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ABSTRACT

The present understanding (May 1983) of current drive by lower hybrid waves
in Tokamak plasmas is reviewed with particular stress on the theory. First,
the "classical" model of Fisch and its variants are discussed in light of
recent experimental data. It is argued that these simple models do not ac-
count for most of the features of the results obtained. Next, effects of
runaways on current generation are considered. It is shown that runaways,
resulting from a residual ohmic electric field, may play an important
role. Further, the mechanism of runaway-current sustainment, as proposed by
Liu et al.,is re-examined. It is shown that, for a realistic range of para-
meters, this mechanism does not allow a significant current to be sus-
tained. Finally, some results of a recently-developed numeriéal code, which
include the evolving electron distribution function, ray tracing and trans-
port, are briefly noted. It is concluded that none of the existing theories

can be used to interpret satisfactorily all the experimental observations,



1. Introduction

Various methods have been proposed for producing continuous toroidal cur-
rents in Tokamak plasmas (Fisch, 1980). A method which has been given ex-
tensive consideration, both theoretically and experimentally, is based on
the following principle: Any wave with net momentum can generate a current
by transferring its momentum, through appropriate damping mechanisms, to
the charged particles in the plasma. The idea of a steady-state Tokamak,
based on this principle, was first suggested by Wort (1971) who envisioned
the use of low-parallel-phase-velocity magnetohydrodynamic waves to achieve
current generation. His rather heuristic analysis was subsequently pursued

by Klima (1973) and by Klima and Sizonenko (1975) using more general theo-

retical approach.

An alternative approach of using waves with high-phase velocities to drive
currents was suggested by Fisch (1978). In this scheme lower hybrid waves,
which have phase velocities parallel to the magnetic field that are several
times the electron thermal velocity, dissipate their momentum on the elec-
trons by the Landau damping. The resulting net toroidal momentum causes the
electrons to drive toroidally, creating a current. As the electrons move
they lose momentum to the ions via the Coulomb collisions, so that a
steady-state current is eventually achieved. A simple theoretical analysis
of this current drive mechanism was carried out by Fisch (1978) and by
Klima and Longinov (1979). These studies have been followed by a number of
numerical and analytical works which either improved on the accuracy of the
original calculations (Karney and Fisch, 1979: Fisch and Boozer, 1980;
Fisch and Karney, 1981; Harvey et al., 1981; Kritz et al., 1981: Belikov et

al., 1982a; Cordey et al., 1982:; Belikov et al, 1982b: Rolland, 1982) or



are concerned with various novel facets of the problem (Liu et al., 1982a:
Liu et al., 1982b; An et al., 1982; Muschietti et al., 1982; Bonoli et al,,
1983; Muschietti et al., 1983). Several experiments have also demonstrated
the viability of lower-hybrid current drive (Luckhardt et al., 1982: Ber-
nabei et al., 1982; Porkolab et al., 1982; Tonon et al., 1982: Tanaka et

al., 1982; Alladio et al., 1982; and the references therein).

It is the scope of this paper to give an overview of the theoretical work
related to the problem of current generation by lower hybrid waves and to

show its relevance to the experimental observations.

The paper is structured as follows: In Section 2, the "classical™ model of
Fisch is reviewed and results of the model are compared with recent experi-
mental data. Effects of runaways on current generation are discussed in
Section 3. The mechanism of runaway-current sustairment by lower hybrid
waves is re-examined in Section 4. Finally, the main conclusions are pre-

sented in Section 5.

2. "Classical" Theory of Fisch and its Variants

2.1 One-dimensional model

A magnetized, homogeneous plasma is considered in the presence of lower
hybrid waves traveling parallel to the magnetic field in one direction. The
wave spectrum, with parallel phase velocities much higher than the electron
thermal velocity and perpendicular wavelengths much larger than the elec-

tron Larmor radius, is assumed to be spatially uniform and given. The
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v
Cerenkov interaction between the plasma electrons and the waves results in
parallel velocity diffusion which competes with the collisional relaxa-

tion. Thus, the evolution of the electron distribution function is governed

by
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is the one-dimensional Fokker-Planck term representing the electron-elec-
tron and electron-ion collisional effects. % denotes the ion charge state.
Since the collision term is linear, it simulates situations in which dissi-

pated energy is removed into a thermal reservoir. All the quantities in



equations (1) - (5) and throughout the paper are normalized according to

k> K\p, V> VWi, t > t/wper £ > fn/vte3 and W > WinnTaAp® .

The situation of interest for current generation occurs when Drg is very
large in a finite velocity internal, v; < vy < vy, and vanishes else-
where. The steady-state solution of equation (1) is then Maxwellian outside
this interval and relatively flat in the resonant region. For
DLHV12/V0 > A > 1/, where A = v,~v;, the plateau in the resonant

region acts as a fast beam with current density
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In the steady state, the wave power, dissipated by the resonant electrons,
balances the power that these electrons dissipate in the bulk particles
through collisional slowing down. The power density dissipated is thus

given by
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In order to appreciate the power cost for generating the current a figure
of merit is defined as the ratio of the current density to the power densi-

ty. From equations (6) and (7) one finds
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For a narrow spectrum, equation (9) reduces to
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Equations (6) and (8) are the main results of this model.

2.2 Three-dimensional model

Axial symmetry about the magnetic field allows a reduction in the complexi-
ty of the problem from three dimensions to two dimensions in velocity
space. The reduction from two to one velocity dimension in the Fokker—
Planck term (used in the previous section) is achieved under the following
assumption: The dependence of the electron distribution function on the
perpendicular velocity is assumed to be a Maxwellian with the bulk electron
temperature. In order to assess the validity of this assumption, Karney and
Fisch (1979) carried out numerical studies of equation (1) with the two-
dimensional Fokker-Planck term, i.e., (df/dt)c. given by Kulsrud et al.
(1973) . Also this term is linear since the collision integrals are evalua-
ted for Maxwellian electron and ion distributions. It includes, however,

the pitch-angle scattering of test electrons by ions and electrons, a fea-



ture which is missing in the one-dimensional model. The results of these
studies may be summarized as follows: The numerically-obtained values of j
are in excellent agreement with those given by equation (6); whereas, the
figure of merit is found to be 2.5 larger than that given by equation (8)
for Z = 1. This enhancement of the efficiency is a result of the perovendi-
cular flattening of the distribution function in the resonant region. The
electrons in this perpendicular region, which are the ones that lose power
to the bulk distribution through collisions, have higher absolute wveloci-
ties than in the one-dimensional model where a perpendicular Maxwellian is
assumed. Thus, these electrons collide less frequently, dissipating less
power, though carrying the same amount of current. Moreover, the numerical
results reveal that the scaling of the figure of merit with Z is close to
(5 + Z)"1 rather than (2 + Z)"l. The same scaling was deduced analytically

from simple physical arguments by Fisch and Boozer (1980) who have shown
that
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However, this equation yields a value which is 1.3 times smaller than the
numerical one given above. The point is that equation (11) is expected to
be accurate only for values of Dry which are not too large. This was not
the case in the numerical studies. Indeed, subsequent numerical work by
Fisch and Karney (1981) confirmed the validity of equation (11) only for

smaller values of Dry.



2.3 Further extensions of Fisch's theory

In this section we briefly discuss some additional studies. These studies

include some new physical aspects of the problem but do not result in any

major modifications of equation (11).

By using the full non-linear Fokker-Planck term to treat the electron-elec—
tron collisions, the problem of current generation was re—-examined numeri-
cally by Harvey et al. (1981) and analytically by Cordey et al. (1982),
Rolland (1982) and Belikov et al. (1982a). The conclusion, which can be

drawn from these studies, is that equation (11) underestimates the current

by about 15 - 20% for Vi 3 3.

The effect of trapped electrons on current generation in Tokamak plasmas in
the banana regime was investigated by Cordey et al. (1982) and Belikov et
al. (1982b). It was concluded that for high-phase-velocity waves the toroi-
dal effects are insignificant. The reason is that at high phase wvelocity

the waves interact mainly with passing particles.

Nonlinear resonance broadening effects on the wave spectrum have been con-
sidered by Kritz et al. (1981). It was shown that when resonance broadening
is treated consistently)the narrowing of the spectrum is counteracted by
the resonance broadening effects on the particles. As a consequence, the
wave spectrum does not narrow significantly)and the uniform spatial deposi-

tion of wave power is maintained.



2.4 Practical formulae and comparison with experiments

In order to compare the theoretical predictions with the experimental
Observations it is useful to define the following figure of merit in con-

venient units

/}2 - I[&A]m[/lo“af]P[m]
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where R is the plasma major radius. On combining equations (8), (11) and

(12), one finds
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N, and N, denote the lower and upper edge of the wave spectrum in terms of

the parallel index of refraction.
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For the total current, equation (6) yields
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where a is the plasma minor radius.

We have evaluated the theoretical figure of merit, np in eq. (13), using
the data from experiments on several Tokamaks: Versator IT (Luckhardt et
al., 1982), PLT (Bernabei et al. 1982), Alcator C (Porkolab et al., 1982),
Wega (Tonon et al., 1982), WI-2 (Tanaka et al., 1982) and FT (Alladio et
al. 1982). We have found that the values of np are about 2 - 10 times
larger than the corresponding experimental values of n obtained using equa-
tion (12). This can be regarded as rough agreement between theory and

experiment if one takes into account the uncertainties in determining the

wave spectrum and the value of Z.

We also calculated the total current, eq. (15), for the same experiments.
In this case, however, it turned out that no reasonable comparison is pos-
sible. Equation (15) yields values that are negligibly small compared to
the values of the total current observed in the experiments. The reason is

that the experimental value of the quantitiy Té[keVJsz, appearing in the
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argument of the ekponential in equation (15), is in all the cases too
small. Thus, this theory does not explain the mechanism by which the super-
thermal electrons are generated by high phase-velocity waves in a relative-
ly cold plasma. Some other features, observed in the experiments, which

cannot be accounted for by this theory will be discussed later.

3. Effects of runaways

While it is true that in a steady-state Tokamak of the future, the induc-
tive electric field may no longer play a role, in experiments that are
underway to examine theoretical predictions for current drive, it is gene-
rally not correct to ignore the inductive field and the runaway electrons
produced by this field. Before discussing the effects of runaways on
current generation, however, it may be useful to recall some aspects of the

"classical" runaway phenomenon.

It is well known that when a uniform electric field E is applied to a uni-
form plasma, a certain fraction of the electrons will run away: that isg,
they will gain an energy such that the electric force on them exceeds the
collisional drag force. Consequently, they will accelerate indefinitely.

The critial velocity for this to happen is

12

E

v, = c (16)
E )

where Eo is the so-called critical electric field which is defined as

that field for which the electrons having thermal velocity become runaways.
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Notice that, in the units used,
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where vy is given by equation (5). In convenient units ) the critial field

can be evaluated using the following formula:
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If E € Es, the situation typical for the experiments, then Ve ®» 1, and
only an exponentially small fraction of electrons run away. The number of
such runaways produced per unit collision time, the so-called runaway pro-
duction rate, has been calculated by a number of authors (Kulsrud et al.,

1973 ; and the references therein). The generally accepted expression for

the runaway production rate is

3¢ (3
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where Z = 1 is assumed. We note, though, that for the purpose of the pre-
sent discussion, the principal dependence of the runaway production rate on
E can be obtained from a simple one-dimensional model (Parail and Pogutse,

1978) . Indeed, consider the following equation for the electron distribu-
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tion function

S ] vlla(”f of (20)

A steady-state solution of this equation satisfies
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where the constant of integration A is identified as the flux of runaway
electrons in the limit vy » », i.e., A = Ef(vy » «). Thus, the runaway
distribution function is not normalizable., Of course, a steady-state
distribution function involving a loss of particles at = implies an equiva-
lent source at v = 0. A simple way to cope with this problem is to ensure a
constant number of particles by keeping the Maxwellian value of f at
v = 0. This assumption provides the boundary condition which is necessary
for integrating equation (21). After some manipulations, one obtains the

following expression for the runaway production rate:

]

3
A=A 1 (f— - - L (22)
©T Y TRy (E)XPUTE). ‘

Although the expression in equations (19) and (22) are formally different,
they yield approximately the same value for the production rate

(Muschietti, 1982).
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Consider now a situation where the current generation, by means of lower
hybrid waves, occurs in the presence of a weak d.c. electric field,
E € Eo, which is parallel to the magnetic field. If the phase velocities
of the waves are in the vicinity of the critical velocity, va, the accom-
panying quasilinear diffusion enhances the flow of electrons across Vo.
As a result, an increased runaway production rate is expected. In order to
Quantify this assertion in a simple way, the one-dimensional model de-
scribed above may be used. Equation (20) is supplemented by the quasilinear

diffusion term (@f/dt);y, eq. (2), with the following simplifying assump-

tion:

b YA (23)

O ) elsewhere )

where D is a constant, and where vy and v, are such that V] < vg < vy,

The resulting equation is then analysed in the same way as in the case
without the quasilinear term, and the runaway production rate in the steady
state can be obtained (Liu et al., 1982a). The general expression, which is
rather cumbersome, was evaluated numerically. It was shown that even for
moderate values of D/vy, the runaway production rate is enhanced many
orders of magnitude over that without the waves (D = 0). With D # 0, even a
very small electric field E/Es = 103 can result in a significant rate of
runaway production. For various limiting cases, analytical formulae were
also derived. As an example, if v € Vg N2 the expression for the pro-

duction rate becomes
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(24)
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It is Jjust the factor (1 + beo)'l in the argument of the exponential
which makes Ay significantly enhanced over Aip, eq. (22), when

D/vg > 1.

The model described above is limited by an assumption about the wave spec-
trum, given in eq. (23). This wave spectrum is not self-consistent with the
distribution function but is given a priori. Therefore, a direct estimation
of the strength of the r.f. source involved is impossible. A more com-
prehensive study, which relaxes this limitation, was provided by Muschietti

et al. (1982a). In that work the following set of equations is considered

CRY Y
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with

-4 (28)
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where the dispersion relation of the waves is assumed to be w = cox, ©
>
being the angle between the magnetic field and the wave vector k. The term

S(k,0), in equation (27), represents an external source that drives the

waves. For simplicity, its form is assumed to be

Sg(me"meo)} /éz</&</£4) (29)

S(4,6)=

O elsewhere,

where S is a constant.

A search for a steady-state solution of equations (25) and (27) requires
that two limiting cases be distinguished: ly| » vo (weak source) and
|y| € vo (strong source). In a weak source limit one finds a simple ex-

pression for the runaway production rate in terms of the source strength:

§ JE\”
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This formula holds if

o
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In theEase of a strong source, S » Scr oOne obtains the results previously

found with the inconsistent treatment of the wave spectrum (Liu et al.,

1982a) described above. In fact, the runaway production rate saturates at
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which is typically much smaller than Sa-
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The two-dimensional effects of collisional pitch-angle scattering are neg-
lected in the work described up to this point. Some consideration has been
given to these effects for the case of an infinite range spectrum (An et
al., 1982). The case of a finite range spectrum is presently being studied

by the authors. Some preliminary results were reported recently (Kritz et

al., 1983).

A comparison between the theoretical results, reviewed in this Section, and
the experimental results is not straightforward. For a brief qualitative
comparison of theory and experiment the reader is referred to a discussion
by Muschietti et al. (1982a). A quantitative comparison remains to be car—
ried out. To this end, however, the theoretical model must be improved. The
physical description should be sufficiently complete so that the resulting
distribution function can be normalized and the corresponding current, cal-
culated. It should be noted that present current-drive experiments always
involve at least a small residual electric field which, together with the

applied r.f. power, may be sufficient to generate a significant number of

(runaway, slide-away) superthermal electrons.

4. Runaway-current sustainment by lower-hybrid waves

One of the principal problems in lower-hybrid current—drive experiments is
the explanation of the mechanism by which the superthermal electrons are
generated by high phase-velocity waves in relatively cold target plasmas.
Recently, Liu et al. (1982b) proposed that the combination of a small PopuU-

lation of runaway electrons, together with nonlinearly excited plasma
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waves, can provide the mechanism that bridges the velocity gap between the
high phase-velocity lower-hybrid waves and the low parallel-velocity elec-
trons. Before discussing this mechanism in more detail, however, it is ne-

cessary to recall some aspects of the nonlinear theory of a runaway distri-

bution.

The "classical" runaway distribution is a very flat function of vy for
V| > Ve with electrons that have more parallel energy than perpendicu-
lar. It has been shown by Kadomtsev and Pogutse (1968) that this anisotropy
can destabilize magnetized plasma waves that have phase velocity
wk/ky = 1/k > vo through the anomalous Doppler resonance
wee = Kyvy, where wo. is the electron cyclotron frequency. The non-
linear stage of this instability has been considered by‘%umber of authors
(Muschietti, 1982; and the references therein). For the purpose of the pre-
sent discussion the relevant theory is that developed by Muschietti et al.
(1982b). In that work the evolution of the runaway kinetic instability is

described by the following set of equations

2f 2 1 ( 2§ ) 24
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where
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and
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are the quasilinear diffusion coefficients due to the Cerenkov and anoma-
lous Doppler interactions, respectively. The spectrum of the magnetized

plasma waves, Wi, is governed by the equation

~ W, 2
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and

Equations (35) - (40) were solved numerically using the procedure described
by Muschietti et al. (1981). It was found that the system reaches a quasi-
steady turbulent state, accessible from different initial conditions. More-
over, it was demonstrated that this state can be described by a simple ana-

lytical model. In this model, the distribution function is assumed to be of

the form
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where the quantity T 'y 1s a slowly increasing function of time and its va-
lue is determined by the initial conditions. The parallel velocity space is
divided into three regions that correspond to three different mechanisms
which may balance the acceleration of the electrons caused by the electric
field. In the region v; < vg, the Coulomb collisions balance the elec-
tric field so that the reduced parallel distribution F remains quasi-Max-
wellian. In the region vo < vy < vgq = Vawcer the flux due to the

v
electric field is balanced by the backward flux caused by the Cerenkov

interaction so that

D, 2 T <

F =
E ra(u;l ? < U

< /U;L (42)

Since Do is much larger than E, the solution for F is approximately

F~F) L (43)
) C " A o

Althowgh F is nearly constant, it should be noted that equation (42)
implies dF/3vy > 0. Finally, in the region vy > vg, the flux due to

the electric field is balanced by the backward flux due to the anomalous

Doppler interaction. Therefore,

EF='D4(7:1£+MF)/ 4);>1;;( (44)
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where the bar denotes the average over the perpendicular velocities (using
the Maxwellian in equation (41)). Since D; is much larger than E, the

approximate solution for F is

F-Fla)exp (= = i AL )

Thus, the quasi-steady-state distribution is characterized by the three

parameters: va, vg and T .

Following Liu et al. (1982b), let us assume that the electric field is
switched off, but that before the distribution function has time to relax
significantly, lower hybrid waves of very high parallel phase velocity,
Vi < vy < vy, are launched. Optimal runaway-current sustainment should
occur when v; = vg and Vv, = wgevg. Under these conditions, the lower
hybrid waves can quasilinearly diffuse the energetic electrons in V-
space through the Eerenkov resonance and, thereby, effectively increase the
electron parallel energy. With this increment in parallel energy, the ori-
ginally isotropic distribution for vy > vg becomes anisotropic, and the
magnetized plasma waves can again be destabilized. Liu et al. assume, how-
ever, that a new quasi-steady state will be acheived. Below we show how
they utilize the model of Muschietti et al., outlined above, to describe

the new quasi-steady state.

The term EF in equation (44) is replaced by Dry(d F/av") with Dry

given by equation (23). They assume that the same term in equation (42) can
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be replaced by the collision term -(vo/vy’)(vjF+(3F/v;)). The re-
sulting equation implies, however, dF/dvy < 0 which, as noted above, is
contrary to the situation when the electric field is present. In order to
be able to solve for the distribution function, a spectrum for the waves is
required. They assume that the spectrum is W ~ 8(00g). The modified
equations (42) and (44), combined with the marginal stability condition,
Y1 = Vvo/2 - Yo, yield the distribution function corresponding to the
new quasi-steady state. This distribution function results in the following

current a power densities:

: ;) 2
= F =2 (4_ Y, Uee U, ‘
j ( C) < (4 4 e, D )/ -
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It turns out, however, that the new steady state, associated with the pro-
posed mechanism for current sustainment, leads to an inconsistency. This is
indicated below.

If there is no electric field to accelerate the electrons in the region
Ve < vy < vg, the slope of the distribution function in this region
is negative. However, this result is inconsistent with pitch-angle diffu-
sion due to the anomalous Doppler effect which occurs in the adijacent
region v; > vg. The pitch-angle diffusion must manifest itself in the
region vo < vj < vgq resulting in a local positive slope for the dis—

tribution function. Consequently, a quasi-steady state cannot be achieved.
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In order to verify this assertion, Muschietti et al. (1983) have tested the

model numerically.

Equations (35) - (40), in which the electric field was omitted, were solved
for a typical set of parameters, suggested by Liu et al. The initial dis-
tribution was given by equations (43) and (45). It was found that the pre-
formed runaway tail cannot be maintained after E is switched off and that
the electrons carrying the current relax towards the bulk of the distribu-
tion. The characteristic time of the relaxation is given by the slowest
time among all the different processes involved, namely, the collision

time. Therefore, the fraction of electrons in the tail evolves according to

5% gy [- 2t
o, P g+ )

This formula agrees reasonably well with our computation experiments. With
typical parameters ve = 3, vq = 9, Ty = 50 it yields an e-folding time
of the order 100 collision times. Thus, it is concluded that the mechanism
proposed by Liu et al. does not allow a significant steady-state current to

be sustained by only the launched lower hybrid waves.
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5. Conclusions

Before comparing theory and experiment, we first summarize some typical
features of the data obtained from experiments on lower-hybrid current

drive in Tokamak plasmas:

1 An effective generation of a steady-state current, about 1A of current

per W of incident r.f. power, has been achieved.

2)  The launched lower hybrid waves have too high phase velocity, as com-
pared to the electron thermal velocity of the target plasmas, so that
the direct 5erenkov interaction cannot be operative. Yet there is a
large population of superthermal electrons as evidenced by the en-

hanced nonthermal soft-X-ray and synchrotron radiation.

3) For a given frequency, there exists a sharp density threshold ahove
which there is no current drive. This density threshold appears to sa-

tisfy an empirical scaling w/wrg * 2.

4) In some cases, the synchrotron radiation, loop voltage, and soft and
hard X-rays exhibit relaxation oscillations. These are similar to

those observed in very low density Tokamak discharges (PBrossier,

1978) .

As already mentioned, the Fisch theory (Section 2) can satisfactorily
account only for item 1. One may speculate that an improved version of the

theory that includes the residual electric field (Section 3) could explain
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items 1 and 2. The same is true for the theory of Liu et al. (Section 4) if

it is applied to a short-time-scale experiment.

Recently, Bonoli et al. (1983) have developed a computational model that
includes a radial transport code in conjunction with a one-dimensional
Fokker-Planck calculation and a toroidal ray tracing code. Current drive
simulations of PLT and Alcator C have been carried out. The results ob-
tained appear to be in reasonable qualitative agreement with the experimen-
tal observations as far as items 1 and 2 are concerned. The physical
mechanism in the model which allows the high phase-velocity waves to inter-
act eventually with the lower velocity electrons is the upshift in the
parallel wavenumber prior to damping that results from toroidal effects.
Typically, the ky of a ray that is launched with low k; underqgoes
moderate periodic variations over the course of several edge reflections

until a large upshift occurs and the ray damps.

To the best of our knowledge there are no theoretical models that would
reasonably explain items 3 and 4. Thus, one may conclude that none of the
existing theories, reviewed in this paper, can be used to interpret satis-

factorily all of the experimental observations.
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