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ABSTRACT

A spectrographic survey of the impurity lines between 250-3000 A&
was made on the TCA tokamak both with and without additional rf power
input. The wavelength precision of the important diagnostic lines of
the ionised metals, chromium, iron and nickel, has been improved. In
particular the 3s-3p transitions in magnesium-like and sodium-1ike
ions and the 2s-2p transitions in fluorine-like and oxygen-like ions
of the metals have been revised. Doping of the tokamak plasma with
neon, oxygen and nitrogen permitted accurate measurements of the
helium-like 1s2s - 1s2p transitions to be made and compared with
recent quantum electrodynamic calculations. In the photoelectric mode
the temporal behaviour of accessible oxygen and iron lines has been
documented during tokamak discharges with additional rf power, during
which period there is a large increase in the radiated power loss. The
spectroscopic and bolometric data have been correlated. Estimates of
the iron concentration show that it increases and becomes more peaked

on axis during the rf pulse.

" University of Strathclyde, Scotland
+ Oxford University, England



I. INTRODUCTION

TCA is a modest sized tokamak, described in detail by CHEETHAM et

al. (1980 a, 1980 b). Its main characteristics are

R, a = .61, .18 m
By = 7.6 - 15.1 kG
In < 140 KA

ne < 9.5 10! m=3 in W, or p,

The experiment was conceived to study Alfvén Wave Heating at
frequencies w < wpj and results on the first low power experiments
are described by DE CHAMBRIER et al, (1982 a, 1982 b). The torus is
ungettered and was polished during manufacture. Discharge cleaning is
carried out each evening using 20 msec pulses at 5 kHz, three per
second, known generically as Taylor Cleaning. The tokamak has a wide
operating range between q = 2.2 and q = 20, It was commissioned in
June 1980, rf experiments were started in March 1981, and power
heating experiments were begunyin March 1982, The first Alfvén Wave

Heating results have been descfibed by DE CHAMBRIER et al. (1982 c,
1982 d).:

The rf antenna system is composed of a set of discrete structu-~
res. Each antenna group consists of three plates; one group is placed
above and another below the plasma in each of the four quadrants of
the torus. The antennae themselves float with respect to the vessel,
and are characterized by a low impedance, leading to high antenna
currents and low antenna voltages. We have only used unscreened

antennae to date and have not observed any arcing or other breakdown



problems. The frequency used for all the work described here was 2.67
MHz. The first results showed electron and ion heating accompanied by
a considerable increase in the radiated power loss during the rf pulse
together with an increase in plasma density, an increase in the plasma
resistance and a subsequent reduction in the plasma duration. These
problems led us to carry out a spectroscopic survey of the TCA
Tokamak, with and without rf heating, to identify the dominant impuri-
ties. In addition we profited from the presence of a high resolution
spectrometer by carrying out some basic spectroscopic measurements,
including studies of impurity-doped plasmas. In Table I we list the
photographic exposures, along with the varying tokamak conditions in

which they were made.

In Section II we describe the apparatus. In Sections III-VI we
discuss the general features observed and the precision photographic
wavelength measurements. In Section VII we report on the measurements
made photoelectrically and their relation to the bolometric measure-
ments, and finally, in Section VIII, we estimate the iron impurity

concentration before and during the rf pulse.

IT. SPECTROSCOPIC APARATUS

A 1-metre normal incidence concave diffraction grating spectrome-
ter (Rank-Hilger Model E766) viewed a fixed chord of the plasma in the
horizontal median plane and along a major radius, which is displaced
45° away from the stainless steel limiters. The instrument was capable

of covering the spectral region between 28008 and 2508 both photogra-



phically and photoelectrically. The single channel TPB phosphor-
photomultiplier detector could conveniently be interchanged with the
photographic film holder so that their detailed time history during
the discharge as well as any long term changes in the overall impurity

constituents could be readily checked during the 2-3 month duration of

the experimental programme.

Three different diffraction gratings were used in order to
maximise the spectrometer efficiency over the wide wavelength range
studied. Platinum coated 1200 %£/mm gratings blazed at 4508 and 1500&
were used to cover the short and long wavelengths respectively, while
an osmium coated 2400 2/mm grating blazed at 13508 was used at inter-

mediate wavelengths and for all the high resolution measurements.

In the photographic mode, the entrance slit width was varied from
a minimum of 15 pm, to resolve the many close calibration lines and to
aid identification using the variation in the Doppler widths of the
lines, up to a maximum of 50 pm, to increase the relative intensity of
the wide Doppler-broadened lines. A mechanical shutter before the
entrance slit was used to expose the film to Just the central period

of most of the discharges, with integrated exposure times varying from

1/4 to 2 seconds.

III. MAIN FEATURES OF THE VUV SPECTRUM

Plates 1-8 show the VUV radiation emitted by impurities in the TCA
tokamak plasma from 280R - 27408. All of the strongest lines are

identified, and appear in several orders of diffraction. Some weak



lines are not positively identified, both because the order of the
lines may not be clear, and because the wavelength finding tables are

incomplete. The impurity spectrum can be separated into three main

regions:

(a) A > 19008 - Low ionisation states of the metal ions, eq Fe II,

Fe III, Cr II, Cr III, are predominant, though the low charge states

of carbon, nitrogen and oxygen are also intense.

(b) 450 < A < 19008 - Most lines are emitted from Low Z impurities,

although some forbidden (M2) lines from highly-ionised metals are also

present,

(c) 280 < A < 4508 - Incompletely stripped low Z ions emit some lines
in this wavelength range, but most of the radiation is from quite high

states of the metal impurities, eg Fe X to XVI.

The 2s-2p Li-like and 3s-3p Na-like resonance transitions are
generally the most easily observed of any of the multiplets emitted by
ionised impurities. Hence, a simple technique for identifying the
impurities present in the plasma is to search for the 2s-2p and 3s-3p
doublets on the exposed photographic films. In this way, it is readily
seen that Fe, Cr, C, N, and O are the main TCA impurities, but some Ni
and Si, and even smaller amounts of Ar, Al, Na, F and S are also

present.

Fig. 1 indicates the temperature at which a few important impu-
rity species might be expected to dominate in equilibrium conditions

of the ionisation-recombination balance. In the VUV region of the



spectrum, however, the only multiplet of the H- and He-like ion
species to manifest itself is the 1s2s 3S; - 1s2p 3P,,; ,0. In the
present study this multiplet was not observed in elements higher than
neon. The 2s-2p Li-like doublet on the other hand was readily identi-
fiable in elements up to argon while the 3s-3p Na-like emission was a

strong feature in all the metallic elements present.

IV. PRECISION WAVELENGTH MEASUREMENTS

The photographic records of the spectra were of sufficiently high
quality to allow accurate (10 ppm) wavelength measurements to be
made. Low ionisation states of carbon, nitrogen, oxygen and iron in
the TCA tokamak emit line radiation the wavelengths of which are docu-
mented with some precision, typically A < + 0.0028 (see KAUFMANN and
EDLEN (1974)) . These low charge states emit throughout the observed
spectral region and are used as convenient "transfer standards" for
measuring the wavelengths of the less well known multiplets in more

highly ionised atoms.

Precision wavelengths are particularly topical for the n = 2 .2
and n = 3—w3 transitions of the common metals where forbidden transi-
tions within the ground configuration of the ions and intersystem
lines are widely used as diagnostic indicators in both solar and
fusion plasma research. As a result of this present study, improved
values of wavelengths in the elements Ar, Cr, Fe, Ni are made availa-
ble. Previously (eg FAWCETT (1970), WIDING and PURCELL (1976)) ,the

metal lines have been measured from photographic plates of the



solar spectrum to only about 50 ppm, while photoelectric measurements
of tokamak emission (eg HINNOV (1979)) had a precision limited typi-

cally to about 150 ppm.

Multiplets for which improved wavelengths have been derived in
the present study include the intercombination 3s? lSO - 3s3p 3P1
magnesium sequence, the 3s 2S5 - 3p 2p sodium sequence, the 262 2p°
2p - 2P fluorine sequence ‘and the 2822p* 3p, - 3p 1

3/2 1/2 q G 10 D

oxygen sequence.

It might well be asked why such multiplets cannot be derived from
ab initio atomic structure calculations. In many-electron ions and
atoms, electron correlations, relativistic and radiative corrections
are difficult to calculate precisely, so that large, though usually
systematic, discrepancies occur between theory and experiment. How-
ever, improved "theoretical" wavelengths can be generated semi-empiri-
cally by assuming a smooth variation of this discrepancy along an isc-

electronic sequence as in the work of EDLEN (1982).

The present measurements indicate that for the 3s-3p Na-like,
2s-2p Li-like and the 2s?2p® (2P3/2 - 2P1/2) F-like isoelectronic
series, a better extrapolation can be made using these new tokamak
observations. For example, the discrepancy between theory and experi-
ment for the F-like sequence scales nearly as Z°. Fig. 2 shows the
quantity (experiment—theory)/23, plotted against Z, and demonstrates
that the previous best extrapolation by ELDEN (1982) is inaccurate at
high Z, due to the large errors for these ions in the previous measu-
rements. It can be seen that the new TCA and DITE tokamak observations

are internally consistent, and they suggest a new "best fit" that



that differs by up to 0.28 from the previous data. It is clear that

the old calcium wavelength misled the previous extrapolation, and

should be remeasured.

V. EMISSION LINE PROFILES

The resolution of the normal incidence spectrometer using the
2400 %/mm grating and with photographic recording is adequate to
record differences in the thermal widths of the emission lines.
Inspection of Figs. 3 and 4 indicates relatively large broadening of
the high ionisation potential ions, N VI and Ne IX for example, under
ohmically heated plasma conditions. Unfolding the instrument function,
as measured by the widths of the lines from the low ion stages eq Fe
111, Fig. 3, from the more severely broadened highly-ionised emission,
yields the half-widths of the latter due to source broadening. We
interpret this source broadening as a thermal effect and a plot of the
equivalent impurity ion temperatures is shown in Fig. 5. In this
figure the abscissa is an "equivalent ionisation potential™, which for
the forbidden metal 1lines is the ionisation potential of the
preceeding ion while for the gases we use the excitation energy from
the ground level of the same ion. Notwithstanding the large error bars
we note a general increase in the ion temperature with increasing
ionisation potential, the "core ions" with temperatures of a few 100
eV being hotter than the peripheral ions. Unfortunately in this series
of experiments we have no data during the Alfvén heating pulse with
which we can compare these ohmically heated plasma results and this

remains a task for a future programme.



VI. ATOMIC STRUCTURE OF 2-ELECTRON SYSTEMS

Following the demonstration by STAMP et al. (1981) on the DITE
tokamak that accurate wavelength measurements of the 1s2s 3§ - 1s2p 3p
He-like transitions are feasible in tokamaks, an attempt was made on
the TCA tokamak to extend these measurements along the isoelectronic
sequence to argon. Since the triplet wavelength scales as 7 while
relativistic and QED corrections scale as Z“, with higher order terms,
there exists the possibility of making a definitive test of QED theory
from precision measurements of the triplet structure for high Z.
Unfortunately, the plasma temperature required to observe the He-like
2s-2p, 351 - 3P0 line in argon, is close to that required for equal H-
and He- like populations, Fig. 1, and this temperature well exceeds
that available with the TCA Tokamak. Ion stages as far as Li-like
argon were observed. However, data on He-like ions of the lighter
gases, neon, oxygen and nitrogen were taken, see eq plate XI, and
these represent an improved accuracy on previous measurements. The
test gas was added by gas puffing or static filling, without adversely

affecting the plasma.

The E766 spectrometer viewed the plasma radially, so that Doppler
shifts are expected to be negligible in these spectra., In the plasma
conditions pertaining, any plasma rotation would be expected to be
small (v¢ < 10° cm/sec) and perpendicular to the line of sight of

the spectrometer.

A sample of the analysis is shown in Fig. 6 where the 3H3 - 3P2

fine-structure is compared with the best available theory. The data

marked "a" represent the present experimental results.
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VII. TIME-RESOLUTION OF IMPURITY EMISSION AND CORRELATION WITH OTHER

DIAGNOSTICS

Results obtained photographically showed that there is an increase
in the intensity of most of the impurity lines when the Alfvén Wave
Heating pulse is applied. The general effects of the rf pulse,
detailed by DE CHAMBRIER et al. (1982 ¢) are that the plasma density
rises, the electron and ion temperatures increase and the radiated
power loss increases. The increased radiated power loss leads to a
subsequent electron cooling before the end of the rf pulse. The radia-
ted power profile peaks on axis during the rf pulse as illustrated in
Fig. 7. A typical discharge is shown in Fig. 8 in the presence of

additional heating, the unheated case being shown as a dotted line.

We studied the ionization states of oxygen and iron accessible to
the instrument and typical examples are shown in Fig. 9. It can be
seen that there is a rise in the emission from both impurity species,
both the light gas and the metallic impurities, during the rf pulse.
There is a concommitant increase in electron density during the
heating pulse but a large fraction of this increase may be due to the
impurity influx itself. We see that the behaviour of the edge lines
(0 III-0 VI) is different to that of the core lines (0 VII, Fe XVI,
Fe XVIII). The former react quickly at both the start and end of the
rf pulse whereas the core ions react more slowly. Also, in the case of
the light gas impurities, the emission typically ramps up until the
end of the rf heating period whereas the ionised metals, eg Fe XVIII,
reach a peak of intensity somewhat later than the temperature peak,

and rapidly decrease before the end of the heating pulse. The beha-
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viour of the edge lines is reminiscent of the behaviour of the antenna
DC potential during the rf pulse, shown in Fig. 10, and may well
simply be due to changes in the edge profiles. In Fig. 11 we show a
comparison between the line-of-sight-integrated Fe XVIII emission
intensity and the line-of-sight-integrated radiated power loss and we
see that the temporal behaviours of these two signals are very simi-
lar, leading us to the assumption that the radiated power loss increa-
se during the rf pulse is mostly attributable to emission by Fe XVIII

and neighbouring iron charge states.

In order to interpret the radiated power profile we modelled the
radiated power loss according to the ionisation state equilibrium and
reaction rates given by POST et al. (1977). Results are shown in Fig.
12, for various assumptions. Firstly we see that 1 % of iron, with a
flat relative concentration has a hollow radial radiated power profi-
le. Adding 3 % of oxygen only serves to increase the radiated power
loss at the edge of the plasma. We require an intense peaking of the
iron concentration, NFe(r)/ne(r) = (1-r2/a®), to explain the
sharp peaking of the radiated power profile during the rf pulse. Again

the addition of 3 % of oxygen makes little difference.

A first attempt to model the time dependence of the Fe XVIII
emission is shown in Fig. 13. The calculation of the Fe XVIII abundan-
ce follows from a time-dependent ionisation code which takes into
account the variation of the core density ng and temperature Tg,
and assumes a constant iron impurity concentration. As indicated in
the next section, the intensity of the forbidden Fe XVIII line at

774.86k, "lgxp", 1is rather a good indicator of the Fe XVIII
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concentration, being nearly independent of ng but responsive more to
Te and the ionic concentration. Fig. 13 shows that the calculated Fe
XVIII abundance, as expected, follows the variation in Tg quite
faithfully in contrast to Iexp, which is correlated more closely with
Ng. Again, a likely interpretétion of this is that the time history
of the highly-ionised metal is due to an influx into the core of new
impurities or an inward accumulation of "old" impurities during Alfven
heating and that these impurities themselves are partly responsible
for the increase in electron density. The rapid fall-off in the
intensity of the highly ionised metal lines before the end of the
auxiliary heating pulse must eventually follow the rapid decrease in
Te but there may also be impurity pump-out phenomena during this

period of the discharge.

VIII. ABSOLUTE CONCENTRATIONS OF IMPURITIES

In this section we estimate the metallic impurity concentration
in the core during the rf pulse by equating the total radiation bolo-
meter signal to the iron line emission. Comparison with the oxygen
line emission yields the Fe/0 impurity ratio. From the increase in the
total radiation and from the intensities of the oxygen and iron lines

before and during the rf pulse we can deduce their concentration

changes.

In the Tg region 700-900 eV all the metal impurity ions eg,
Fe XIX, Fe XVIII, Fe XVII, Cr XVII, Cr XVI, Cr XV, Ni XXI, Ni XX, Ni

XIX radiate equitably at about
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P(ion) = 0.5 x 10-2% w cm3 per free electron per ion (1)

By inspection of Plates I-VIII we know that iron is the majority
impurity, so let us assume that iron is the only metal present as far
as the total radiation loss is concerned. We assume coronal balance
curves for the core ions. This is a reasonable assumption according to
TFR GROUP (1980), even though results on PLT indicate rather lower
ionisation 'q' with ¢q4(r) = To(r) (see also BRETON et al.(1982)).
We wuse Lotz' (ionisation) and Burgess' (recombination) rates (see

BRETON et al. (1976)).

Ptot(Fe) = neN(Fe) P(Fe)
(2)
=2 NFe) pre)
e o

At peak radiated power, Py,¢ = 2.4 Wem™? in the core, at 15 kG,

with ~ 90 kW rf power delivered and ng(0) = 3.75 x 10!3 cm-3,

N(Fe)

n
e

i.e.

= 3.4 % in the core (3

Together with the strong peaking factor found from the modelling
results, this gives ~ 1 % of iron averaged over the total volume of

the plasma.

At the measured value of To(0) of 850 eV, the most abundant
iron ion is Fe XIX (BRETON et al. (1976)). The temperature of
maximum Fe XIX abundance quoted in that reference is "a median"

between the high value for Te at Fe XIX maximum abundance quoted by
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SUMMERS (1974) and the T, (Q(Fe XIX) values quoted by other authors,
see DRAWIN (1976). A maximum abundance temperature of 850 eV for Fe
XIX also seems to be in accord with experimental results on PLT and
TFR and is consistent with the most recent results of BRETON et al.

(1982). With this assumption we obtain,

Ne(Fe XIX) 5.2 at T.(0) = 850 eV (4)
N(Fet ) e
ot
then,
Ne(Fe XIX) =~ 0.2 x 3.4 x 102 « ng (5)

2.4 x 10ll ions cm'3

R

in the core. This represents a
maximum value of the concentration, based on the approximation that

all the core metal ions are indeed iron ions.

Fe XIX 2s2p* 3P,-3P, at 1118.07 & has a calculated intensity (LAWSON
et al. (1981)) given by

E (1118.07) = 1.37 x 102 x N(Fe XIX)

3.4 x 1Ol3ph s~lar-lem3 (6)

In comparison, the 0 VI 2s-2p doublet at 1037 A, 1032 R, has an

intensity

1(2s 251/2 - 2p 293/2,1/2) = 100 x I(Fe XIX at 1118.07 &)

and since the spectrometer throughout can be considered as constant

over this short wavelength range we obtain
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2s-2p
I(0 VI) _ L(0O VI) Ne<ov> N(D VI)/4x o
I(Fe XIX) = " L(Fe XIX) E(Fe XIX at 1718.07R)

where 'L' is the plasma depth viewed for each ion.

We plot out in Fig. 13 the ionic distributions with the 'core'
ions in quasi-coronal equilibrium, and with the peripheral ions, eq
0 VI, having inward diffusion velocities Vz ~ 10tcm/sec. This

treatment displaces the 0 VI peak inwards to a mean radius of ~ 14.5

cm.

L(0 VI) ~2x 1.5 cm = 3 cm, where n, = 1.4 x 10'%, and T, = 8eV.

(8)
L(Fe XIX) ~11 cm, centred on the core,

f..
2s-2p _ 1.6x107° —Z%%—-E exp (ﬂﬁEij/kTe)’

1]

<ov>ex
and for 0 VI, g = 0.9
fij = 0,2

AE = 12 eV

We then obtain

vy = 4 x 1083 em3 x 1.6 x 105 x 0.2 x 0.9e“12/b5
o 12 x (86)!/2

= 3.15 x 10° em® s-L
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from which n, —%%lz-z 2.51 x 10#ph srl gl (9)

The value of § is obtained from COCHRANE and McWHIRTER (1982). We

check this value using the formulae given by BRETON et al. (1976),

. vs25-2 _ 108 IE 3/2 o F
TS T T ey S

= 1.87 x 10~/ cmd s-!

by setting g = %%L-and G(g) and q as tabulated by BRETON et al.(1976).

The 0 VI 2s - 2p line intensity is then given by

n v 2P - 9 4 x 103 « 1.87 x 10~/
e ex

2.4 x 104ph s~! sr-!

R

This value is within a few per cent of the g formula, see equation

(9).

Using equation (7),

2s-2p
1(1037R) 3 L(D VI) <o v>o " N(O VI)/tm
I(11718.07R) - L(Fe XIX) E(Fe XIX at 1118.078)
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Inserting experimental values for the left hand side we have

102 3 2.5 x_10* ph sr-! s-! N(0 vI)
1 1M1 3.4 x 10'3 ph s-1 sr-! emd
ie N(O VI) = 5.0 x 10! em3 (10)
N(0 VI) _ 5.0 x 10!
n_(rz14.5) 1.4 x 1013
= 3,5 %

We note that this again is a maximum, though perhaps a realistic
value, based on our "iron only" assumption. In order to compare the
concentrations of oxygen and iron we have to relate the péripheral
oxygen concentration to that in the core. In many tokamak experiments
Nq(r)/ne(r) is found to be a nearly constant quantity independent
of radius and of the charge state g. On this model, then, we find that
the ratio of N(Fe)/N(0) is of the order of unity in the core during

the Alfven heating pulse.

Turning now to the impurity concentrations before the heating
pulse we find in Fig. 7 that the value for Prag (before the rf
pulse) = 0.7 W em™3 from the core. We note that even if 4% oxygen were
present before the heating pulse, the light gases cannot be
responsible for this value of the radiation power loss. Metals
therefore must dominate the radiation power loss even before the rf

pulse is applied.
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The total radiation bolometer signal, Fig. 7, indicates an
increase in the radiated power on axis by a factor of between & and &
during the rf pulse. Crudely, we can consider this to be an increase
in the product ngN(Fe). Thus the ratio of the product during the rf
pulse to its prior value is then [<ng N(Fe)>]/<ng N(Fe)> = u4-6.
From interferometric data, however, we know that the density increases

by about 30 % during the rf pulse. We conclude then that during the rf

pulse,

N(Fe)
Jr_N(ﬁTL = 3.7 (12)

Experimentally we observe that the Fe XIX and Fe XVIII line intensi-
ties increase typically by between a factor of 2 and 3 at the start of
the rf pulse. The temperature increase is not dramatic. It is to be
noted, Fig. 15, that the intensities of the forbidden metal lines mea-
sured here, in contrast to the 0V I lines, have a weaker than linear
dependence on ng. This is because the level populations responsible
for the forbidden line intensities are nearly in LTE (see LAWSON et
al. (1981)). The intensities of the forbidden lines of Fe XVIII, Fe
XIX therefore are good monitors of the iron ion concentrations

irrespective of small changes in the plasma parameters.

We may summarize this section with the assertion that the metal-
lons with a core concentration of the order of 0.9% ne are largely
responsible for the radiation even before the Alfvén heating pulse and
that the rapid rise in radiated power during auxiliary heating is due

to a further increase in the metal concentation. This may be the
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result of an increased influx of metal impurities or an accumulation
on axis of the impurities already in the plasma. In addition we note
that the arguments presented here are consistent in the additional
sense that if one assumes an oxygen contamination of the order of a
few percent of ng, a typical ungettered tokamak value, then one
would deduce, using reverse reasoning, that the volume-averaged iron

concentration during Alfvén heating is~ 1 % of Ng.

IX. SUMMARY

This report is an interim account of collaborative experiments
between the CRPP and the Culham Laboratory to investigate the large
increase in radiated power associated with the Alfven Wave Heating
pulse in the TCA tokamak. Spectroscopic analyses of the radiation in
the vacuum ultra-violet region indicate that impurity ions from the
component metals of stainless steel are dominantly responsible for the
radiation loss. During the rf pulse the concentration of iron in the
core can rise to ~ 3 % of the electron density and can radiate away
most of the power input from auxiliary heating. An apparent rapid
influx and subsequent decay of the metals is observed during the rf
pulse. The time-dependence of the radiated power correlates well with
the highly-ionised metal radiation from the core and badly with the

radiation from low ionization states.

A detailed analysis of the spectral line emission between 30008
and 2508 is documented in this report and should prove useful for

identification purposes in other tokamak experiments,
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The wavelength precision of the important diagnostic lines of the
ionised metals, chromium, iron and nickel, has been improved. In
particular the 3s-3p transitioms in Mg- and Na-like ions and the 2s-2p
transitions in F- and 0O-like ions of the metals have been revised. The
wavelength resolution of the spectrometer is sufficiently high to
deduce ion temperatures in the region 100-400 eV depending on the ion

species. The change in ion temperature during the Alfven heating pulse

has not yet been measured spectroscopically,

A spectroscopy study of the emission from the rare gases, argon
and neon injected into the TCA tokamak has been made in an attempt to
measure the Lamb shift contribution to the 1s2s 35, - 1s2p°Py,; 4
transition energies in the He-like ions. The electron temperature
typically ~ 1 keV was insufficiently high in TCA to produce these
transitions in Argon. However improved wavelengths for neon, oxygen,
nitrogen and carbon have been deduced and are compared with recent

quantum electrodynamic calculations.
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