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ABSTRACT

The equations of quasilinear theory are derived for a uniformly
magnetized inhomogeneous plasma interacting with electromagnetic field
fluctuations. The derivation avoids the use of the random phase
approximation. The equations are formulated in a way that allows the
identification of corrections arizing from a finite Larmor radius to
inhomogeneity scale ratio. These equations possess the necessary local

conservation properties, and require no assumption on the ratio of the

Larmor radius to the fluctuation wavelength.



I. INTRODUCTION

The basic ideas of the quasilinear theory (QLT) were laid down

some twenty years ago in the pioneering work of Vedenov, Velikhov and

Sagdeev,1

and Drummond and Pines.? The scope of these original papers,
however, was set within stringént limitations (i.e., unmagnetized
homogeneous plasmas interacting with electrostatic field fluctua—
tions), such that their equations were not applicable to many plasmas
of interest. Nevertheless, these authors paved the way for a large
body of literature, too large to be reviewed here, mainly concerned
either with widening the scope of the theory (e.g., introduction of a

magnetic field, removal of the electrostatic approximation),3'“ or

dealing with very specific physical problems.

A survey of the literature on the QLT allows a standard
derivation to be identified : It involves the use of the Random Phase
Approximation (RPA) applied to the amplitudes of the field
fluctuations, and, in general, discounts the non-resonant
wave-particle interactions. Moreover, RPA is consistent only with a

homogeneous stationary medium.

The present article is the third of a series where the equations
of QLT are derived for an inhomogeneous plasma, by means of a
correlation function method which avoids the use of RPA.° Furthermore,
the non-resonant wave-particle interactions are consistently taken
into account. The first article of the series dealt with a
non-magnetized plasma, interacting with electrostatic field

fluctuations only.® In the second,’ we considered a plasma immersed in



a uniform magnetic field 30, with the inhomogeneity related
gradients perpendicular to B;, but retained the restriction to
electrostatic field fluctuations. It appeared then that the standard

8

expansion”® in the ratio of the Larmor radius to the inhomogeneity

scale, pr/a, was unnecessary.

In the work presented here, we remove the restriction to
electrostatic field fluctuations. Also, the role played by the finite

Larmor radius is further clarified.

The basic equations are spelled out in Sec. II. They are cast
into Fourier space in Sec. III, with the electromagnetic field
contributions written in terms of the correlation functions of the
electric field fluctuations. This formulation is well suited to the
adiabatic approximation,® to which Sec. IV is devoted. In Sec. V, we
show how to isolate the adiabatic effects due to the finite Larmor
radius, and reduce the equations to the lowest order in pr/a. In
Sec. VI, the resulting equations are inverted back into real space
within the adiabatic approximation. We thus obtain two coupled
evolution equations, one for the averaged distribution function of the
guiding centers (of each species), the other for the correlation
functions of the electric field fluctuations. Finally, in Sec. VII, we
show that the coupled equations satisfy (locally) the necessary
conservation properties, i.e., those related to the particles, and to
their momentum and energy. Simultaneously, we derive explicit

expressions for various fluxes.



II. BASIC EQUATIONS

Consider a collisionless plasma immersed in a uniform magnetic
field E:D For each plasma component, the distribution function

£(V,T,t) is determined by the Vlasov equation,
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ot m Iv
. (1)
__Q_(E,,_._{}',‘ 9_{
m < v

where E’(t_",t) and §’(f’,t) are electric and magnetic field fluctuations,
q and m are respectively the charge and mass of each particle.
Following conventional practice, the distribution function is split

-— N
into an averaged part f and a fluctuating part f,

— ~

{ = :F(l?,:,t) + {(F,F.k);

with

{ E<f>;

where the brackets < > indicate an ensemble average. Furthermore, we
assume that the fluctuating quantities are much smaller than the
corresponding averaged ones. The fluctuating quantities, of course,

average to zero.

The evolution equation for the averaged distribution function

£(V,T,t) is
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The evolution equation for the fluctuating part of the

distribution function, once linearized, reads as
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If cylindrical coordinates, with the z-axis parallel to §S, are

L3Ok B é{"

v

introduced in velocity space, Eq.(3) becomes an inhomogeneous first-

order differential equation in the polar velocity angle 6,
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where we= QBy/mMc is the cyclotron frequency. Equation (4) should

i
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be solved for 'E in terms of f, and the result substituted in Eq.(2):
We can thus eliminate f~ Closure is obtained by combining this with

Maxwell's equations,

¢* TV« E) éagz E =—477—a%}” (5)



where the current density J (T,t) is given by

sPecn'eS
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The index denoting the species is implied.

We assume that the averaged distribution function f has

dependences of the form

T ~ -~

¥(u.r,t)= F(n,u,,,xaf-‘f;,g-gx,b), (6)
' wc wc

where F(v Vi eX,Y,t), the distribution function of the guiding

centers, has a weak time dependence.® 1In fact, this assumption is

equivalent to the lowest order approximation of the expansion in

inverse powers of wc,’

<P— = <Fo *21312' + O('ulTj)’ (7)
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where f, has to satisfy the equilibrium Vlasov equation. In this

case,

{o (F,r.t) = F(u;,tr,,,)(+ g‘: . 'J-_u‘l.;x ,b).

[



III. QUASILINEAR EQUATIONS IN FOURIER SPACE

A. Fluctuating part of the distribution function

~n
Casting Eq.(4) into Fourier space, and solving for f, we obtain

0
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where the Greek indices denote the Cartesian coordinates, and the
phase space variable ¥ appearing under the 6 '-integral depends on 8°'.
The Fourier transformation is indicated by the dependence on the
wavenumber-frequency vectors X = {kK,0} and 6"5 {Ef' Q'}. The polar
angles associated with E: and Eﬁ are respectively ¢ and ¥', and &' =
d3q'd9'/(2n)"‘. The symbol Eg(6) stands for the primitive, with
respect to the polar velocity angle, of the free-streaming operator

d/0t + VeV in Fourier space, and is given by
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Notice that the 6'-integral is evaluated only at the upper bound. This
ensures that £ is periodic in 6. In order to satisfy causality, we

assume that the frequency w has a small, positive, imaginary part.

The evaluation of the 0'-integral in Eq.(8) is straightforward.

The Fourier transform of ¥ can be written as

%(G/a,) = F [ﬁ— (;1‘ u] F( U—A.U-H.Q )) (9)

where €, is the unit vector along EO Since homogeneity is assumed
along the magnetic field, F(v, Vy ,0') contains by definition a

function §(qy'). Commuting a/avY with the exponential yields

we can decompose the exponential in Eq.(10) by using the well-known

identity, 10



exp (a.csiv\e) = é In (a) e«F(Ln,e),

where the J, are Bessel functions of the first kind. The fluctuating

~
part £ of the distribution function is then given by

o t - —~ - J' p. e
‘ Z exp (-<¢6) FQ tF(K-Q) Pe (%.-9,) (11)

where

Ni(kpw) = 0 - 80, ~fwe (12)
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and

(U.) =2 _ Uy Q.. . (15)
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To obtain Eq.(11), it was necessary to invoke the recurrence and
addition properties of the Bessel functions, in particular Graf's

addition theorem.l® The most convenient form for this theorem is

?f} (h-3) = L ﬂgm(l) j,:(il'), (16)

n

where

and T{“,_ and q' are defined with respect to common Cartesian

I
|
-
P
r
S
-
3
Eamn N
[l
- ..
ry

t
), tany = 2% , (a7
%

X

coordinates. In terms of (17), the components of the vector P are

given by

Px*.(fu) =+ ( ‘};“(E:) + g;-.(a)),

P; (‘—a:) = (—-i— 4‘}#. (P:) + ¢ ﬂ'd"' (‘E‘))) (18)

(A,,,-(?:l).

o .
We should mention that the term AGB includes the spatial

1l
)-q I:C,

gradients related to the E x B drifts. These gradients are also
obtained within the drift kinetic approximation,’ where finite pr/a

effects are neglected.
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B. Averaged Vlasov equation

~
Once the fluctuating part f of the distribution function is
explicitely known, it becomes possible to calculate both the RHS of
Eq.(2), 1i.e., the quasilinear (diffusive) term, and the current

density T The Fourier transform of Eq.(2) is

- e“Pl:&; (Q‘xi?)‘é: ] F‘(Ul,(r“, E{) =

IR < Ea(@-K) + L Eapy U B, ('c'z‘-E‘)) (19)

m

0 o .
P 3—5‘,¥(W’K}>

Strictly speaking, the RHS of Eq.(15) should include

. - - - -
o0 We
the higher order contribution from the expansion (7). The evaluation
of f, is too difficult to attempt. This contribution may, however, be
conveniently integrated out by an adequate averaging procedure;
Eq.(19) should be divided by the phase factor exp[i(§ x ¥).8)/wc],
then averaged over 6. We thus obtain the equation of motion for the

averaged distribution function of the guiding centers,
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! -4
A«ﬁ (K) = A [‘&'(U’) (S"(ﬁ ﬁ|| - S“'l ﬁg)
w
(21)
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and
(22)

‘?‘L(U‘) = U‘LQ_ —_— Z"-a—-U-L'
au.(( U..L aUl

One sees that the velocity space operator A'se is the adjoint of .

Agp. The term Cqg, defined by

7--077-.-777 ) _"*'_x__. -
Cop (Ki3) = <E,(F+ ) Ep (R-3)>,
2

(23)
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represents the correlation functions of the electric field
fluctuations. The RHS of Eq.(20) then represents the quasilinear

wave-particle interaction, the so-called "turbulent collisions".

It is easy to show that Eq.(18) is indeed the equation of motion
for the distribution function, not of the particles, but of their

guiding centers. The 6-average of Eq.(9) is

L def(u,q) = ].o(q;‘“) F (v, v, &)
2T W,
which differs from F(vl,v"li) by terms of 0(pL2/a2) at least. This

fact will have significant consequences for the transport equations.

C. Equations for the field fluctuations

Equation (20) governs the evolution of F (the plasma) in terms of
Caﬁ (the field fluctuations). To make the system self-consistent,
another equation is needed, that governs the evolution of Cap in
terms of F, i.e., a closure equation. This is provided by Maxwell's
equations : We Fourier transform Eg. (5), multiply it (dyadically) by

Ey (6—1‘(‘) r and finally average over the ensemble to obtain
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where dvz=v, dv, dvy. Equation (24) is the closure equation in
question.The RHS of Eq.(24) again represents the interaction of the
particles with the field fluctuations. The LHS, on the other hand, is

purely due to the field fluctuations.

D. The correlation functions.

The correlation functions defined by (23) are simply the
transforms of the auto-correlation functions of the electric field

fluctuations, written in their center of mass coordinates (53?6,5:6

Vi 4
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where

‘ %(K""Rz))

vol
H
~l
'
~
»N
n)
"

and the variables §, R, R}, R, represent both space and time. In a
homogeneous time-independent system, Cap is a function of the
difference variable p only. The inhomogeneity is then represented by R
(the sum variable) and will be assumed, later on, to be slowly

varying.

If Ea(f('l) and EB('I'('Z) are the Fourier transforms of

E, (K )and EB(R}) respectively, then

)

*“ — g * -
<CE (k) Ep(Kr)> = < B (Re D Ep(R-T)>

N

Y

Ca{g (KI Q ))
where
— — - — —
K = L(K+Ky) , Q= Ki-K,-
Z
The Fourier transformation maps 5’ into K and R into §. It can be

-
easily shown by using the reality condition Ea(K1)=Ea("-f€1) that

Caﬁ("f(“,f)’) possesses the following symmetries:
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CGP (KIQ) = CP« (—K,Q) = C/;q (K,"‘Q)
(25)

= C,,;f (K,-q).

We can express in terms of Cap Quantities that are quadratic in
the field fluctuations, and that play important roles in the dynamics
of the field fluctuations. For example, the Poynting vector, which

represents the energy flux associated with the field fluctuations, is

given by

(26)

~ *p Cpa (¥,Q) ],

to lowest order (c.f. Sec. IV). To the same order, the Maxwell stress
tensor, which represents the pressure associated with the field

fluctuations, takes the form

T«P(—K’,E{) = _‘;'_ﬂ__ { C“P(l—:'a)" S"P t‘(K )

+ £ [ Canz Epoy ’o‘aﬁe Ctzr(“"") (27)

L Bup BTG (€d) 4 A4, cv,,uz,a)]j.
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The trace of this tensor is

T«o( (-K./a)-': -....'_- { Co(x("(la)
8
(28)
2 - e . - -
+ ..c_.z [ 'e. Ca(o( (KIQ)" ‘eﬂx &p Calg (KIQ)]j~
2
W
Its physical meaning is specified by
p .
W' = _ T, (29)

where wE is the energy density asssociated with the field

fluctuations.

IV. ADIABATIC APPROXIMATION

Equations (20) and (24) are complicated integral equations in
Fourier space and, as such, are hardly tractable. In particular, they
cannot be easily inverted with respect to any of the variables Q, Q" ’
K. However, if the adiabatic approximation is introduced, °Jr11
inversion with respect to Q, Q' » the variables of the averaged
distribution function F, becomes straightforward. The adiabatic
approximation requires that the fluctuating part of any quantity
(e.q., g) vary on a much faster scale than the corresponding average
(F). It is a necessary condition for QLT to hold. In the notation of
Sec. III, this assumption imposes the condition that

1K | >> 1l , 14}, (30)
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i.e., that the spectrum of F be much narrower than that of %2 This

ensures the existence of a small parameter 1

/Z ~ 1@ 7RI /IR << 1 (31)

in which Egs.(20) and (24) will be expanded to first order. Hence-
forth, @ and Q' will be called slow variables, while K will be termed

fast.

Furthermore, the adiabatic approximation entails that the growth
rates (which affect the averages) are adiabatically smaller than the

frequencies of the fluctuations,

lWel <2< (W],
where wy and wj are the real and imaginary parts of the frequency.

To be consistent with the results of linear theory, the resonant
contributions from integrals involving the denominator @4 also have

to be adiabatically smaller than the non-resonant contributions.

Symbolically,

§(0;) « |® 1|, (32)
2}

with
41

7~ S(QJ)I%:-,- (33)
¢
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where

Q) = w, - ko —ju, (34)

and ® indicates the principal value.

Once the expansion is performed, inversion with respect to the
variables § and §' can be done by following a straightforward

prescription : Replace

{3@','y by i{-V,a/at}
acting on F(v,,v,,K), and

{q,0} by i{-V,3/ot}

g

acting on both F(v, WV ,ﬁ) and CaB (K,R). The slow dependence of the
correlation function is in real space, while the rapid dependence

remains in Fourier space.

V. SMALL LARMOR RADIUS APPROXIMATION

Before applying the adiabatic approximation, it is necessary to
take a closer look at the functions 9 L where the three different
scalelengths (Larmor radius v, /we, wavelength k, ‘l, and

inhomogeneity scale q“l) interact.

It can be easily seen that assumption (30) implies that
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?L /Ov ~ U v << 1, (35)
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since the terms obtained from an expansion of the RHS of Eq.(16) in
the parameter pr/a correspond order by order to those obtained from
an adiabatic expansion of its IHS. These first order terms can be
separated into adiabatic contributions on the one hand, and correc-
tions due to the finite Larmor radius with respect to the inhomogene-
ity scale on the other. For example, the former will appear in the
equation of motion for the correlation functions, while the latter
provide corrections to the dielectric tensor. These corrections have

been obtained previously by several authors.® 12

It is possible to explicitly separate these two contributions by
using Graf's addition theorem. If we write the terms involving the
Bessel functions in the "center of mass" coordinates (c.f.8ec.III),
the averaged Vlasov equation (20), and the closure equation (24) '
become

L AF(nu,® = ¢ 2, |aaq [Ay (K-R)
m

2 J',vu,m

b - - J:"'“*"‘ '*+-:' “’_"’
+ Ao(ﬂ (K‘Ql‘h)] Pa ('ﬁ.l.— q"'—zq) n(q"'z,q")

- 64-3, o e ¥ -y = j-rm_, a —
, Cau (R-%32,3-3) c}m (qiz_—_‘u) Pe (b 322y 36)
(4, w)

' [Agbp ('—z_a" —q-.:-) -+ Ae{g(-‘z-a,)] F(U—‘-'u—ﬂla’))
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and
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< Pe (-E:-_‘Z:')[ op (F_“"") Aa(s(K Q)JF(U'L,U-,,,Q)

The adiabatic approximation can now be applied to Egs.(36) and
(37) without any ambiguity. However, they cannot be inverted using the
procedure outlined in the previous section, without an expansion in
pr/a of the functions g m and g n- These functions contain the
non-adiabatic finite Larmor radius ocorrections. To lowest order in

pr/a, Egs.(36) and (37) reduce to

(38)

P! (Z "}qL’) Cﬁa(,z lj -&) p (ﬁ Ch+‘1)

b I

o [ Aop (R-823) Aog (8-8)] Flu,v, &
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and
[C ﬁ ﬁ’; -+ (w - Czﬁz)SdF ] Cpx (TZ g a):
2, 4T ‘1 2 o | dd'de Vi P**(Epﬁ;)
Species J W
P (39)
. Car (K- 432, d-d7) PJ k-4
ﬂ&('&“,bd) i

In what follows, we shall consider this approximation only.

VI. QUASILINEAR EQUATIONS

A. Equation of motion for F

To avoid any ambiguity, let the operators in time, space, and

velocity space act on everything they precede, while operators in

Fourler space act only within the nearest brackets or parantheses. The

o
operator Agg becomes
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b

Aap(

L —

k,V) = -i- (— Seu Eu(s'z E
w Uy

(40)
“SGF %,4 Zu[qz + 'ﬁe Eu/sz) -+ V-z .

V.
We

To simplify the notation, let us introduce the term DjBa' defined

by

Diaw (£.®) = T §(9;) Cpu (R.R)
(41)

L o [a_ G [ 2« 2 [2 Cpe]

2 ,(-'2; dw. at ot

With this definition, Eq,(38), expanded and inverted according to the

prescription of Sec. 1V, may be written as
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" %
p

where some obvious dependences have been dropped. Equation (42), which

is a diffusion equation in phase space, constitutes the equation of
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motion for the averaged distribution function. It involves both the

resonant and non-resonant particles. With some algebra, one can show

that Eq.(42) is real.

B. Closure equation

Equation (39) becomes, when submitted to the same treatment as
Eq.(38),

-4 Cz&e + (w?- Cz‘ﬁz)g ](

w2

% P P
- L Z; 4”7 ZI(ZSdV U P: ('&;) D(:y (K,R) Pe (ﬂt)
'V

st teS J

c AL (RT) 4w Ag(R)] F (v, B)
op A

“ %

2 4T3 w2, ®lde Ui l.(-% PqJC

¢
L - sy Pe) Vv
2 Species m ¢ w 'QJ» - \9 v

+

(43)

+ Vv Pfi‘(aa‘a‘v CﬂT)PG& ] (A:F +Ae/3),:

o L avizanPJdu u P! Chy P,

sPecles m J’ w —-(_L;

(2L -5 ) (Ren cAe)] F .
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Equation (43) is both tensorial and complex, and can be uniquely

separated into Hermitean and anti-Hermitean parts.

C. Dispersion relation

To lowest order in pr/a, the Hermitean part of Eq.(42) can be

written as

NOD

Z“P (K/R) Cay (RR) = O, (44)

N
where EaB(KrR) is the non-dissipative (Hexrmitean) part of the

dielectric tensor. It is given by

wZ

Z“P (I—.,E)g L [Zﬁ ﬁ ( “CZ&Z)S«/S]

L2 4T 2P |de th P, (&)P,,(a) !

species m d _QJ' (45)

X [ /A\e[;b ('-(’) - : 89/3_“(%_; Surw &quv] F(U,_,U,“_i),

D
As expected, aas(ﬁ’,ﬁ) involves only the non-resonant particles.

Equation (44) can be used to deduce algebraic relations between the
components of the correlation function, giving the different CaB in

terms of, say, Cixy and the components of the dielectric tensor.

Furthermore, it implies that



-27-

N
det Z”‘F (R.R)= O, (46)

and

det CM(«Z,R)——- 0. (47)
Equation (46) is then the dispersion relation.

Note that expression (45) does not satisfy the Onsager relation

relative to the inversion of the magnetic field, 13

NbD ND —

iaﬁ (Eo) = ZFd ('Bo)' (48)

We can separate the dielectric tensor given by Eq.(45) into a part

Ho N . . .
sagm + that coincides with the dielectric tensor of a homogeneous

Tnh . .
plasma, and another ¢ .n that consists of gradient terms,
af

ND Hom Inhom
ZNP = Zuf -+ i O(P
Hown Ivnhowm

While €ap satisfies Eq.(48), €ap does not. We have in fact

Inhom Inhowm

2ap (B) =-Zpa  (-B.),

since the gradients carry the sign of Wae
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It should be mentioned that Eq.(37) can be used to calculate the
finite Larmor radius corrections due to the inhomogeneity in a
systematic way . To do so, one should neglect the adiabatic
corrections, and expand the functions % m and gn in powers of
their argument. We have verified that the expressions obtained in this

rather easy way agree with those given in standard references.®

D. Equation of motion for Cap

To lowest order in pp/a, the anti-Hermitean part of Eq.(43)

yields

ND - -) P C d SND

d : ) <R £
5 [ «f (K,R)a_‘; C/;J(Kl ] + (a—w- /‘b') Jc Tep

d 3
- V\, ( Zx{; __e_.v Clsz') - 3 ( c/sd’ vy Z‘\'{‘ )
D o - .

-2 o p (K /R C/!)‘ = | (49)

L
Coy 2 L 4T3 21 2¥lde e P () Py (8
¢

Spcc«\es W

<

P)
L é. A € A K F(VL( lni)
3 30 3 vaav )[ ep (K, ) + eﬁ( )]z U

D - . . . .
where eas(f,R) is the dissipative part of the dielectric tensor. Not

surprisingly, it involves the resonant particles,
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2 (R = - Z Wt 2w 2 [dv

Species m d

R (50)
5P (k)P () 5 (0y)

w?

X[Ab, o 'E'”'“Z';‘ 2,,/” ﬁ/,, V,] F(vi,v,,R).

Equation(49) constitutes the equation of motion for the correlation

functions.

Before closing this section, we should draw attention to two
points. Firstly, Egs.(42) and (49) govern the self-consistent
evolution of the distribution function F and the tensor of correlation
functions CaB. For practical purposes, however, one need not follow
the evolution of all the components of Cyp. Instead, within the
limits of the ordering used here, it suffices to follow the distribu-
tion function F and only one component of CocB’ the others can be

determined from Eq.(44), as outlined earlier.

Secondly, it is not generally possible to write all the non-

resonant terms in Eq.(49) as a combination of XK and R-derivatives of
ND

CaB and Iy since the term on the RHS of Eq.(43) cannot be

ND
related to such derivatives of €ap
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The underlying reason for this is that one cannot separate the
slow from the fast dependence in the unexpanded dielectric tensor,
which has three explicit dependences : one on a fast scale (f(’) ’
another on a slow scale (6’), and the last mixing the slow and fast

(R-Q"). symbolically;

7

Eop = Zup (K K-G0,

As an illustration for this point, we consider the behavior of
the conductivity tensor, which is akin to that of the dielectric
tensor. The general expression for Omm's law in an inhomogeneous

time-varying medium is
J. BV = AR e BRI ELR),

Whenever it is possible to separate the dependences of the
conductivity tensor oqp 1into a fast dependence, and a slow one, the
natural variables for this tensor would be the "center of mass"

coordinates, i.e.,
JE— — 2
= o, (3-F, =X) (51)

where the difference variable fluctuates rapidly, and the sum variable

changes only slowly.

Equation (11) can be used to calculate an expression for Chm's

law in Fourier space explicitely. Symbolically, it takes the form
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fa(K) = tq(K)|dd jﬁ(l?-a')ﬁ(&") Ep (-2,

which becomes

i (§) = |dR'4R £, (§-F) gﬁ(E-E’) {(‘2’) Eq ()

in real space. By identification, the conductivity tensor can be

written as

i.e., it involves a convolution over R, Nothing can be said about the
variables p and R, one can only state that R is a slow variable. Tt
is, of course, always formally possible to write OB in the form
given by (51). In the present case, however, due to the convolution
over R, one is not entitled to say that the difference variable is

fast and the sum variable slow.

V. CONSERVATION PROPERTIES, TRANSPORT EQUATIONS, AND FLUXES

A. Conservation properties

Equations (42) and (49) govern the evolution of a closed system :
A plasma interacting self-consistently with electromagnetic field
fluctuations. Since no external sources are involved, the equations
must satisfy (locally) the conservation of particles, of momentum, and

of energy.
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The evolution equations for the densities particles, momentum and
energy (for each species) are provided by the appropriate velocity

moments of Eq.(42). These are the transport equations.

The equations of particle transport adopt, of course, a
conservative form, since there is no creation and annihilation of
particles. On the other hand, the transport equations for the momentum
and energy of a given plasma component are not individually
conservative : They include sources that represent the quasilinear
interaction between the particles and the field fluctuations (i.e.,
the "turbulent collisions"). This is understandable since, within
the framework of QLT, particles and waves may exchange momentum and

energy.

However, the transport equations for the momentum and enerqgy
associated with the plasma as a whole are conservative : Equation (49)
may be used to write the sum of the sources related to each component
in a conservative form, related only to the field fluctuations, e.gq.,

the divergence of the Maxwell stress tensor or the Poynting vector,

B. Particle transport

Equation (42), integrated over the velocities, takes the form of

an equation of continuity,
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> n (R Y = o, (52)
2 n(R)  + 9, CIJV( )

where n, defined by

n(R) = 2T |dv Flun,®), (53)

is the density of the guiding centers associated with the particles of
the plasma component : Up to 1st order in pL/a, n corresponds to the
density of the particles (c.f. Sec.III). The guiding center flux o,

is perpendicular to the magnetic field. With the definition

—

C_bv(v"w”'g) = _r;\—B- uer. d K a/‘EL

w

[}

xiP“* (EL) D —‘ ) P (‘et) [ eF (EI;) +Ae/3(iz)]

- ZL [a&vP Cﬁo{(k R) %(Ae(& + Ae‘g )JVV
> PCu PV (Aew v Aes)
- z‘- v, (5—&\) o pa o ) -—d eR + Mep
. z (54)
&% é | P b v u',,ﬁ
+ P« C/sot Pe %Z—} [(a’a?:%"z“v"a_ﬁ\,)(AGF +Ae/3)]J P 2 R)
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the flux may be written as

clS (R) — 21 |dv ?{;(l&,w,_ﬂ.) : (55)

v

The equations of transport for the total mass and charge,
including the relevant fluxes, can be easily obtained from Eq.(41): We
simply multiply by the mass (or charge) of each particle, and sum over

the species. For the charge, we obtain

_a._g(f_i) -+ Vy} (R)= O)

ot (26)

v

where p is the charge density, defined by

¢(R) = 2. qn(R), (57)

sPec’.es

and j,, is the current density,

J» () < 2 q $,(R). (58)

sPec:.e.s
By contracting Eq.(43), and substituting into the RHS of Eq.(58), we
obtain another expression for j, (we use Eq.(43) rather than Eq. (49)

in order to simplify the algebra),

(R ] 2 z ‘2 o
A"(R) = i K " {2(‘. [& qu_ﬁ.‘ap] Zd—ﬂa—E
815°
(59)

e N S"’{‘] Vn

- C.zz 'Q/.. (B{cx V{; - &GVO Sq{}]} c(‘;x (Z,;{)
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A straightforward implication from Eq.(59) is that the current

vanishes if the correlation functions are

homogeneous  and
t ime-independent.

C. Energy transport
For each plasma component, the equation of energy transport is

ot

2 WER) + v, TL(R) =p(R),

(60)

which is obtained by multiplying Eq.(42) by the kinetic energy of each
particle m(vy 2+v|,2)/2 and integrating over the velocities. The

energy density W of the plasma component is defined by

\A/(E) = m oMl |dv (Ulz‘*Uuz) F(U'L,V'"' E), (61)
2

while the term T,, given by

Tv (E) = 2T {dv ..'.“2. (U',._l-rU"uz) 5("“”" ,E)
(62)
$* -
- iz 2T Z’ ? dur &K [.a_. P,( (ﬁ.l.> PQJ(&.L)J
m ¢ 3

!
' ——
z f, Q;

b, - —
X F“(Klﬁ) [AQF(KIV) + Aep(k)] F(V&:U—NIK)/
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may be interpreted as an energy flux. Equation (60) is not conserva—
tive because some energy is exchanged between the particles of the

plasma component and the field fluctuations. This energy 1is represen—

ted by 8. With the definition

X [Aep (E"F) +A6/s(E)J SRRV [%‘,CN("’E)]

¢ D i 63)
P P A ., PP

Po a (Aop +Aep) + Lpy o o;
P

« [(2 2 -T2 ) (Ag +Ae,;)]} F (v, 04,R)

23 pic, B (Agy + Aop) F
- Z'ﬁ;,[a"f:v < Coy Po ]V (Agp +Aop) F,

pE)= VL, \deak ve A, (0,00, K, F) (64)
mwm
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However, the energy exchanged between the plasma as a whole and
the field’ fluctuations may be written in a conservative form. By using

Ed.(43), we can show that

- 2 T, @®) _v S,(R), (65)
$P¢C—|¢S/3 b
where Ty, and S, are given by
Toa (R) = L |a L [ty
21 (66)
(wz-f Czﬁz)sa/a ] C/sq (’?/ E)
and
S, (R) = = | L (%, 8ap
(67)

%, 8vp ) Cau (K,R).

These terms can be identified with the help of Egs.(26) and (28) :
Tqq 1s the trace of the Maxwell stress tensor, while Sy is the
Poynting vector which represents the energy flux due to the field
fluctuations. As mentionned earlier, the physical meaning of Tao 1S

given by

(@) =W @), (68)
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where WE is the energy density of the field fluctuations. Thus the

equation for energy transport takes the form
P - MIF-* W‘P pnd S -
2 [ W (R) + (R)J + Yy [ y (R)+ v(Q)_]:o)(sg)
ot

where WP and T,P are the energy density and energy flux of the
plasma particles respectively. The superscript p indicates a sum over
the species. The meaning of Eq.(69) is clear. The energy of the plasma
and the self-consistent field fluctuations is locally conserved; the

energy lost by the plasma is gained by the fluctuations, and vice

versa.

D. Momentum transport

Due to the presence of the magnetic field, it is the quantity

Py, defined by

F” = m(uU, + W, 2\,"/( r‘r,), (70)

that is conserved for each particle. The momentum density is defined

by
Pv (ﬁ) = JSU" FV F(U-.\.;U.nv E) . (71)

Since F is axisymmetric in velocity space, the parallel momentum

density is
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Py (R) = mam |dv vy F(v,v,R), (72)
and the perpendicular momentum density reduces to

Pv (E) = MW, avur« r,4 n‘(‘—i) ) V’:X,%, (73)

The evolution equation for Py, i.e., the transport equation for
parallel momentum, is obtained by multiplying Eq.(42) by mvy, and

integrating over the velocities. For each component, we have

—

a._ag Pu(é.) -+ Vv -,T“v (E) = Z (E) . (74)

The term 11y, , given by

— -t

”l(V (fl) = 70 m | dv Uy va (VL,Vat,'Z)

- %2 ZH% ? duak [< 80{2 %u - So{u aq ) %‘L-b%l gﬁug:l;;])

x [ A:ﬁ' ((2,6) +A9ﬁ (E)]F(UL,UIDIE))

may be interpreted as a part of the partial pressure tensor due to the

plasma component under consideration. As in the case of enerqgy
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transport, Eq.(74) is not conservative; the temm ny may be
interpreted as the momentum exchanged between the field fluctuations

and the plasma component. This term is given by

'Z,, (E) = _ izﬂ%» ohral({% (SaAﬁu“‘ Suu‘ﬁa)

le

"'-'{*‘ 81“54“ /\- A“ (U-L,u"" l(l R)
, —

-2 27, 2T Plavax o (Sarfey-Suifey) 79
f

X [AZF (E,?) -+ Ae,g(l-é)] F(U‘L, U'“,E) .

However, the momentum exchanged between the field fluctuations

and the plasma as a whole may be written in a conservative form,

Z.7@=-428,®@-Y,T,®&, O
species L c? at
where T, , given by

—’—Hv (é.) = ZITT ek [Cv“((?;ﬁ’)

e — - = (78)

"l"f—;(&lfa C/Sv - 'auﬂv Cﬁls + -&ve‘,scfill - ﬂzcvn )]'
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is the portion of the Maxwell stress tensor whose divergence
represents the force exerted by the field fluctuations that is
parallel to the magnetic field. The transport equation for parallel

momentum is therefore

_‘2_[ PI,P(E) + L Su(—é.)] + V, [TE,:(E)-;- " (E)]._._Q . (79)
ot c?

Equation (79) shows that the total parallel momentum is locally
conserved, and can only be exchanged between the plasma and the field

fluctuations.

In the case of perpendicular momentum, it is possible to write
the evolution equation for P, (Eq.(73)) in a conservative form,
which is related to the continuity equation (52).7 However, the
resulting equation lacks a clear physical meaning for the following
reason. In order to describe the transport of perpendicular momentum,
it is necessary to include the first order term of the expansion (7).
This is the lowest order term which depends on the polar velocity
angle. Since Eg.(42) describes the evolution of a distribution
function averaged over this angle (c.f.Sec.III), the study of

perpendicular momentum lies outside the scope of this work.
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VIII. CONCLUSION

The quasilinear equations have been generalized to describe the
evolution of an inhomogeneous magnetized plasma interacting with
self-consistent field fluctuations of an electromagnetic nature. These
equations were obtained without introducing the RPA, and are valid
within the adiabatic approximation, and for a small Larmor radius to
inhomogeneity scale ratio. The equations consistently take into
account both resonant and non-resonant wave-particle interactions.
Furthermore, the transport equations derived from them show that
particles, momentum, and energy are locally conserved. The transport
equations provide explicit expressions for quantities of physical
relevance, e.g., the current density, energy flux, and pressure

tensor.

In spite of the restrictions imposed by the small Larmor radius
to inhomogeinity scale ratio, the equations derived in this paper
retain a large degree of generality, and thus should be applicable to

a wide range of specific problems.
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