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ABSTRACT

Equilibrium configurations which are stable with respect to ideal
magnetohydrodynamic perturbations and the corresponding beta limitations
(== 25%) are obtained for reversed field pinches with ideal (delta-function) as well
as diffused surface current profiles. Since the surface current can be driven by a
radio-frequency wave, such a scheme makes continuous operation of the reversed

field pinch feasible.



I. INTRODUCTION

To explain the stable regime of the Zeta operation [1] Taylor [2] introduced a
conjecture that the plasma reaches a self-organized state in which the magnetic
field energy is minimized with a constraint that the volume integrated magnetic
helicity remains constant. This state is found to be a force free equilibrium with
the toroidal magnetic field reversed in the plasma. To date, a number of
experiments on reversed field pinches (such as ZT-40 at Los Alamos, ETA BETA
at Padua, HBTX1 at Culham and TPE1R(M) at Tokyo) have revealed supporting

evidence of Taylor’s conjecture. [3]

However, the force-free equilibrium obtained by Taylor has a major
shortcoming in that the plasma pressure should either be zero or the plasma should
be confined by a wall. Attempts have been made to modify the Tas'lor equilibrium
so that a finite pressure gradient is allowed by a careful programming of a
perpendicular (with respect to the magnetic field) current J,. [4] However, the
realization and maintenance of the desired J, profile in a real experiment is
practically impossible unless the profile is of a type which the plasma naturally
chooses. One possible remedy for this problem is to drive the current by means of
appropriate radio frequency waves. Recent results of successful rf current drive in
Tokamaks [5,6] warrant such a possibility. In addition, this scheme is attractive
also as a dc operation of the reversed field pinch. If an rf is used, the current can
be deposited in an appropriate location in a plasma using the local resonant

condition. In particular, if an Alfvén wave is used, both J, and J; are produced at



the resonance surface because of the local heating of electrons. [7] If the plasma
density has a relatively flat profile, the resonance occurs on the plasma surface.

Hence, it is interesting to study the properties of a reversed field pinch confined by

a surface current.

In this manuscript, we present equilibrium and stability properties of a reversed
field pinch with a surface current and obtain a scheme for achieving a maximum

beta for the plasma which is appropriately separated from the wall.

In Sec. II, we present an example of an ideal equilibrium with a delta-function
surface current in a cylindrical plasma. Here we first obtain the condition for
which the scheme is compatible with the requirement of the minimum energy
condition. We then obtain two important necessary conditions for the stability of
the pinch. First we show that the polarity of the surface current should be such
that it enhances the bulk current (inequality (19) and Fig. 1). Second we show
that when a J, is introduced on the surface J;; should be introduced simultaneously
(inequality (20%)). In Sec. III, we present the stability analysis and show the range
of stability in the plane of pinch parameter (A\a) and b/a using the numerical code
THALIA, a one-dimensional magnetohydrodynamic stability program. [8] Here b

and a are the wall and the plasma radius, respectively.

The maximum average beta achievable assuming a poloidal surface current is
found to be approximately 25% with both ideal and diffused current profile for
b/a = 1.5. The average beta value is found to increase with the introduction of a

toroidal surface current with appropriate polarity and magnitude with respect to



the poloidal surface current.

II. EQUILIBRIUM AND NECESSARY CONDITION OF STABILITY

To study the compatibility condition of the presence of a surface current and
the condition of minimum energy, let us first derive the Taylor state [2] with

particular emphasis on the existence of a plasma boundary.

The variation which minimizes the magnetic field energy under a constraint
that the magnetic helicity is kept constant reads,

5 [BAV -2 f[A-BdV=0 |, (1)

where B is the magnetic flux density, A is the vector potential, B =V x A, X is the

Lagrange multiplier, and the integration is to be carried out over the entire volume

inside a conductive wall.

For convenience to be seen later, we take a variation with respect to the partial

time derivative of the vector potential §,A,

J oA (TxBABYAV + § [5AX(B - 2A)]-dS =0 . )
Here _cf dS is the surface integral at any surface(s) on which the fields become
discontinuous and f dV is the principal value integral, that is, the volume integral

which excludes the discontinuous surface(s) within the entire volume.

If the plasma is in contact with a perfectly conducting wall, 6A,XdS = 0 on the

wall. Therefore, Taylor argues, to satisfy Eq. (2) for any §,A,

AXB — AB =0 3)

should be true.



However, two remarks should be made here. First, if the wall conductivity is
finite, the tangential component of the electric field, 6A XdS, is not zero, thus Eq.
(3) is no longer the solution of the variation (1). Second, even for a case of a
perfectly conductive wall, if the plasma conductivity were also infinite, both B? and
A‘B are exactly conserved, thus Eq. (1) becomes an identity. Namely, in this case
Eq. (1) is satisfied without demanding Eq. (3). Therefore, the Taylor solution is
valid only when the wall conductivity is much larger than the plasma conductivity.
When the plasma is not in contact with a material wall, the surface integral should
be evaluated also on the plasma surface. In this case the plasma surface
conductivity becomes an important parameter. To understand the role of the
plasma conductivity, let us write 6A, in terms of the current density variation éJ,

VA =vxXB+ V¢ —nd] , (4)
where ¢ is a scalar function, v is the velocity field and 5 is the (anisotropic)
resistivity. As is expected, in the absence of the resistivity, Eq. (2) becomes an
identity relation if Eq. (3) is used together with the incompressibility condition,

V - v=0. In the presence of a resistivity, Eq. (2) becomes

J 33 - (VxB-AB)dV (5)

~§n, 83, xB-dS=0 ,

where 5, and n, are the perpendicular and parallel resistivities and the surface
integral is evaluated on the plasma surface. Equation (5) clearly indicates that if

ny >> n, the force-free solution, Eq. (3) still gives the minimum energy state.

Experimentally, the force free configuration is established within a certain time

period which is much shorter than the classic resistive or diffusive time scale. This



is considered to be the consequence of the self-organization of turbulence. [9]
Therefore, if the perpendicular resistivity #n, remains classical, the second term in
Eq. (5) is negligible on the time scale of the self-organization. Hence if n, remains
much larger than 7, the presence of a surface current is still compatible to the
requirement of the minimum energy. Whether such a condition is satisfied or not
depends on experiments. However, if a strong shear is present there seems to exist
no micro instability due to the J, [10] thus n;, may remain classical and the self-

organization with the surface current can be achieved.

Let us consider a cylindrical plasma with radius a surrounded by a coaxial
cylindrical conductor with radius b(>a). If the plasma pressure is uniform, Vp
exists only at r = a where B has a jump. Such an equilibrium is given by

V x B — AB = pJgd(r—a) + f(r)B (6)
where f(r) may be chosen such that J = 0 in the vacuum region, a < r < b, and

force-free in the plasma, r < a, i.e.

fr) =0 r<a
=—X a<r<b

The surface current J; may be chosen to satisfy the equilibrium condition,

JxB=Vp , @)
where V X B = pgJ, as

Jo(r—a) x B = Vp = — ppd(r—a)i . €]
An appropriate solution of Eq. (6) is given by, atr < a,



B,(r) = ByJy(Ar) 9)

Bo(r) = BOJI (Ar) , (10)

which is the Taylor solution. Here J; and J; are Bessel functions. In the vacuum

regiona <r <b,VxxB=0and V -B =0 give

B, = toJ e 11
Bo = - %#OJWZ ) (12)

where J,, is the wall current. Note that J,, consists of externally applied current,
J¢, and induced current, Ji. Clearly if J5, = 0, the jump in B disappears and pg

vanishes. At r = a, the jump conditions for the magnetic field give

B
by 0w -1,
a Ko

and (13)

B
Jop — — JoOha) = — I
Ho

The F-0 relation for the above equilibrium is obtained readily using

b
= 1
B, = :B?{szrrdr
2 ra Ab a?
=~ [-l—)— B,J;(A\a) + —2-(1—-‘;—2-)qu“,0] ,
F = B_izw - l"(ﬂwa
B, B,
and
B —toJ
g = 2w _ Howz (14)
BZ BZ

Figure 2 shows the F—6 diagram with (a/b = 0.7) and without (a/b = 1.0) the



surface current for the various values of Ji but with J, = 0. It is seen that the

field reversal occurs at larger values of 6 in the presence of a surface current.

The toroidal flux density at the center, By, is related to the plasma pressure p,

through the equilibrium condition (8) and is given by

o? 200
a2 Ko
JZ(na)+J2(\a)

The plasma beta may be defined in two ways. One is the external beta, f,,,, which

2 2
J wz"'-J wh

(15)

Bf = 1

is

2pg
Bext = <1, (16)
" ue(U2,0%/a2+32,)
and the other is the internal beta, B;,,
2p B
Bint - 0 - ext . (17)

[Jg (\a) +le(>\a) ]Bg/ﬂo 1=Bext

The necessary polarity and the magnitude of the surface current can be decided
from necessary conditions for ideal magnetohydrodynamic stability. One is the

Newcomb condition [11] which states that q(r) defined as

rB,(r)
By(r) ’

is a monotonic function. This determines the polarities of J, to be negative for

q@r) = (18)
both 6 and z components as shown in Fig. 1. In other words, the polarity of the
surface current should be such that it enhances the bulk current. In this choice of
Jy» there exist two different cases. Case one, which we call the forced-reversed

field (FRF), corresponds to Aa < 2.4 (= first root of J,) where the field reversal



occurs on the plasma surface, r = a as shown by solid line in Fig. 1. Case two,
which we call the self-reversed field (SRF), corresponds to Aa > 2.4 in which the
field reversal occurs inside the plasma, r < a as shown by dotted line in Fig. 1.
We note that the forced reversed case with Aa = 2.4 corresponds to the spheromac
condition. The corresponding g-profile is shown in Fig. 3 where the solid (dotted)
line corresponds to FRF (SRF) case. In either case q(a—0) > q(a+0) is required

for stability, i.e.,

Jwo bJy(Aa)
BELL A . bl
sz alJ 1()\3)
The other necessary condition for MHD stability is the Suydam condition [12]

(19)

which states that

N gy
9| 5 SRR (20)
q rB2

where the primes denote derivatives with respect to r. Using Eqs. (7) and (18), we

can express q'/q as well as p' in terms of J and B. Then the Suydam condition can

be written

2

8u
> — 0

B

2 JB
r OB B,

(IxB), . (20"
r

Referring Fig. 2 and Eq. (19), if the inequality of (19) is used, q becomes a
delta-function, and the Suydam condition is always satisfied (since 62(x) >6(x)). It
is important to note that inequality (20°) shows that the presence of a parallel

component of the surface current is essential to satisfy the Suydam condition.
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III. STABILITY ANALYSES

Here we discuss the stability problem for the equilibrium configuration with the
surface current considered in the previous section. To find the stable beta limit we
first obtain the qualitative dependence of 8 on J,4/J,,, A\a and b/a for an ideal

surface current using the energy integral, [13]

b 2
wE == [dr [f(r) [if— +g(r)£2] : 1)
24 dr
where
_ (krB,+mBy?
fr) =r — , (22)

2.2 2.2 2__
g = 2L _dp % (krB,+mBy)? 2K THm =1

m2+k?r? dr m2+k?r? ’
2k%r
—_— (k*r’B2—-m2B?) . (23)
2 2 z (1}
(m2+k3r?) .

Here m and k are the azimuthal and axial mode numbers. In evaluating the
integral (21), we follow Robinson’s argument that the stability criteria can be
found fairly accurately by choosing a trial function [4] £(r) (=£,) = £, (const.) in
0 <r <band £(r) =0 at r = b, since such a function eliminates the contribution
of the first term in Eq. (21) (which is positive otherwise). To further eliminate the
contribution of the first term at r = b, we choose the wavenumber k such that f(b)
vanishes i.c., kq(b) = — m (hereafter we discuss the case m=1 which is known to
be most unstable®). Then the stability condition (Eq. (21) >0) for the equilibrium

configuration with Egs. (9), (10), (11) and (12) becomes
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I
f ¢ (x;a,Aa,b/a)dx
0

2
0302 +I70a)10b/2) |/ ab/2) (24)

2
> KoPo
B
where a = J,4/J,,,(>0) and the functions ¢(x;a,\a,b/a), @(a,b/a) and Aa,b/a) are

20 ,

given by
o (x:a\a,b/a) = m {(-E—)XJO()\ax)+aJ,(>\ax) }2
(25)
{x2+j;'é"/a)2]2 {szg()\ax)—(%)zaZle(kax)} :
0la,b/a) = (1;:22)2 log a2:t§x/1)2 - ;l-z-log-:l-
PR )
Aab/a) = —E—— — % gb) @

1+a?(b/a)?  o?+(b/a)?
Using the relation between B, in (16) and 2uypy/B¢ derived from Eq. (16), i.e.,

Boxi = (uopo/BA/ 32(\a)+I7(\a)+(2uope/BY)}, the stability condition (24) can
be written in terms of Sex,

®(aha,b/a) > By = 0 (24"
where ®(a,\a,b/a) is given by the following form with the function of the left-hand

side in (24), say F(a,\a,b/a),
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F(x,\a,b/a) <
~
J¢(\a)+J(Aa) +F (a,\a,b/a)

From the numerical integration of the function of the left-hand side in (24),

®(a\a,b/a) = (28)

F(a,\a,b/a), one can see that
A) &(a)\ab/a) — 1,as a — 0,
A,) there exists a,,, > 0 (which is a function of Aa and b/a) such that

d(a,,.0a2,b/a) =0

Ay Gi ®(aNa,b/a) < 0,for0 < a < oo,
o

0
Ay) /) ®(a,\a,b/a) < 0.

The beta value B, in (24) corresponding to the ideal equilibrium configuration

(i.e., the fields given by (9) to (12)) can be given explicitly by

2_ 2
1|, o’—ag
= — |y*—1+ ———| , (29)
Bext 'Yz Y a2+ (b/a)2 ]
where oy = a(Jg=J,=0) = — (b/a)Jy(Aa) /T, (Aa) and

v = By(r=a+0)/By(r=a—0) = — (b/a)pyl,,/(ByJ;(A\a)) (note y=1 implies no
surface current in z-component). It should be noted that a higher beta value can
be obtained by increasing J,, (i.e., increasing v). One can easily see from (29)
that
B)) Bex — 1 asa— oo,
By)  Bex = 0 for some ay, > 0 (e.g., for y=1, ayi,=|ay|),

0

B,) aﬁcxt >0, for0 < a < oo,
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9
d(b/a)

B, Bex <0 .

From those properties of ®(a,\a,b/a) and B.,(a\a,b/a;y), there is a finite
region (i.e., ap, <a<oay,,) in which the plasma configuration is stable and has a
finite beta value as shown in Fig. 4 for the case v = 1. The boundary of this stable
region in the plane of Aa and b/a is given by o, = ma,- In Fig. 5 the stable
region and the beta value corresponding to a point in the plane Aa — b/a for the
case v =1 (J;=0) is shown. It should be noted that the stable region extends
below the Aa = 2.4 line, while in Taylor’s configuration Aa = 2.4 is the stability
boundary. The region below Aa = 2.4 corresponds to the forced reversed case in
which the z component of the magnetic field reverses on the plasma surface due to

the 8 component of the surface current (solid lines in Figs. 1 and 3).

From Fig. 5 (also A4 and B,), we see that the maximum f,,, is a decreasing
function of b/a. For an example of b/a = (0.7)~! = 1.43, the maximum g,,,

produced only by the poloidal surface current becomes 0.25, which corresponds to

ﬁint = 0.33.

The total magnetic field energy E corresponding to the configuration given by
Egs. (9) to (12) can be shown to assume a minimum value for the plasma radius a
in 0 < a < b with proper choice of other parameters. For example, if b, Aa, B
and J,, are fixed, E becomes minimum when

C %)
a _ 3
W

where C,, C, and C; are the positive quantities given by
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a

2 JoJ
C, =2 [ BV = 201 b2B2013+17— E1)
av 9

2071
Aa

bl

where the arguments of Jo and J, are Aa and L, is the length in z direction.

CZ = 7TI—'ZBZI-"(%JVZV@ ’

and

C; = nL,b%ud2,
Clearly from Eq. (30),

C,>C+Cy , GD
is required to have a between zero and b.

Having obtained the qualitative parameter dependencies of B, let us now
evaluate the effect of diffused surface current using the numerical code THALIA
developed by Appert et al. [8] which enables us to evaluate the energy integral
given by Bernstein er al. [13] using an exact eigenfunction for the appropriate

magnetic field configuration.

For the diffused current profile, we use

Hoto
= BoAJ, (Ar) + %ﬂjogSCChz r_—g—j—ﬁ_], atr < a,
=0 , ata<r<b, (32)

and
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MOJZ

= BAJo(Ar) + —;—pOJOZsechz r-atéd , atr<a ,

=0, ata<r<b . (33)

The corresponding magnetic field is
BZ
- BOJO()\r) - %ﬂojsa tanh r—a;- £ + tanh [ a-;Z& H , atr<a ,
1 a—¥o

= ByJo(Aa) — -:-z-quso tanh + tanhZ| (=const), ata <r <b (34)




W
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By
= ByJ, (\r) + —;—;LOJSZ tanh (122449
cosh(ﬂi@-)
_ 35 In 0 atr < a
—a+48 ’ =
osh ( P )
alJ
= 2BJ,0a) + tpg—= |tanhe—2in | —RE || (35)
r 2 r Z6—a
osh( )
o
ata<r<b

Here, J; = 8], 6 is the width of the surface current, and £ denotes the location of
the surface current i.e., if £ = 0, the surface current peaks at r = a while if £ > 0
the peak exists inside the plasma, at r =a — £5. The pressure and the magnetic
field profiles for an example of J, =0, £ =1, § = 0.1 and a/b = 0.7 are shown in

Fig. 6.

The numerical code is designed such that for a fixed value of J; and Aa, the
value of b/a is searched such that the growth rate goes to zero for m = 1 mode.
The corresponding value of average B8(=@,,.) as well as that of k is printed out.
Simultaneously, the Suydam criterion for stability, Eq. (20), is checked at each

point in the radius. B, is calculated by averaging § inside the plasma. Hence it
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corresponds to B, in Eq. (17) for the ideal case.

Figure 7 shows the results of the numerical evaluation for a case with Jg, = 0,
¢ =1 and 6 = 0.1, that is, the width of the surface current is 10% of the minor
radius with the current peak located at r = 0.9a. It is interesting to note that the
stability range as well as the corresponding values of 3 is almost the same as the

case of the delta-function surface current obtained using a simple trial function.

We varied parameters £ and J, to see their effects. When £ is increased, an
unstable region appears in Aa < 2.4 due to the violation of the Suydam criterion.
When £ is reduced to zero, the negative pressure region was expanded at A\a < 2.4.
When the toroidal surface current Jg, is introduced J, should be increased
simultaneously to satisfy the Suydam criterion. Then the 8 increases accordingly.

However, the stable region is found to shrink.

In the case of a diffuse surface current, the Suydam criterion expressed in Eq.
(20°) should particularly be recognized such that a sufficiently large parallel
current exists at the region of field reversal, B, = 0. Other than this, the overall
qualitative parameter dependencies of 8 on J are the same as in the case of the

ideal surface current.

IV. CONCLUSION

A finite beta reversed field pinch configuration using the surface current is
presented. The configuration is found to be stable within the framework of the

ideal magnetohydrodynamic perturbation for an average beta of twenty to thirty
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percent. Since the surface current can easily be induced by a radio frequency
wave, the scheme is an interesting candidate not only for a finite beta reversed field

pinch but also for its continuous operation.

Nonideal magnetohydrodynamic instabilities such as the resistive instability
may contribute to diffuse the surface current at an anomalous rate. However, it
- may relatively be easy to inject the surface current at a rate faster than the
diffusion rate if an appropriate radio-frequency wave is used. Although the
resistive mode is expected not to be crucial for the confinement (since it may be
localized on the surface) it remains an important future investigation in this

project.
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FIGURE CAPTIONS

Magnetic field (B) and current density (J) profile of the equilibrium

obtained in the text for FRF (solid) and SRF (dotted) cases.

F—6 diagram with (a/b = 0.7) and without (a/b = 1.0) the surface

current J (=g, Jss/B,), I, = 0.
q profile of the equilibrium for the FRF (solid) and SRF (dotted) cases.

The functions & (Eq. (28)) and B, (Eq. (29)) are plotted for

a(=J,6/J,,) for the case of a/b = 0.7 and vy = 1 (J; = 0).

Stability boundary in the parameter of Aa and b/a for an ideal current
case. The beta value within the stable region can be changed by
changing the J,/J,s ratio. The dot-dash line indicates the boundary at
which P, becomes negative for J, =0. If J¢, < 0 introduced, this

boundary can be expanded to lower value of Aa.

The magnetic field profile (top) and the corresponding pressure profile
(bottom) are shown as a function of radius for a case of diffused current

profile with § = 0.1, £ = 1 and a/b = 0.7.

The stability boundary in the parameter space of Aa and b/a for a
diffusive current profile is shown with contours of different Jg, and

resultant 8,,.. Ji; =0,6 =0.1 and £ = 1 are used here. The wavy line is
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the boundary due to the violation of the Suydan condition.
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