬁ/u). (3.19)
J

Since the equilibrium is specified in the usual cylindrical coor-
dinates, (8,8,&), we need the transformation formulae between
the latter and the magnetic coordinates, eq. (3.17). Projection of eg
and e, onto the system (3.17) yields to first order in | Bog/Bo |

- > Bog -
39 = e + -—-—-Bo e/i’
{(3.20)
+ __ B
@ =-g et & -

Likewise, projection of é;_ and é'g onto the cylindrical system pro-

duces

— -> -
& = & - g/ %,
- Boo » - (3.21)
%@ =B % * .

Next we need the rots of the basis vectors, eq. (3.17). A simple

way is to go via
_’
- €
m{:erzo, m‘f%: =, rtq =o. (3.22)

To 1st order in iBoe/Bd we find from (3.21) and (3.22) using
(3.19) (u = 0,2) '

(3.23)

Here the prime denotes d/dr.
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The gradient V acting on the perturbed quantities is (d/dr,i m/r,
ik) in cylindrical coordinates and (d/dr,ik, ,ik;) in magnetic coor-

dinates if we define

313

“k%, ky = 2 Boe 4 g (3.24)

k, = r B

We can now obtain rotA in magnetic coordinates by using egs
(3.19), (3.20), (3.23) and (3.24). In components we have

f‘-{(_;_ﬁ// “ikﬁ 'ql »

‘1
R
ﬁ
Dy
l

>

y 1
=il A -4 + r(i,. %) ) b (3.25)

) 4

3

P~

By
|

¥

HE

mf” A = “::‘(r'A_L)"‘ iél/qr + "& r

correct up to Ist order in |Byg/By|.

3.1.5 Maxwell's equations

Maxwell's equations can be written as

— -
rot B = -; 2 g.F, (3.26)
> -
wotE = (£ B, (3.27)

or equivalently
.
rdrod € = 35 €. E | (3.28)

BEgs (3.14), (3.27) and (3.28) provide all the bits we need for the
construction of the wave equation. For consistency and for simplicity
reasons we use Maxwell's equations in the form eq. (3.28) although we
ultimately aim at the variables E, and Bj. Using twice the relations

(3.25) we can write the components of rotrotg :
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ret,,rat?== (Kt kh) B + ("EL) = ikyr Bé) EL,

3 .2
ot e s KEL - Gl g by ]t (LB YE, [

The two components of the electric induction can be obtained from eq.
(3.14) by means of egs (3.27) and (3.25)

(ZEE) =5 SE-iSDE +L[r N ik )

cz
co? {3.30)
- ) /
(g”':é’ E>.L =Tz SEL +L?52DEP + )F(\r %3) t'&,, E,
Noting that
t Boo \/ { / Boo
S DRERICE IR

we obtain from (3.28) - (3.30)
iy v (rELY (A-K)E. +iGE,
1 . . (3.31)
%[;(TEL)'“LI(LEVI fGEr - AE_Z R

i

where
wt 2t e §e 2 .
A =3 —k«=;z+',;; C T m T kS
; @

-

w Y (3.32)
ot 24’#_3_09 w? & a 24,
C - v— - — = a— —
ctD-% B Wl et T %f‘ ‘
&t y

i

Note that A=0 represents the dispersion relation of the Alfvén
wave. The term wz/c?‘ is often neglected arguing that ¢ » vpa. Note
also that G = 0 if w/wej = 0 and the equilibrium current term is
neglected ! We shall discuss this approximation later on.

The wave equations ( 3.31) assume a much more transparent form if
By instead of E. is used, as we have anticipated. From (3.27) and
{3.25) we have
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. ;.
= B, = -:: (rg) - e&_ E. . (3.33)

When this is used to eliminate E, we find from (3.31)

Ar(rEY = KGEL  + (A-K)i 2., | Gy

L
-

A (%)‘ 8;;)' = (Gz--Az)EL - kG 2y, (3.35)

The egs (3.34) and (3.35) are the basic equations which we shall

use for the discussion of AWH.

3.1.6 Preliminary discussion of the wave equations

The wave equations, (3.34) and (3.35), are singular at r=0 and may

be singular at the points r=r,, where A(r;)=0.

One more remark is in order. It concerns the appearance of G° in
eg. (3.35). The expression GZ, eq. (3.32), contains a term of the order
(Bbg/Bb}z which we have considered to be negligible all along our
derivation of the equations. This term may not be neglected here. There
are good reasons for this somewhat astonishing claim. The first reason
is mathematical. The term in question affects the nature of the singu-
larities at r=0 and at r=r;. ILet us show this fact explicitly for the
singularity at the origin by deriving the pertinent indicial equation
from egs (3.34) and 3.35). If we exclude the pathological cases A(o) =
0 and G(o) = 0, for r » 0 we have ky ~ m/r, k; finite, A~ a and G ~
g, both finite. By using rE; = eyr® and (iw/c)By=hyr® we obtain
from egs (3.34) and (3.35)

i
[e]

(mg—aa)f, - m’h,
(3.36)

i
o

(g%-a?)f, - (mg+aa)h,

The homogeneous system (3.36) has a nontrivial solution for £, and
hg if the determinant vanishes, that is, if azgaz—m2}=8. The indicial

equation, «’=m’, indicates that there is one reqular and one singular
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solution. The regular solution behaves like ~r M near the origin. The
same conclusion can be drawn from an analysis of eq. (3.31). Had we,
however, neglected the term proportional to  Bgg/By  in &% we
would have concluded from egs (3.34) and (3.35) that « is, in a best
case, a fractional number. Similarly, the singularity at r=r;, where
the indicial equation is a?=0, would change, leading again to a frac—
tional number. This singularity would even not describe resonant
absorption.

We are now convinced that the term ~f806/80§2 in G is impor-
tant in egs (3.34) and (3.35). We, however, still feel uneasy due to
the fact that we have neglected plenty of terms of order |Bog/By| 2
in the course of the derivation of egs (3.34) and (3.35). Could they
have any importance ? It seems not. We have performed numerical experi-~
ments using finite-g ideal MHD equations [19]. These equations contain
many terms proportional to )BOQ/BO{ 2. We have found that only the
term corresponding to that in G® had an influence on results relevant
to AWH of low-8 tokamaks. The profound reason seems to be that this
term has a special origin (curvature of magnetic field lines [21])
whereas the others are pressure or geometric terms. In this connection
it is interesting to note that this term does not appear in slab geome-
try with shear [1,6,24].

3.2 The wave equations in different limits

3.2.1 Second order equation

For the discussion of the singularities (sect. 3.3) it is conven-
tional to use the second order differential equation [8] instead of the
System of first order equations. The second order equation correspon-
ding to egs (3.34) and (3.35) is readily obtained by acting with (d/dr)

[1/(2ky ?)] on eq. (3.34) and eliminating By

d 4 14 A __G 1 [dké
bl OAN R e tl]rea o
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The points where A - kLz = 0 are only apparently singular as may
be seen from egs (3.34) and (3.35) [19,20].

3.2.2 MHD-limit

MHD implies w/wei = 0 and ¢ » va. The quantities A and G
reduce to the classical dispersion relation of the Alfvén wave, A =
uz/vAz - k§2, and to the equilibrium-current term, G =-2k;B,g/

(rBy). The resulting wave equations have been discussed in Ref. 21.

3.2.3 Slab geometry

Tracing back to eq. (3.25) the origin of the equilibrium~current
term in G, we remark that it is due to cylindrical geometry. Hence in
plane slab geometry, G reduces to the homogeneous plasma expression

W
= % ’ 3.38
({42' { , - w.r. ( )
with space-dependent va(x) and fi(x). In plane geometry (x,y,z) the
operators d/dr, r(d/dr)r’l, r“l(d/dr)r in egs (3.34), (3.35) and (3.37)
are replaced by d/dx. The wave vectors m/r and k become ky and k.

After these transformations we can compare our results with
results in the literature. Equations (3.34) and (3.35) have exactly the
form of egs (4) and (5) in Ref. 20. Equation (3.37) differs, however,
from eqg. (31) in Stix and Swanson's handbook article [22}. The reason
for which they obtained second-order derivatives of the equilibrium
quantities is unclear. It must have to do with the limit me + 0 which
they take only at the end of their calculations. From their equation
they conclude that A - k) 2 =0 is a weak singularity which contradicts
even ideal MHD.

If additionally we take the MHD-limit we find from (3.37) Hase-
gawa and Chen's equation [6] in its low-p limit.

4_A_ dg

NA-kE &t AE, = o. (3.39)



This equation has the same form as eq. (2.33) and can be discussed
along the same lines.

It is interesting to note that in slab geometry and on the basis
of our equations one cannot find the MHD instabilities. Knowing that
these instabilities can be modelled in slab geometry by introducting a
gravity term into the equation of motion, eq. (3.10), and also knowing
that the stable kink mode has something to do with AWH [23], we have
extensively investigated such a model [24]. The results were somewhere
between success and failure. Certain features of AWH could be modelled
and others not.

3.2.4 Belt geometry

For ICRF-heating of tokamaks it is essential to model the 1/R de-
pendence of the toroidal magnetic field, where R denotes the distance
from the symmetry axis. For this reason slab geometry with Bgz(x) is
usually adopted, as long as one wants to avoid full toroidal geometry.
There is, however, an intermediate model which takes at least one
toroidal feature into account, the "belt gecmetry" [25]. In this model
Bog(r), or rather Byg(R), plays the role of the toroidal field.
Under the assumption By, = 0 and k = 0 equations similar to ‘eqs
(3.34) and (3.35) are obtained [25].

3.2.5 Homogeneous current-carrying plasma cylinder

Let us assume that all the densities nj, are constant and that
the plasma is carrying a constant current density joz. We then have
Bog/r = 2n/c joz. From the definitions of ky, A and G, egs (3.24)
and (3.32), we find that these quantities are constant as well. We can
now "almost" derive a Bessel-equation for By by multiplying eq.
(3.35) by (4/dr)r/(G°-A?) and eliminating E, :

% [A k"~+4r%’(rki)] B = 0. (3.40)
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Since kj_2 = m?/r? - Z&k(m/r)(Bog/By) to first order in Bos/Bo
we have a Bessel-equation. It would be interesting to rederive eq.
(3.40) making the assumption of homogeneity from the start and working
up to 2nd order in Bng/By. We surmise that the result would also be
a Bessel equation as in the MHD limit [26].

3.3 Type of singular solutions

Here we determine the behaviour of the wave fields in the neigh-
borhood of the singular points ro, defined by A(ry) = 0. We will
carry out this investigation on the basis of eq. (3.37). Once we know
the behaviour of E, , that of the other field components is easy to
obtain. Let us write eq. (3.37) in the form

- @5'2 (vEL) + Vr E, =0, (3.41)

where x = r-r, and the definition of P and V can be obtained by iden-
tification with eq. (3.37).

For our discussion it is sufficient to expand D and V to the first
two terms in x :Dzdlx+dzx2 and V ~ vy + v;x. Note that dy = 0
because D ~ A ~ x and that vo = 0 if G = 0. We can then determine the
indicial equation [8] of eq. (3.41) by using the ansatz rE, ~ x% in
eq. (3.41). The coefficient of the lowest order in x yields the indi-
cial equation, d;a® = 0, i.e. a = 0 if d; # 0 (we exclude the case d; =
0). We now know that the two independent solutions of eg. (3.41) have
the form [8] :

[ w,(x) regular

rE (3.42)

]

wy(x) = wy(x)logx + g(x), g(x) regular

For the subsequent discussion we need the form of wy {x). From
(3.41) we can determine its expansion coefficients

Wi (x) = Co + Cix + 02x2 :
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Co = 1 or arhtémx‘ﬂ .

Cg = =~ Vo /df 3
C, = -2 4 Up + 24y (3.43)
2 4d, ?2?7‘ (% ).

An important result is, as we shall see, that c; =0 1if G = 0.

We can now determine the behaviour of the other field components
in the neighborhood of the singularity, x = 0. From eq. (3.34) we
obtain

. k&
(2B, = @J‘ E - A l{)r rE (3.44)

Since kLG/(A—kLZ)r is in general finite at x = 0 we obtain that

By ~ log x (3.45)
if G # 0 and By ~ (x? log x + reqular) if G = 0. This difference in
the singular behaviour of B, was the main point we remarked [21] in

comparing our cylindrical model with the slab model, eq. (3.39), or
cylindrical models which did not include the equilibrium—current term.

Passing onto the remaining field components Ep, B, and B, , we
find from Faraday's law, eq. (3.27), using eq. (3.25)

LB =-ikhE ~ bgx, | (3.46)
L (A-K)rEe = G(rE) - k, EY ~ | /x , (3.47)
X3

. I /
=B, = kL5 + (-,: B—é‘?-i-> rE. ~ | /x . (3.48)
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Hence the wave field near the singularity is dominated by the two
components E- and B ~ (ckj/w)Ey.

If, in the long run, we intend to calculate the resonantly-absor-
bed energy as we have learned to do it in the laser case, section 2.3,
we will need the energy density, U, of the Alfvén oscillations in the
neighborhood of the singularity. In general terms

= iy
U = 76%6: [g¥§+ E"-a%,(we)t 51 , (3.49)

which around the singularity (B, and E, dominant) reduces to :
2
2

Using eq. (3.30) for Epr One has

/5/"[/4———-2( %3?——)1’] (3.50)

Let us make a last remark on the singularity. By using eq. (3.34)
in eq. (3.47) in order to eliminate (rEL)' one obtains the suggestive

result
- . G _ kL w
=g & - 228, (3.51)

which corresponds to the eg. (2.25) of the laser case. If we were able
to find a reasonable approximation for the driver, i.e., E, and By of
the global oscillation of the plasma column, we could then use {3.51)
to obtain the amplitude of the (damped) Alfvén-oscillation and hence
the resonantly absorbed power, precisely as in the laser case. Note
that E, can drive the Alfvén-oscillation only if G # 0.
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4. WAVE EXCITATION

4.1 Exciting antenna

From now on we restrict ourselves to the case vp/c € 1 and
neglect the displacement current in Maxwell's equations. This excludes
wave propagation in the vacuum surrounding the plasma and is a good
approximation for AWH where usually the vacuum wavelength o/w is lar-
ger than the system dimensions. For ICRF in large devices this approxi-
mation might be questionable. It facilitates, however, considerably the
treatment of the vacuum field and the antenna problem.

We assume that the plasma of radius Ip is surrounded by vacuum
and by an infinitely-conducting shell with radius rg. Furthermore we
assume that an antenna with radius ry is situated in the vacuum re-
gion. The antenna is modelled as a mere layer of imposed currents and
not as a piece of metal in which image currents could flow. Since we
neglect displacement currents, the antenna currents must satisfy div 3§
= 0. In most of the published AWH work only infinitely-thin helical
currents are.used. Here we do a bit more by allowing for idealized ra-
dial feeders [27]. We can then model either pure helical antennae which
do not need feeders to allow for div 3" = 0 or pure poloidal antennae
which do need feeders if m # 0.

To have an antenna model which satisfies automatically div T = 0
we can argue as follows. The antenna current must have the form § =
rotb, where b is an arbitrary vector (which we could call the "current
potential"). It depends on r and ~ exp i(mé+kz-wt). For the antennae we
have in mind it is sufficient to have

1}

B = b8, + b,E,, (4.1)

by —i(l-s}é{r-—ra)ﬁ,
(4.2)

b, = -ks B(r-ry)8,
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where
B = Bo exp i(mé+kz-wt). (4.3)

In the above, s (0<s<1) and Bo are real constants. As we shall
see below Bo is related to the current flowing in an antenna "wire".
The delta function, &(r-ry), defines the antenna sheet and the Heavy-
side function, 6(r-rg) = | &(r-raz)dr, defines the region of the
radial feeders. This becomes clear when (4.1) - (4.3) are used to
calculate the current 3*= rot B :

. .k

lr‘ = ~.S “f?; (3 9("-!‘&) ,

is ke dor-n), (4.4)
je = - (-5) Fp Strny

We can now interpret the role of s : s = 0 is a helical antenna
without feeders ( Fig. 4.1), whereas s = 1 models an antenna which has
poloidal currents in the sheet and these are fed by radial currents
(Fig. 4.2). An antenna of finite extent as it is used in experiments
(see Fig. 1.2) can be obtained as a Fourier-sum of antennae of the type
of eq. (4.4). Particularly, a real antenna is ”fixed in space”: it has
typically the dependence of a standing wave, e.g. sin (m6+kz) sin wt or
even sin mé sin kz sin wt. Such antennae can also be obtained by super-
position. For the time being we stick, however, to the "theoricians

antenna" dependence ~ exp i(mé+kz-wt).

Fig. 4.1 Helical antenna {s = O)

Fig. 4.2 Poloidal antenna with

radial feeders (s = 1)
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Iet us calculate the current in a "wire", I, by which we mean the
current flowing in a half period of exp i(mé+kz-wt). In Figs 4.1 and
4.2 this current is given by the current flowing in the helical or the
poloidal strips, respectively. These strips are delimited by the dashed
lines. Formally we can obtain it simply by integrating jg over half a
period along z :

I= S Re Jg drd2 = k[%bjcos(mész-cof)di =28, . (4.5
half penod

Our strip "wires" carry a current 2B

4.2 Vacuum wave equation

The surface-current-carrying sheet antenna can be treated as a
discontinuity of the perturbed magnetic field in the vacuum. Its influ-
ence can be taken into account as a matching condition at r = rj.
This will be done in the next section. The radial current, however, is
a volume current and has to be taken into account in the wave equation.

The wave equation is
e -
mt'éz-"z-\),e“ AL or FArdr. (46

Using div B = 0, eq. (4.6) and eq. (4.4) for jr we obtain

2 } A
%%r% -(k’-.,.%)gz :%—”% sk@@(r—-ra). (4.7)

Once B, is known, one can calculate the remaining components of B :

i dBs |
r Tk dr

B

4 - (4.8)
m . H

B& = kv 82 * k C Jf"

The wave equation, eqg. (4.7), is the equation of the modified Bes-
sel function. It is inhomogeneous in the case of antennae with radial
feeders. We could now solve this equation analytically. In general,
this makes not much sense, since the egs (3.34) and (3.35) anyway have
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to be solved numerically for a realistic plasma. We then prefer to sol-
ve (4.7) numerically as well. Only the case of a homogeneous plasma
without exciting antenna will be treated analytically (sect. 4.6).

4.3 Boundary conditions

4.3.1 Axis, r = 0

To specify fully our wave excitation problem we need, apart from
the wave equations in the plasma and in the vacuum, the behaviour of
the fields at the domain boundaries. Let us start with the axis r = 0
which is, as usual in cylindrical geometry, a singular point of the
equations. For physical reasons the solutions have to be reqular there.
If we remember the discussion of eq. (3.36) we might realize that the
solutions of eqgs (3.34) and (3.35) must behave like

|
vE, i E

W m
c B = "Hﬁ,

i

(4.9)

where € (r = 0) and g(r = 0) are different from zero. The regularity
condition is now a relation between these two quantities. It can be
obtained by expansion around r = 0 : § = & * er + ..., B=by +
bjr + ..., G = gy + gir + eeer A = a5 + ar + ceer Ky m/r. In-
serting these expansions into egs (3.34) and (3.35) we obtain to lowest

order in r :

(%Im|-m3a.)e, +  m'h, = 0,

(4.10)

(af“gj)eo +(Qofml+m%,>bo = o,

First, we note that the determinant of eq. (4.10) is indeed zero allow-
ing a non-vanishing solution for €, and by. The ansatz, eq. (4.9),
is therefore correct. Second, we obtain the regularity condition :

2
Elr=o) = n Br=0) . (4.11)
mgo “f”"—}qc
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Note that £ (r = 0) = 0 if m = 0 as we have found from eq. (3.36).

4.3.2 Plasma-vacuum interface, r = rp

In contrast to MHD, the boundary conditions at r = I'p in the
present cold-plasma theory are trivial. We simply require the fields be
continuous. By means of egs (4.8) and (3.24) we obtain

—>
-

k
B, (,-0) = B, % B, (+0) . (4.12)

Furthermore, from i w/c B, = rotr.ET = - ikyE; and eq. (4.8)

. (4.13)

(w é&l
?iO

EL(570) = - T Blp-0)= - 25 B (pw0) = (- 53

4.3.3 Antenna, r = Yo

As at the plasma surface we need two matching conditions here. The
first one is trivial and follows fram div B = 0, namely By(rp- 0) =
Bp(rgy + 0), or from eq. (4.8)

: dfia — <ﬂE%E

- . (4.14)

The second condition is for the tangential components of B which |
make a jump due to the surface current in the antenna sheet. It is suf-
ficient to calculate the jump of Bz; that of By follows automati-
cally from eq. (4.8). We use Stokes' integral theorem for rot B =
(4n/c)T with 3 given by eq. (4.4) :

Bds = 2*55‘5’ ds . (4.15)
D

éD
The proper choice of the domain D is shown in Fig. 4.3. If we

choose Ar <« Az the integral on the left-hand side is given by
[Bz(rg+0) - B,(ry-0) Jaz. The integral on the right-hand side is

%t ar/2
-4z S Je d‘f = - kgs >

- AY/2
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and we obtain
ar
B; (%*0) = 33(?21"0) -z k% . (4.16)
domacin
D
Fig. 4.3

4.3.4 Conducting shell, r = rg

Since we assume infinite conductivity of the shell the tangential
components of E must be zero, and therefore from
1 w/c By = rotyE = i m/r E, - ikEg = 0 we have

des

ir 0. (4.17)

4.4 Power emitted by the antennae

The power emitted by the antenna is
| - ¥ 3
P = 7 SAE A°r . (4.18)

With this definition Re(P) describes the power (resonantly) absor-
bed by the plasma and Im(P) is the reactive power partly due to the
vacuum magnetic field and partly due to the oscillating field and par-
ticle energy in the plasma. Instead of the total power P we prefer to
work with the power emitted by a unit area of the antenna :

P/A = - ng ST E *rdr . (4.19)
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In our papers we have mostly used still another quantity, namely,
the power per unit length of the machine p = 2nry P/A. Using the ex-
pressions for 3, eq. (4.4), we find

5
P/A = %’—‘;ﬁgzksfar - %(ke}-ﬁ’g—&f)w L2 &), -

&

B
With i w/c E = rot E and Ey(rg) = 0 this yields
" *
B w p* cSpm | @
?/ﬂzfée“r*é‘zeﬁ c By dr. (4.20)
@ a

Once we know the solution Bz and dB,/dr we can calculate By*
and Bg* from eq. (4.8). There are several alternative forms of eq.
(4.20) but in none have we been able to get rid of the integral term.
There is one form which is useful for the estimation of the difference
between a helical (s = 0) and a poloidal antenna with feeders (s = 1),
This particular form is obtained when use is made of div B = 0 to eli-
minate Bg* from eq. (4.20)

"
*
Pa = (l-$>%— @ »{r__ ‘.iﬁ _‘é, [gz B, rdr. (4.21)
a
i

The power emitted by the poloidal antenna, s = 1, is entirely
given by the integral term, in contrast to eq. (4.20). In eq. (4.21) we
can use the wave equation, eq. (4.7), to find

G 2
Wp¥ _ @@ k d(rx
P/R’-"— (f‘S) gc BY'(@‘SZCJ kz+mz/rzdr(fa8r)dr +
a

(4.22)
2 /ﬂ"‘t 470 | M
2 2 n akzrz+ m*

The first term is the power emitted by a helical (s = 0) antenna,
the second term describes the resistive and a 'part of the reactive
power emitted by a poloidal antenna. The third term is purely reactive
and relevant to the poloidal antenna as well. From an inspection of the
second term we learn that the resistive power has the same form for
both antenna types, if k » m/ry. In slab geametry, where k > k,,

m/r » ky and r + x the second term is integrable and yields

rdc

+ ./

Bw kz *
LC i+ l(;' By

-5 (4.23)

Xa,
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For a given By the power of a poloidal antenna is by a factor
kz%/ (k2 + ky?‘} smaller than that of a helical antenna. One can
show that for a given current per "wire", I, the excitation of the
plasma is smaller by the same factor. We have therefore

Re(P/A)ser [ 1 \?

S e () see et kE )

(4.24)

This relation is approximately true for the cylinder as we have found

from numerical calculations [17],

Re (P/ﬁ)5=, - k?. z
Re (P/A) 520 k% + mf/r2

cylinder : (4.25)

A last remark concerning the power might be in order here. The
wave equations in the plasma, egs (3.34) and (3.35), can be written in
real form if we take i w/c By to be real. If we take ip &R then in
the vacuum iB, e R as well as can be seen from egs (4.7), (4.12),
(4.13) and (4.16). We then find from eq. (4.8) that B-e R and the
power, eq. (4.21), turns out to be purely imaginary, i.e. purely reac-
tive. Remember that our model does not contain any dissipation as yet.
All we have in eqgs (3.34) and (3.35) are the singularities due to the
Alfvén resonance, A = 0. The result "P/A imaginary" just tells us that
we do not correctly evaluate these singularities by assuming all the
quantities in egs (3.34) and (3.35) to be real. Remember also that the
Landau damping would vanish if we naively assumed the Landau contour

going through the pole.

As in the Landau problem we can ensure causility by having w + iv
instead of w, where v > 0 [28]. Alternatively, we can assume to have
weak collisional damping (of the ions on neutrals, eqg. (3.10)) which
leads to the same result. From the treatment of the laser case (sect.
2.3) we know already that the absorption will not depend on the magni-
tude of v.



. 3

4.5 Normalized quantities

From now on we will work with dimensionless quantities. Whether it
is advantageous to do so or not is a question of taste. Within the pre-
sent section we denote a quantity A in physical units by A and its nor-
malized, dimensionless value by A. In the remainder of these lectures
we shall work exclusively with the normalized quantities which then
will be denoted by A again. Bquations cited from the first part of the
lectures will tacitely be taken in their normalized form. We use the

following normalizations for length, time, mass density and the elec-
tromagnetic field :

o= r/n,

E = tuﬂ(o)/r‘r,,

e, = e )/ Z R (0) M, . (4.26)
B = B/ B(0),

E=Ec/(uoB,). |

We stress the point again that all the quantities appearing in the
remaining sections will have to be interpreted as dimensionless, for

instance rp has to be interpreted as rp = rp/rp = 1 and wci
as

Wy = Q1 SUgle). ' (4.27)

For a single species plasma wei 1is, apart from the profiles of
polr) and By and the antenna structure and the shell rz, rg, m
and k, the only free physical parameter

e N 22 _ -¥ Neo (i) 2
W, = V4T E—r‘F ‘;5 = 4. 4v¢l0 r;,(c:a) 7—-—-———,(4.28)

Ada
Here u = mj/Mproton and z is the charge state of the ions. For a
small device of the size of TCA (rp = 17 om) wej ~ 2, for PLT

wei = 5 and for JET wei ~ 20, respectively.

Basad e
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Let us rapidly go through our equations, starting at egs (3.34),
and see which changes have to be made in order to have them in dimen-
sionless form. From (3.34) and (3.35) merely the velocity of light, c,
has to be dropped, the coefficient A and G being normalized by rpz,
edg. (3.32). Bguation (3.37) does not need any change. From rot B =
(4n/c)T we learn that j should be normalized by

- _ o _J 4.29
1= "¢ Bo 2

In eq. (3.40) the 4n/c has to be dropped then. As to the normali-

zation of the energy density, eq. (3.49) one may opt for g =
U/(Bo2(0)/4n) and has to carry explicitly a factor (VA(O)/C)Z in

the electric field term or one incorporates it in the definition of €.
The energy conservation law takes then the form

ol . §‘ -+°E’_
5..{. + O}fg-m + (}.» = O (4.30)

where the Poynting vector is given by é: = E;x ﬁ; The normalization of
the current g, eq. (4.5) is obtained from egs (4.4), (4.5) and (4.29).
Equations (4.7), (4.8), (4.16) and (4.22) loose their factors 4n/c and
in egs (4.9), (4.13), (4.20) - (4.23) c does not appear. The power per
unit area P/A, egs (4.19) - (4.25), has the same units as '§, i.e.

(B/A) = (B/A) 4n/(va(0) Bp(0)?).

4.6 The eigenvalue problem in a homogeneous plasma

Before we describe the numerical treatment of the wave excitation
problem (which is fully defined now) and the results for realistic
plasmas it is advantageous for our understanding to discuss the eigen-
oscillations of a homogeneous plasma column. In the laser case we suc-
ceeded to draw a simple picture of the physics by describing separately
the energy-carrier wave (the electromagnetic wave) and the energy-ab—
sorbing local oscillation (the electrostatic wave). For the present AWH
or ICRF case we have discussed the absorbing oscillation so far (sect.
3.3). We now aim at a description of the energy-carrier, i.e. the glo-

bal oscillation of the plasma column.
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We assume all the equilibrium quantities to be constant and the
equilibrium current to be zero. Under these assumptions the magnetic
field 1is axial, é‘g = &,, and the wave equation in the plasma is

given by eq. (3.40)

z dp 2 i
Lhedl . (£-2)s, - o,

where
K = (R*-G*) /A . (4.32)

This is an ordinary Bessel equation if kr2 > 0 and the equation of
the modified Bessel function if ky? < 0 [7] :

€, I (lkelr) for ki do
B,(r) = Zm(lkrlr)a- " ’ : (4.33)
C, Im(lkr‘r) 9’“ kp(O

where C; is a constant. By excluding Y, and Ky from our solution we
have satisfied the reqularity condition at the axis, eg. (4.11). Since
we treat the eigenvalue problem, no antenna is situated in the vacuum
rp < ¥ < ré. The solution of the wave equation in the vacuum, eq.
(4.7), is

B, = I (kr) + G Kin (ky) , (4.34)

where C, and C; again are constants. By using the 3 remaining boundary
conditions, egs (4.12), (4.13) and (4.17), one can eliminate the 3 un-
known constants C;, C,, C3 and find the dispersion relation of the
eigenoscillation. Equation (4.17) requires dB,/dr = 0 at r = fs,

Cr /Gy = - Dkr), Dy Chrs) = Ko (5) /T (k) . 4.35)

Here the prime denotes the derivative with respect to argument. Equa-
tion (4.12) requires B, be continuous across r = rp = 1, hence

Cs /€, = &, (I%e]) /(= Doy (ki) Iy (k) + Ky (K)) . (4.36)
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By means of eg. (3.35) the last matching condition, eg. (4.13), can be

written as
ke dBa, _ dB G
kT
P P

and yields the dispersion relation

Z*:(/kr/) . kf”
‘ZM(/kr/) +/'Z”/ f +S}gn(k:)£r5;2(k)%):o; {4.38)

where
Do (k1) Tom (k) = Kipe (k)
Dy, (krs) Ly (k) ~ K (k)

For the discussion of (4.38) we restrict ourselves to the case of

Fu (k1) = (4.39)

a single species plasma and we closely follow Ref. 29. We cannot just
copy Ref. 29 because the analytical relations derived there hold only
for m = *1, which unfortunately was forgotten when the text was

written.

It is easy to solve eq. (4.38) numerically. A numerical solution
is shown in Fig. 4.4. The free parameters are taken to be wci = 2 and
rg = 1.5 which are typical values of the TCA tokamak [ 14]. The eigen-
frequencies x = w/wgi are shown for m = + 1 and m = - 1 as a function
of k.

It is possible to obtain analytical solutions of eg. (4.38) in the
limit k « 1. We note that for x « 1 Ig(x) ~ 1, I's(x) ~ x/2,
Ko(x) ~ - log x, K'g(x) ~ = /%, Ip(x) ~ xV/(2Vv!l), where v =
m] # 0, I'm(x) ~ In(x) v/x, EKp(x) ~ (v=1)t 2"71/x¥ and
K'pn(x) ~ = Kp(x) v/x. It follows that Do(krg) ~ - 2/k’rg? and
Dplkrs)  ~  vi(v=11  22"7l/(x?"rg?”). ALl this  combined

yields
-‘-‘i-(r:a-f) m=0
Fn (K, %3) = ) (4.40)
_» o y=iml=1,2,3 ..
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Apart from the case m = (0, there are two possibilities to satisfy
eq. (4.38) at k € 1. The first possibility (which is missing for m = 0)
is to have ky ~ k. Because Znp'( kel )/Zm( kel ) ~ 1/ [kl all
three terms in eqg. (4.38) are of order 1/k and it is possible to satis-
fy the eguation. If, on the contrary, kr > 1, then either A ~ k? or
Im( [kpl) ~ k?, i.e. |kl is near to a zero of Zp.

let us first discuss the last case. The function Zp must be the
ordinary Bessel function Jy and kr2 > 0. From eq. (3.32) we have

x2 2
A = 5\)&{ 7 - xz - l( )
3 (4.41)
= gt X
G Q(, f"‘ xz

In order to have krz % 1 we need [x} ~ 1 and therefore can neglect k?
in eq. (4.41) with the result

kr2 = wcizx2 = w2, (4.42)

For the case shown in Fig. 4.4 w = Jyrgr S = 1, 2, ..., where Jjj,g
denotes the zeros of J,. These are the frequencies of the radial eigen-
modes of thé fast magnetosonic wave (F) as they are known from ideal
MHD [30]. The first zero, j;,; = 3.83, leads to x = w/wci = 3.83/2 =
1.91. In Fig. 4.4 this mode is denoted with F, as the second radial
eigenmode of the fast wave. As long as k g 1 this mode and all the

higher ones are practically identical for m = = 1.

The first radial eigenmodes of the fast wave F; are obtained in
the limit kr ~ k > 0. After expansion of the function Zp, 1.e.,

Jn'/ Jn ~ |m|/|ky| the dispersion relation (4.38) becomes

2
G ke _
!+ T—-—I;—ZQ = 0, (4.43)
where ¢ = sign (m) and Q = (rszmul}/(rszmi). Using the defini-

tion of kr2, eq. (4.32), we find

A - oG = k2/0Q. (4.44)
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Using egs (4.41) for A and G we obtain a quadratic equation for

w/wei whose positive-frequency solution is

wiw = x = o (1+sgnim) x/z2) (4.45)
where
2W
7z kg [1 - Y\S "" X
- — —e . (4.46)

Equations (4.40) and (4.46) hold even for krg » = and k » 0 as can be
shown by expanding Dy, eq. (4.35), Dgplkrg) ~ - =©n exp(-2 Kkrg).
If we take this limit in egs (4.45) and (4.46) we find w = )2 k. This
is the surface eigenmode frequency as given by ideal MHD theory [31].
In an MHD treatment (i.e. wej » =) the two modes for m = + 1 behave
identically and like an eigemmode of the fast wave. It seems therefore
natural to identify the first radial eigenmode of the fast magnetosonic
wave F, with the surface eigenmode S.

In Fig. 4.4 only the mode F;, m = -1 has been labelled with S for
the following reason. For small k the wave fields of F; are global
functions as opposed to those of the surface wave in plane geometry
where they are confined to the neighborhood of the plasma-vacuum inter-
face. It is only for k 1 that the mode F;, m = -1 has surface-wave
character as can be seen from Fig. 4.5. The mode F;, m = 1 has global
wave fields for all values of k. The surface-wave character of F;, m =
-1 in cylindrial geometry is clearly related ot the fact that it merges
with the Alfvén resonance A = 0, denoted by A _ (at k = 1.5 in the
case of Fig. 4.4). The value of k where S and A , merge depends on

rg as we shall see in Fig. 4.6.

Let us, however, first finish the discussion of Fig. 4.4 by des-
cribing the global eigenmodes of the Alfvén wave (GEAW). These modes
have often been called ion-cyclotron modes and very recently "discrete
Alfvén waves" [15]. For small k they correspond to the combination A ~
k2, ke > 1 satisfying eq. (4.38). As can be seen from Fig. 4.4 there
is no physical interest to obtain solutions for k « 1 because the whole
class is extremely densely packed; in the MHD limit the solutions are
even infinitely degenerate. For k > 1.5 the eigenfrequencies of the
lowest radial modes (only A1, m = £+ 1 are shown; all the higher modes,
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Ag, s > 1, lie between A} and A ) are distinctly detached from the
accumulation point A . In the case shown, rg = 1.5, Wei = 2, the
largest distances have been found around k ~ 3.5. The relative distan—
ces (We - wg)/we are 7.2 %, 3.2 % and 1.7 % for the modes s = 1,
2, 3;y m=-1and 3.6 %, 1.8 %, 1.1 % for m = 1. It is interesting to

note, that the set of Ag, m = -1 seems to contain one mode more than
m = 1, namely the mode A;. All the other modes can, in fact, be put
into a close one-to-one correspondance, Agyp(m = =1) = Aq(m = 1),

with respect to frequency and radial wavenumber Xy (not shown). At
small k the surface mode S has been identified as an eigenmode of the
fast wave; at high k it now appears as a part of the Alfvén wave. This
is, however, from a purist's point of view, somewhat misleading.
Strictly speaking, the mode lies always above A ,, and should there-
fore not be identified with any eigenmode of the Alfvén wave.

A detailed investigation of the behaviour of the surface mode as a
function of k and of the radius of the conducting shell, rs, has been
made. The most striking result is shown in the upper part of Fig. 4.6.
The radial wavelength k, changes from real to imaginary as k grows.
This fact explains the change (Fig. 4.5) form a global wave form at k =
0.4 to the surface wave form at k = 1.5 : at k = 0.4 the eigenfunction
for By is given by J)( m r) whereas at k = 1.5 By is given by an
exponentially growing I; ( [kr{ r). We note the strong effect of the
conducting shell. The smaller the vacuum gap the higher are the axial
phase velocities w/k at small values of k (see lower part of Fig. 4.6).
This fact is well described by eq. (4.45) which for k X 0.4 approxima-
tes the exact result within 10 %. From eq. (4.45) we conclude that the
phase velocities of the mode Fi, m = 1 show the same tendency to in-
crease, when the shell is approached to the plasma, as those of the
surface wave. This effect has been described by Paoloni [32].
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4.7 The role of the global modes

In our organ-pipe picture (in contrast to WKB) of AWH it is the
global modes which can be excited by the antenna. We call them "global
modes" because their excitation engenders an overall field in the
plasma and the vacuum. Conversely, they can be excited by a perturba-
tion of the vacuum field, i.e. by an external antenna. In contrast,
local modes cannot or only with difficulty be excited by an external
antenna. By local modes we mean either the singular perturbations
around ro, A(rp) = 0, in an inhomogeneous plasma or local perturba-
tions in a homogeneous plasma as they can be obtained from a superposi-
tion of global eigenmodes of the Alfvén waves As, with high radial
mode numbers s.

Since the local modes satisfy A(rg) = 0, the frequency depends
merely on k; and, as a consequence, their group velocity perpendicu-
lar to the field is approximately zero. They cannot, therefore, trans-—
port energy from the plasma boundary to the interior. This role has to
be played by the global modes. Candidates are all the eigenmodes, Fg,
of the fast wave and the low-s eigenmodes, Ag, of the Alfvén wave.



-50 -

Fig. 4.6
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If we ignore, for the time being, the phenomenon of resonant ab-
sorption in an inhomogeneous plasma we can envisage to heat a plasma by
exciting a global mode. Collisional damping (resistivity, viscosity) or
Landau damping would transform its energy into heat. Such a heating
scheme suffers from the weakness of the mentioned damping processes
which makes the resonance (global resonance !) of the mode extremely
sharp (high=Q "cavity" mode). Values of the order of 10~¢ - 10~* for
Mw/w |33] are not unusual. This fact leads to a technical problem : the
frequency of the RF-generator has to follow (to track) the eigenfre-
quency of the global mode as the plasma parameters evolve during the
heating pulse.

Heating by excitation of eigenmodes of the fast wave (and maybe of
the Alfvén wave) has been observed in many ICRF-experiments. The eigen-
modes manifest themselves by spikes in the loading impedance of the
antenna, Re P/A, eq. (4.19), as the plasma parameters evolve. Spikes
which are definitely due to resonances with eigenmodes of the Alfvén
wave (A;,A,) have been observed in the TCA tokamak [ 14,15].

Coming back to resonant absorption now, we must realize that an
inhomogeneous density of the form, say, ngp = 1 - r?, fills the space
between the lines A, and X = w/wei = 1, Fig. 4.4, with the Alfvén
continuum. This means that with (k,w) falling between those two lines a
field perturbation has a singularity at r = ry where A(ry) = 0. The
modes F; and S in Fig. 4.4 hence are coupled to the singular modes.

They can resonantly loose their energy at the singularity.

As long as the equilibrium current is not introduced into the pic-
ture a pair (w,k) lying near to A, corresponds to a point rp near
to center. Conversely, a pair (w,k) nearer to w/wgi=1 corresponds to
a resonance near the plasma boundary. Since the aim of a heating scheme
must be to deposit the energy as near as possible to the centre of the
plasma, the surface mode S must clearly be the best candidate for AWH.

In large devices wei 1s, however, a large number and several
eigenmodes, Fg, of the fast wave fall into the region below W/ Wai =
1, Fig. 4.7. Under such conditions it could be envisaged to use the
lowest-s modes with quite good penetration features. A detailed compa-

rison between F1(3) and FZ has been made in Ref. 17.
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Fig. 4.7 » k

In a two-species plasma with wg; < we, there are two continua,
one lying between A ,; and w = wg; and the other lying between
A 57 and w = wep. Each continuum has an associated surface mode and
global eigenmodes of the Alfvén wave [34].

Conventionally one could call the lower continuum the Alfvén con-
tinuum and the higher one the "ion-ion hybrid" continuum (used in the
ICRF mode-conversion scenario). Both, however, have the same origin and
both species contribute to the physics in both continua.

We have now a clear picture of both, AWH and the ICRF mode-conver-
sion scenario. The antenna excites a global mode which transports the
energy to the singularity where it is resonantly absorbed in the cold-
plasma picture and linearly converted into a short-wavelength mode in
the warm-plasma pictures. At this point we could use the knowledge of
the waveform of the global mode as obtained for a homogeneous plasma in
the previous section (sect. 4.6) for an absorption calculation relevant
to an inhomogeneous plasma and based on egs (3.50) and (3.51). One
would, as in the laser-case, sect. 2.3, assume that the collisional
power loss is given by vU, eq. (3.50), with w » w + iv. Also, one would
assume that the wave structure of the global mode of the hamogeneous
cylinder is representative of the reqgular part of the wave structure in
the inhomogeneous plasma cylinder. It is to be expected that such a
procedure could produce reasonably good results for AWH where S is used
as global mode. It is not clear whether ICRF, which tends to use higher
Fg-modes, could be modelled in this way. A precise evaluation of the
antenna-loading impedance in both cases can only be performed with

nunerical means.
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5. NUMERICAL METHODS

5.1 Shooting method

Certain types of one-dimensional (1D) inhomogeneous boundary-value
problems can be solved by the shooting method. It consists, as its name
indicates, in solving the boundary-value problem as an initial-value
problem. One solves the corresponding differential equation (or equa-
tions) from, say, left to right in the problem domain and varies the
initial conditions on the left boundary until the condition imposed on
the right boundary are satisfied.

The method can be described in a different manner giving it a
somewhat less heuristic aspect. Let us assume that our boundary-value
problem is described by a system of two 2nd order ordinary differential
equations with 2 boundary conditions imposed on both boundaries of the
domain. What would an analytician do ? He would determine 4 linearly
independant fundamental solutions of the system and superpose them with
the appropriate coefficients determined by the boundary conditions as
we have done it in sect. 4.6 for a second order equation in two adja-
cent domains. The same can be done on the computer with the only diffe-
rence that we determine directly two fundamentals which satisfy the 4
conditions on the left boundary. All we need to do is to combine them
in such a way that they satisfy the conditions on the right boundary.

For a second order equation in a single domain or second order
equations in adjacent domains the shooting method works well, is rapid-
ly programmed (e.g. by using a Runge-Kutta integrator), and yields qui-
te efficient codes which do not need much memory nor excessive CPU-
time. It does not work for homogeneous boundary-value pfoblems, i.e.,
eigenvalue problems, with a non-compact operator, i.e., operators which

have a continuous frequency spectrum as our Alfvén problem with v = 0.
The evident reason is that it is impossible to cross the singularity.

Another situation where a straightforward shooting method does not
work is given by the kinetic problem of mode conversion because of the
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appearance of the short-wavelength warm-plasma mode. The corresponding
system of two 2nd order differential equations has 4 fundamentals of
which two correspond to a left- and a right-running, damped, short-
wavelength mode. The small-scale wave which propagates against the di-
rection of integration is "generated" from numerical noise and appears
as an exponentially growing solution (in the direction of integration).
The unphysical, exponentially-growing part dominates the real physics
and makes it disappear in the round-off error long before the integra-
tion procedure has reached the other end of the domain. Multiple shoo-
ting techniques where the domain is sliced up into subdomains are pre-
sently in development and should cure the problem created by the diffe-
rent length scales.

The above somewhat lengthy introduction to the shooting method is
to be understood as an attempt to motivate the reader to study the next
section where a different method with a wide application potential (ei-
genvalue problems, kinetics, 2D, etc.) is presented. Had we in AWH and
ICRF to tackle only egs (3.34) and (3.35) the shooting method would be
good enough.

We now discuss briefly how the egs (3.34) and (3.35) can be solved
by the shooting method. One problem, typical to cylindrical geometry,
is posed by the fundamental which is singular at the axis. We cannot
integrate from the boundary towards the axis because under all circum-
stances we would pick up the singular solution as we approach the axis.
We therefore have to start at, or at least very near to, the axis and
exclude explicitly the singular solution, i.e., we impose the requlari-
ty condition, eq. (4.11). To be able to apply it, we use the variables
Eand 8, eq. (4.9), instead of E;, and By. Equations (3.34) and (3.35)
written for these variables are :

]
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Remember that w has to be replaced by w + iv in the expressions
for & and G.

We start with the integration at r = § «< 1 by choosing € = 1 and
ﬁaccording to eqg. (4.11). Once the boundary, rp = 1, reached, we
know E; (rp-0) and By(rp-0) up to a constant C;. Now we use the
matching conditions, egs (4.12) and (4.13), and obtain Bz (rp+0) and
dBZ/dr]rp+g up to the same constant. Using eg. (4.7) we integrate
the B, up to the antenna where we obtain the numbers, say, b; and 4,
for B, and dB,/dr still affected by the constant C;, i.e.,

B, (-0) = C, b ; dB,}/df‘[ = Cidy . (5.2)
-0
In a second step we integrate eq. (4.7) from rg towards rz. As
initial conditions at r = rg we choose B, = 1 and dB,/dr = 0. The
latter satisfies the boundary condition, eq. (4.17). Arriving at rz+0
we find the numbers b, and d, for B, and dB,/dr which this time are
affected by another free constant, C,, i.e.,

B, (lh+0)=Coby, dBe/dr|, =G . (5.3)

In other words, we have found the values by, d;, b, and 4, of the fun-

damental solutions at the antenna satisfying all the boundary and mat-
ching conditions apart from those at the antenna. The free constants C,

and C, have now to be chosen in such way that eqs (4.14) and (4.16) are
also satisfied. We find

dz
C1=2';"Cz 5

dz L; ) ’ {(5.4)
szﬂk%/(bz- ;21 )
Once the field B, is known all the other fields can be calculated, in
particular the antenna-loading or the power, eq. (4.20), can be obtai-

ned.

One remark is in order here. One can use the same procedure to
determine eigenmodes and eigenfrequencies of the system as long as one
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has no singularity in the plasma. In this case the antenna current g is
zero, and we have to match the solutions continuously across ry. The

condition for this is

b, /d, = by /ds . (5.5)

If this condition is satisfied for a given w, we have found an eigen-
frequency and an eigenfunction. In general the eigenfrequencies can be
complex. In the ideal MHD model the eigenfrequencies of instabilities
are purely imaginary, i.e., w’e R .

5.2 Variational methods

5.2.1 The weak variational form of the boundary-value problem

There is a powerful numerical-discretization procedure which, in
our opinion, particularly suits theoreticians : the finite-element
method. Usually this method is not applied directly to the pertinent
differential equation but to its weak or Galerkin variational form.
Here we shall present only the very essence of the procedure. For
mathematical details the reader is referred to text books such as Ref.

35.

The method is applicable to multi-dimensional boundary value pro-
blems in complex domains. In fact, it has been invented by structural
engineers. For the presentation of the basic ideas it is, however, suf-
ficient to go through a simple example. We choose a 1D inhomogeneous
boundary-value problem which is described by a 2nd order differential
equation, a problem which could be solved by the shooting method as
well.

Let our model equation be
V4 /
U+ pxau’ + gyu = 4(x), (5.6)

subject to the boundary conditions, say,
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a(0) = @,
(5.7)
u'(1l) = 1.

The prime denotes the derivative d/dx and p(x), q(x) and s(x) are given
funtions of x of sufficient regularity. Let v(xX) be a test-function in
some functional space of sufficient regularity (v' must exist), then

| ! {
~f{ric’olx + v'(c)a’(:}-tr(o)u’(o)+Jv(Fu’+qu)dx = XM dx. (5.8
1] (o] 4
The natural boundary condition, u'(1)=1, can be used directly in eq.
(5.8). The essential condition, u(0)=0, however, has to be imposed on
the functional spaces of u(x) and v(x) explicitly, i.e., u(0)=v(0)=0.

With this, eq. (5.8) becomes
|

( ! ‘
-jur’ujd>< +Sv'fmtdx +jv?a0\x = szdx -U@). (5.9)
o) 0 o o]
Eq. (5.9) is called the weak variational form of egs (5.6) and (5.7)
and is equivalent to them under the essential condition u(0)=v(0)=0.
Bquation (5.9) becomes a usual (strong) variational form if p(x)=0.
Interestingly, in eq. (5.9) only the first derivatives must exist (they
do not need to be continuous) in contrast to eq. (5.6). For the precise

mathematics see Ref. 35.
For numerical purposes one approximates eq. (5.9) in a suitable

manner. We shall discuss merely the finite-element method and merely in

its simplest form.

5.2.2 PFinite elements

The basic idea consists in dividing the domain 0 < x < 1 into a
finite number of, in general, unequally sized subdomains (the finite
elements), 0 = x; < X} <.e.< Xpo) < %X = 1, approximating the func-

tions u(x) and v(x) by simple functions in each subdomain.

For the problem at hand it is sufficient to approximate the func-
tions by linear functions, Fig. 5.1. As a rule of thumb one can say



that the simplest functions having the required regularity properties
are the best for numerical purposes. To choose linear functions is suf-
ficient in our case because the integrals in eq. (5.9) exist if u, u',
v and v' exist. It does not matter that the derivatives u' and v' are

discontinuous.
Al
| o
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X X XXy % X X 2 %y Xn
Fig. 5.1

The method losses its somewhat heuristic touch, once the basis
functions of the finite-dimensional function spaces of u and v are in-
troduced. By the way, u and v do not have to belong to the same space
as they do in our example. The basis functions, ¢j(x), which allow us
to describe a function of the type shown in Fig. 5.1 are defined by

r
O x é x'-[
X, X, 6‘-, bl A
cé(x)= { Tem e (5.10)
Mo = X
YA VY ARV
Ky - X¢ Xp £% & Xwr
L 0 Xy & X

The function ¢j(x) is shown in Fig. 5.2. A function u(x) is
defined by its values uj, Fig. 5.1, at the mesh points. Formally we

have

n
Uix) = 2 U %.(x) . (5.11)
J=/
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Fig. 5.2

Note that we have chosen the functional space such that u(0) = 0
by starting the sum at j = 1 and not at j = 0. We can construct from
eq. (5.9) n linearly independent equations for the n unknowns uj by
choosing turn by turn ¢;(x), ¢, (X),...4n(x) as test functions; in
loose words, by projecting the discretized version of eq. (5.6) (for-
getting about the nonexistence of dzu/dxz) onto the basis, ¢i, i = 1,

LI 4 n.:

! ! | [

s 7 / J (

- pY 3 s=\kbadx - o; 5.12

S| (oo [hpseopaga = fpode-du
The matrix Ajj, given by the square bracket in eq. (5.12), is

tridiagonal because

S%V; dx =0 if /c'—J‘/>,,2 : (5.13)

The basis is almost orthogonal. It is very easy to solve a linear

system for Uy

e o= I T = .. 5.14
jZA,,JaJ r (=1 ..., n (5.14)

by Gauss elimination when the coefficient matrix Ajj has a band-width
of 3. In 2D problems, which are discretized in the same spirit, the
band-width is proportional to the number of mesh points in one direc-
tion. Iterative solution techniques might then be more efficient. They

would certainly need less memory.
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5.3 Numerical problems associated with presence of continuous spectra

L10]

Since the paper published on this subject [ 10] is written in quite
simple terms it is not worthwhile to repeat the arguments here. We can
read it without going back to the references cited. There is only one
concept which we have not encountered in the course of these lectures,
the concept of "spectral pollution". To make the present section, or
rather Ref. 10, self-contained we introduce the concept in physical
terms. For mathematical details the reader is referred to the original

literature by J. Rappaz (references in Ref. 10).

In the presence of continua, i.e., in the presence of singulari-
ties, the numerical scheme should be able to model the physics near the
singularity '"precisely". If, for instance, we decided to model our
cylindrical wave problem by ideal MHD, we would start with the equation
of motion of MHD :

-

-wifo f = E(?) ) (5.15)

Here 'F: is the fluid displacement and F the force acting upon a fluid
element. After constructing the variational form, which turns out to be
a strong form, we would naively discretize the 3 components £y, &g
and £, with the ansatz (5.11), and then solve the resulting discre-

tized eigenvalue problem,

”

- w? /453' x; = B;j X;, (= 1,..,3n".  (5.16)

We would be punished for our naivity by solzitions with spurious
eigenfrequencies which have nothing to do with the fast nor the slow
magnetosonic wave nor would they satisfy A = wz/vAz - kgz = 0 some-
where inside the plasma. This phenomenon is known as "spectral pollu-
tion". The reason for it is that in MHD the Alfvén waves are characte-
rized by div é‘ = 0 which cannot be satisfied other than pointwise with
the ansatz (5.11) for all components of £. Phrased otherwise, the nume-
rical scheme is unable to model the disparate singularities of £, ~

log(r-ry) and of &g, £ ~ 1/(r-rs) -
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The remedy to pollution, once it is found, is obvious. Either one
writes the equations in variables which have all the same type of sin-
gularity (e.g. eqs (3.34) and (3.35), E; ~ By ~ log(r-rg)) or one
tackles directly the second order equation (3.37), or, as in the case
of the eigenvalue problem where these two former approaches are unprac-—
tical one chooses a functional space of approximating functions which
allows div %,' = (0 everywhere. Inspecting

- fo l v *
div § = tF (frumge)%- ik €, (5.17)
one finds that £, should be approximated according to eg. (5.11), the
variables §, = (Ey+im Eg)/r and E,, however, by piecewise cons-

tant functions ¢j4;/2(x) :

on
.?r = Z xﬂ'(ﬂ %’ (r) >

=0
-1
- (2)
§, = rer Do (7)) (5.18)
(=0
!
(&)
= % cﬁc (V‘)
Eg. zZe% 1+é [ J
where
0 r{ Pg 5 f‘)r"'.f,
¢ (r) = { (5.19)
YA
Lz t .

* 1 re &r &£ iy

This procedure yields a pollution-free spectrum. This is another point
for our rule of thumb that the simplest possible approximation should
be used.
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6. APPLICATIONS

The aim of these lectures has been to introduce the main under-
lying ideas of the theory, or maybe rather of our computations, concer-
ning AWH. If we now browse through our published work it should be pos-
sible to achieve a good understanding of the mainly numerical results.
We shall chronologically go through this literature. It is natural that
the earlier papers offer a less-clear physical picture than the more
recent ones. The earlier papers contain nevertheless some not-unimpor-

tant results.

6.1 Ideal-MHD theory

6.1.1 Cylinder geometry

In the earliest conference papers |36,37] mainly the performance-
tests of the numerical scheme have been reported. At that time the
relation between mesh size and artificial damping v became clear. Also
we found that it should be possible to heat the interior of a cylindri-
cal plasma, in contrast to the prediction made with simple models. Sub-
sequently we found [38] that the resonance with the surface mode (which
was called "a collective mode" at that time) was responsible for the

good absorption in the plasma interior and an antenna optimization has

been presented.

The role of cylindrical geometry (in contrast to plane slab geome-
try) has then been evidenced [21]. We have shown that the fact that the
two geometries lead to different types of singularities must be related
to the other fact, namely, that the energy does not penetrate to the
center in the plane geometry. With the present knowledge we can say
even a bit more. In ideal MHD, i.e., wqi + =, the quantity G, eq.
(3.32), is non-zero merely due to the equilibrium current term. In
Ref. 21 we called this term a "curvature term" because in plane geame-
try the equilibrium current does not generate a G # 0. To excite a sin-
gular Alfvén motion near the axis we rely on G # 0, eq. (3.51), because
for the driving surface mode, S, By » 0 near the axis, Fig. 4.6.
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The next paper [27] is a kind of review of the numerical results
concerning resonant absorption. Poloidal antennae with feeders are in-
troduced for the first time and we compare them with helical ones. We
find a ratio of the antenna-loading resistances consistent with eq.
(4.25). In a didactical part we show how the plasma perturbation evol-
ves in time and numerical evidence for the collective plasma motion at
the frequency of the surface mode is given. Then the limits to the com-
putational model are described in detail showing results from a time-
evolution code based on the MHD equation of motion, eg. (5.15),

[ a‘g"/@é‘ = Ef?), (6.1)

and from an "artificially-damped" code. The antenna optimization stu-
dies are completed by considering the influence of the conducting shell
and some preliminary results (w/wei = 0 !) are presented on the an-
tenna-plasma ‘coupling via higher radial eigenmodes of the fast magneto-
sonic wave. As we would expect fraom Fig. 4.4 it is difficult to couple
energy to the plasma interior in this way. A further result is that
"very-low frequency heating", i.e., AWH with parameters such that
kj(ro) = 0, has low efficiency (P/A ~ k§3).

Apart from the idea that the global eigermodes of the Alfvén wave
(GEAW) could be excited for the purpose of heating, the last two papers
in this series [33,39] are of possibly mere historical interest. We
show in fact that the ion-cyclotron waves, i.e., the global eigenmodes
of the Alfvén wave, do exist even in MHD where w/wcj = 0. Their exis-
tence is due to the "curvature"-term, G # 0. In MHD their distance (in
frequency space) from the lower edge of the continuum is sizable only
for very special choices of k. This distance can be strongly modified
by finite-w/w.j effects which, therefore, should be included into the

model.

6.1.1 Toroidal geometry

In the paper just described [39] it is mentioned that the GEAW's
can also be obtained in toroidal geometry but that it is not easy to
model them. The problem is a mesh-resolution problem because the GEAW's
are very densely packed in frequency. Since a given spatial mesh size
requires a damping v of a given size in order to make the numerical
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continuum look as real continuum, GEAW's at a distance Aw from the

continuum disappear in the continuum if Aw < v.

In the two papers entirely devoted to toroidal geometry [9,40]
only the physics relevant to resonant absorption is investigated. Refe-
rence 9 contains preliminary physical results and a part on numerics.
We show that the mesh size and the damping v in our toroidal code are
sufficiently small to make the antenna-loading impedance P/A indepen-
dent of v. More details on the numerical features are given in Ref. 41
which is the preprint of Ref. 40.

The main physical results are given in Ref. 40. The formulation of
the theory in toroidal geometry closely parallels that of ideal-MHD
stability. The numerical code used is, in fact, a slightly modified
version of the Lausanne MHD-stability code ERATO [42]. The main new
feature in an axisymmetric configuration, as opposed to a cylindrical-
ly-symmetric configuration, is the phenomenon of poloidal-mode cou-
pling. The poloidal wavenumber m ceases to be a good "quantum number".
Even in a torus with circular cross-section the (1/R)-dependence of the
toroidal magnetic field, By, breaks the circular symmetry : the equi-
librium quantities, in particular Bp, depend on the poloidal angle. A
rough approximation of the toroidal field is

B_(r 8) = B, (r=0) /' (4+ %) co59> , (6.2)

where Bp(0) is the value of the field on the magnetic axis which has
a major radius Ry, whereas r and 6 are the minor-radius and the po-
loidal-angle coordinates, respectively. This dependence of Bp intro-
duces a "toroidal coupling” between modes of wavenumber m and wavenum-—
ber m ¢+ 1. The strength of the coupling is proportional to r/Rs.
Clear numerical evidence for this coupling is shown. An antenna with
single helicity (k,m) excites resonant surfaces with different m-num-
bers on different minor radii. Despite of the toroidal coupling the
torus still behaves similarly to a cylinder. The resonance with the

surface mode is still present.

Non-circular cross-sections introduce other types of linear mode
coupling. An elliptical cross-section leads to coupling between m and
m + 2 modes, triangularity couples m and m + 3 and so forth. Elliptici-
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ty is discussed in detail and it is shown that an elliptical cross—sec—-
tion might be a problem for AWH because a substantial amount of energy
can be coupled into resonant surfaces near the plasma boundary. This
finding is confirmed by an investigation of a JET-like equilibrium.

From cylindrical antenna-optimisation studies [38] we had found
that for m = 1 one should use krp ~ 1,5-2, corresponding to a toroi-
dal wavenumber of the order of n = 4-6. The toroidal calculations made
the optimum somewhat questionable. It is not that we would not find the
highest P/A values in the rarge n = 4-6 but high n-numbers imply the
existence of many resonant surfaces in the plasma and of some of them
near the edge. We can avoid edge coupling by using small n, say n =
1-2. The price we have to pay is a somewhat smaller antenna load P/A.

6.2 Cold-plasma model

By "cold-plasma" model we mean the model developped in chapter 3.
In the first paper using this model [17] we study the influence of the
value of w/wpj on the antfﬁna load when the surface mode S or the
fast magnetosonics modes F; and Fzm""il are excited. We find that the
surface mode has the best penetration properties. Also we show that the
distance of the GEAW from the continuum increases for increasing
w/wei. This was an important fact which allowed us to explain experi-
mental findings [44]. The next paper [29] is devoted to the spectra of
a cylindrical column. Its first part, namely the one concerning a homo-
geneous cylinder, has been integrated into these lecture-notes (sect.
4.6)., In the remaining part we show how these spectra are modified by
inhomogeneities. In a recent conference paper {34] we then show the
complications which might arise in a two—-species plasma with two conti-
nua and two wei-lines. The results of this paper based on cylindrical
geometry should, however, not be over-valued because the physics near

wei 1s intrinsically toroidal.

In another very recent paper [24} we have made an effort to model
AWH in a plane slab geometry. This paper has been commented in section
3.2.3.
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6.3 Comparison with the TCA-experiment

6.3.1 BApparent resistance of the antenna

For a comparison the real antenna structure used in TCA has to be
taken into account, Fig. 6.1, or at least certain features of it. The
structure comprises eight separate antenna groups sited above and below
the plasma at four equally spaced toroidal locations. Each group is fed
separately with its phase determined by its external circuitry. Depen-
ding on relative phase, different excitation patterns can be achieved.
With equal phase in the top- and bottom groups one has an "M=0 pat-
tern", a phase of n makes it into a "M=1 pattern". In the toroidal
direction there are 3 possibilities : equal phase yields N=0, two sub-
sequent groups with equal phase and a phase of n in between the 2 pairs
vield N=1, and the most commonly used pattern, N=2, is obtained by
alterating the phase from group to group. Three examples of phasing are

shown in Fig. 6.2.
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The antennae cover a substantial fraction of the total toroidal
surface. One group of three antenna plates covers a poloidal and a to-
roidal angle of 95 deg and 26 deg, respectively. The beneficial conse-
qguence of these wide angles is that the modes with high n or m are

weakly excited.

Our theoretical model for an antenna consists of an imposed cur-
rent in the vacuum. In the model the antennae cannot react to plasma
motions by carrying image currents as the real metallic antenna plates
can. In the experiment the effect of image currents is lowered by the
fact that each antenna group is made up from 3 separate plates.

Any of the mentioned antenna patterns can be Fourier-analysed in
terms of standing waves of the type Apn, cosmé sinn¢ sinwt (cylindri-
cal approximation). Here n = kR,, where R, is the major radius. The
M=0 and M=1 patterns engender m=0,2,4,... and m=1,3,5,... The toroidal
patterns N=0,1,2 yield n=0,4,8,..., n=1,3,5,... and n=2,6,8,... respec—
tively. The amplitudes Ay, corresponding to n=N and m=M are usually

dominant.

Let us define the apparent series resistance of the antenna struc-

ture by

= 2
P=3 RI", (6.3)

where P is the total absorbed power, theoretically given by eq. (4.18),
and I is the amplitude of the antenna current in one group. We can ob-
tain a theoretical value for P. First, we have to Fourier-analyse the
structure as described. Then, we have to decompose the standing waves
into the 4 running waves of the types (m8+n¢-wt), (mé-n¢-wt), (-mé+n¢-
wt) and (-m8-n¢-wt) compatible with the theory which treats a dependen-—
ce exp{i(m9+n@—wt)}. Knowing the amplitudes of the poloidal current,
jgr eg. (4.4), of each of these modes we know the corresponding B and
can calculate the power P from P/A, eq. (4.20), for each mode separate-
ly. Finally, the powers can be summed and multiplied by 2/I% to obtain
the resistance. Note that the eq. (4.20) should be used with s=1, cha-
racterizing a poloidal antenna with radial feeders. The radial currents
need not to be Fourier-analysed separately, their Fourier-decomposition
being automatically determined by div J=0. A typical value obtained for
TCA-parameters and M=1, N=2 is R=1Q.
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6.3.2 Rough general scaling

Most of the global physical parameters can be scaled out of the
theory, sect. 4.5. The same is true for the experimental results within
certain limits [14]. A plot of R/w [m@/MHz]| versus normalized frequency
ga__:mrp/vA(G} for different parameters (Bp,w) shows that these are
scaled out. The resistance has the theoretical scaling, R=(VA{O)/C2)
R. If we argue that the loading is due to AWH we might replace w by
kj and R/w by rp R/(c’ky) and find, indeed, that R/w should
depend on ky as R(ky)/ky. Effects of a finite value of w/wci
were not cong;dereé in this scaling.

6.3.3 Resistance traces

In the early low-power measurements (~100 W) the density was
usually ramped which is equivalent to a monotonic increase of w =
wrp/vA{O). In this way a large frequency band of the spectrum is
probed by the driver. The experiments showed a loading in the continuum
which was quite consistent with MHD calculations. The peaks due to the
global eigenmodes of the Alfvén wave (GEAW), however, came unexpected.
Although they have subsequently been explained by means of the MHD
model, good agreement could only be obtained by including the effects
of w/wei [17,43].

Consistent with theory the GEAW's appear only with a helicity
having the same sign as that of the equilibrium magnetic field. Their
wave form, inferable from sawtooth oscillations on magnetic probes and
on soft x-ray signals [15], seems also to be consistent with theory.
The distance between subsequent GEAW's [44] can be explained with the
finite—w/wei model.

6.3.4 High-power experiments [45,46]

To date peak powers up to 220 kW and average powers (30 msec) up
to 170 kW have been injected into TCA. These powers are of the order of
the ohmic heating power before the RF pulse is applied. No manifestly
nonlinear effect related directly to the heating scheme has been obser-
ved. There is, however, an impurity problem and, in general, the elec-
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tron density increases substantially during the RF pulse. These two
phenomena have a remarkable similarity with what is known from ICRF ex-
periments. Both, the ion and the electron temperature increase at the
beginning of the RF-pulse. The increase is roughly linear with the de-
livered power. Towards the end of the pulse the electron temperature
decreases due to the radiated power loss caused by the impurities. The
ion temperature increases throughout the RF-pulse.

7. OUTLOOK TO ICRF

As several times mentioned, the ICRF mode-conversion scenario has
much in common with AWH. There is, however, one essential difference :
ICRF cannot be modelled in cylindrical geometry because the lines
w=wej are vertical lines through the plasma cross-section, which
spoil what remains of the "cylinder" in a torus. The theoretical-tools
in the past applied to ICRF have been the WKB-method in all kinds of
geometries and the "full bounded-wave concept” restricted to plane-slab
or belt geometry. By "full bounded-wave concept" we mean the approach

described in these notes.

It is only now that attempts are made |47,48] to tackle the
toroidal ICRF-problem in this way. A possible path to reach the goal is
evident from these notes. The basic wave equation, eq. (3.28), has to
be written in toroidal magnetic coordinates in the same way as we have
done it for the cylinder. The resulting equations have much in common
with the ideal-MHD equations. The difficult part, namely the operator
rotrot is the same as in MHD. The modification of ERATO [42] is in
progress. This and the previously-mentioned codes [47,48] should be
useful to assess the limitations of the ray-tracing codes based on the
WKB-method and applicable to large-size devices; they should be useful
to model ICRF on medium~-size devices, and last but not least, should
decide on the question whether or not the resonant surfaces of ICRF
coincide with magnetic surfaces as it is the case in AWH for w/wci=0.
There are, in fact, strong analytical indications [49] which say that

the surfaces indeed do coincide.
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