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ABSTRACT

The spectrum of low-frequency, m = + 1 oscillations in a cold,
collisionless, cylindrical plasma comprises the frequencies of the
lowest radial eigenmodes and the surface modes of the fast
magnetosonic wave, all the global eigenmodes of the Alfvén wave (ion
cyclotron wave) and the Alfvén continuum. The spectrum of a
homogeneous, currentless plasma cylinder is obtained from an
analytical dispersion relation. This spectrum is compared with
numerically obtained spectra of nonuniform plasmas with and without
axial current. The connection of the MHD kink and internal kink
instabilities with the global eigenmodes of the Alfvén wave is
evidenced. Among all the modes of the magnetosonic wave which have
frequencies in the Alfvén continuum, the (m = -1, k < 0)-surface mode
is the best candidate for antenna-plasma coupling in an Alfvén Wave

Heating scheme because its conversion layer is located well into the

plasma interior.



1. INTRODUCTION

An axisymmetric or cylindrical bounded plasma with diffuse
profiles, modelled by ideal magnetohydrodynamics (MHD) or by cold
plasma theory, exhibits three distinct kinds of global, small
amplitude oscillations: stable undamped eigenoscillations, purely or
almost purely growing instabilities and damped oscillations at certain
frequencies which lie in the Alfvén continuous spectrum. At first
sight the appearance of a damping in a dissipationless system is
astonishing. It can, however, be explained ! by what is known as

resonant absorption.

In ideal MHD the stable undamped eigenoscillations are radial
eigenmodes of the slow and the fast magnetosonic wave 2 and of the

3

Alfvén wave °. In cold plasma theory the slow magnetosonic wave does

not exist, but the two others do. Most commonly the Alfvén wave is
called ion-cyclotron wave in this case. Recently densely packed
discrete oscillation frequencies have been observed on TCA Tokamak *
and in numerical simulations ° and have been interpreted as global

eigenmodes of the Alfvén wave 3 or the ion-cyclotron wave.

An important class of fast-growing global instabilities which can
be obtained from MHD are the current-driven external and internal kink
instabilities ® '/, These instabilities have many similarities with the
global eigenmodes of the Alfvén wave 3. Their existence, for instance,

may be proven in the same way as Suydam's instability criterion 8.



We shall show that the kinks and the global eigenmodes of the Alfvén

wave are the same modes but appearing at different axial wavenumbers

k.

The damped oscillations have been named "surface waves" ? or
"surface eigenmodes" ¥ because in a plane geometry they are confined
to the neighbourhood of a plasma-vacuun interface. These modes are
undamped if the interface is sharp 9110 | 1he same should be true in a
homogeneous plasma cylinder. In this case the surface wave should, in
fact, be an eigenmode of the system and fall into the mentioned first
class of oscillations, the stable undamped eigenoscillations. An

essential part of the present investigation will be devoted to the

"surface wave",

Apart from the interest in a unique nomenclature we have a strong
interest in this mode in connection with Alfvén wave heating 1142 1y
is, in fact, this mode which is excited by an external antenna in the
Alfvén Wave Heating scheme presently used ", It plays the role of the
energy carrier as does the fast magnetosonic wave in the ICRF heating
scheme. It will be shown that the surface wave is nothing else than
the remnant of the first radial eigenmode of the fast magnetosonic
wave. Since it has a radial wavelength of the order of the plasma
radius it cannot be found by a WKB analysis which erroneously predicts

cutoff at low frequencies.

It is the main goal of the present paper to provide a clear and

simple picture of the low-frequency spectrum of a plasma column by



making evident the interconnections between modes with different names
and different theoretical origin. Previous work has always been
focussed on some partial aspect of the spectrum. Applying cold plasma
theory to a homogeneous plasma cylinder Paoloni 13 remarked that the
first radial eigenmode of the fast magnetosonic wave with the
azimuthal wavenumber m = 1 did not suffer from cutoff at low
frequencies. He did not, however, remark that the corresponding mode
with m = -1 does also exist; its frequency lies very near to the
eigenfrequencies of the Alfvén wave. Both modes have recently been
described by Cramer and Donnelly 7 who investigated the dispersion
relation in the case of a plane plasma-vacuum interface. The damping
due to resonant absorption has also been calculated by these authors
who have thereby generalized the ideal-MHD results of Lanzerotti et
al. % to include finite-frequency effects. Their results are

consistent with those obtained by Karney, Perkins and Sun 15,

The paper is structured as follows. In Section 2 the basic
equations of our model are mentioned together with the definition of
the notation used. In Section 3 an analytical dispersion relation is
derived for a homogeneous plasma cylinder. This dispersion relation,
which yields real frequencies, is solved analytically in some limiting
cases. A numerical solution is obtained in all other cases. In Section
4 the basic equations are straightaway numerically integrated
considering diffuse equilibrium profiles. The obtained dispersion
relation yields complex frequencies in general. The resulting spectra
are compared with the spectrum obtained in Section 3 and with results
of the ideal-MHD stability theory. Finally, the main conclusions are

drawn in Section 5.



IT. BASIC EQUATIONS

We consider small-amplitude perturbations with frequencies much
smaller than the lower-hybrid frequency in a cold current-carrying
plasma. The plasma motion can then be described by the linearized
equation of momentum transfer and the linearized Ohm law which
includes the Hall term. We adopt a cylindrical geometry and assume
that the equilibrium quantities are functions of radius r only. We may
then take the time and space dependence of the perturbation quantities
as exp[i (kz + m - wt)], where k and m are the axial and azimuthal
wavenumbers. When the equation of momentum transfer and the Obhm law
are combined with the Maxwell equations (without displacement current)
to yield a wave equation for the electric field, it is possible to
retain the important effect of an axial equilibrium current by a
systematic expansion to first order in the ratio of the equilibrium
magnetic fields, |BOG/BOZ| << 1. This wave equation takes the most

elegant form when written in terms of the perturbed electric and

magnetic fields E, and Bll 16,
A 4 ey =6k E, + (A-12 ) iwB (1)
r dr TN LT § 1 N
A-9 (iwB,) = (G2 - ) E - Gk iwB (2)
dr R L L {1
where
A=c - 18, G= (woyde - (2/0)B ky (3)



and

wzpo
£ = .
2
1-(w/wci)

All quantities here and throughout the paper are dimensionless.
The usual ideal-MHD scales are used. Length and time are normalized to
the minor radius a of the plasma column and the Alfvén transit‘time
a/cp(r=0) respectively. The normalization of the magnetic fields By
and Byg, the electric field E, and the equilibrium mass density p,
are respectively: Bj,= const, By, cp(r=0)/c and pg(r=0). Here ¢
is the velocity of light. The local coordinate system (r, L , ll) is
defined by #, & = & x T and &,= By/By, the caret denoting unit
vectors. Consistent with this definition we have ku' = k + (m/r)Byg

and kL =m/t - kByg «

We assume the plasma column to be surrounded by a vacuum region
and by a perfectly conducting cylindrical shell of radius rg, rg =
1 being the 1limiting case of a fixed boundary plasma. The field
equations in the vacuum region are given by egs. (1) and (2) if the

substitutions ky = Kk kL =m/r, A= -k and G = 0 are used.

The eigenvalue problem can now be formulated: one looks for
solutions of eqs. (1) and (2) in the plasma and the vacuum region,
subject to the conditions that E_L and By be continuous at the

plasma-vacuum interface and that E, be zero at the shell.



The free parameters of the problem are gy My, k, weij and the
profiles of pg(r) and Byg(r). In physical terms k is usually
determined by the toroidal wavenumber n, namely k = na/R, where a/R is
the inverse aspect ratio of the torus in question. The dimensionless
cyclotron frequency wej does not depend on the magnetic field but is
a measure of the total number of particles per unit length of the

cylinder (or the torus):

47 (4n)1/2 i a (—=) = 4.4x10"% a(cm) [neo(cm‘s)z/ujl/2 (5)

Here e 1is the elementary charge, mj; the ion mass, , =
mi/mproton’ z 1is the charge state and Ngg the peak electron

density.

In the next two sections the eigenvalue problem is solved under

different assumptions on the values of the free parameters.

ITI. HOMOGENEOUS PLASMA CYLINDER

The equations (1) and (2) can be combined into a simple Bessel

equation for By when constant density, pgo(r) = 1, and zero axial

current, Byg = 0, are assumed:

1 d dBy 2 _ m =
 Tar Fqn) + (kg K ) By =0, (6)




where

kr2 = (A% - @2)/A. (7)

The quantities A and G are constant in this case. The solution in the

plasma region is given by

By (r) = 3, (kr), 1< (8)

if kp2 > 0 and by

By () =¢1 (Jk |r), r<n (8')

if kr2 < 0. In the vacuum region the solution reads

By (r) = CoI_ (kr) + C3 K (ke), 1< r< r.. (9)

By using the three boundary conditions for BH at r = 1 and EL at r = 1
and r = rg one eliminates the 3 unknown constants G, C and C; and
obtains the dispersion relation for krp or for w respectively:

7n (] u G ign(k ?) | F o (k, r) =0. (10)
Zm (lkr|) + |ka4' A+ S1gnmik, k m < g/ = U

The symbol Zp denotes Jy if k2 > 0 and I if k2 < 0, the

prime denotes the derivative with respect to argument,

Dy, (krS)Ié(k) - K&(k) ()
D, (krS)Im(k) - K (k)

Fm(k, I‘S) =



and

D (krs) = K,;' (krs)/ll;(krs) . (12)

It is easy to solve eq. (10) numerically. A numerical solution is

shown in Fig. 1. The free parameters are taken to be wei = 2 and
s = 1.5 which are typical values of the TCA tokamak Y. The
eigenfrequencies x = w/wej are shown for m = +1 and m = -1 as a

function of k.

It is possible to obtain analytical solutions of eq. (10) in the limit

k << 1. Then

Falks )~ kb (2 2 - 1)/(e 2 4 1)

and eq. (10) can be satisfied by kp ~ k, A o ¥ or by Zp(kp)
— 0. For the case shown in Fig. 1 that last condition translates into
J (kp) = Jw) = 0, ie. w = Jisgy 8 =1, 2, ..., where Jiss
denotes the zeros of J; « These are the frequencies of the radial

eigenmodes of the fast magnetosonic wave (F) as they are known from

ideal MHD 2. The first zero, Jysg = 3.83, leads to x = wwei =
3.83/2 = 1.91, 1In Fig. 1 this mode is denoted with F, as the second
radial eigenmode of the fast wave. As long as k £ 1 this mode and all

the higher ones are practically identical for m = + 1.

The first radial eigenmodes of the fast wave F; are obtained in

the limit kr ~ k—»0. After expansion of the function Z,, i.e.
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In'/In ~ m/kp, one obtains a quadratic equation for x: its

solution is

w/wCi =x =a (1 + sign(m) a/2) (13)
where
2
2 T “+1
o2 = X [fm] —=— + 1]). (14)
w? . r 2.1
ci s

For m = + 1 and rg—+o eq. (13) yields w = Y2 k for very small k.
This is the surface eigenmode frequency as given by ideal MHD theory
I, In an MHD treatment (i.e. wej—*®) the two modes for m = + 1
behave identically and like an eigenmode of the fast wave. It seems

therefore natural to identify the first radial eigenmode of the fast

magnetosonic wave F; with the surface eigenmode S.

In Fig. 1 only the mode F;, m = -1 has been labelled with S for
the following reason. For small k the wave fields of F, are global
functions as opposed to those of the surface wave in plane geometry
where they are confined to the neighbourhood of the plasma-vacuum
interface. It is only for k 1 that the mode Fis m = -1 has
surface-wave character as can be seen from Fig. 2. The mode Fi, m=1
has global wave fields for all values of k. The surface-wave character
of Fj, m = -1 in cylindrical geometry is clearly related to the fact
that it merges with the Alfvén resonance A = g~k = 0, denoted by A,

(at k = 1.5 in the case of Fig. 1). The value of k where S and A,

merge depends on rg as we shall see in Fig. 3.
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Let us, however, first finish the discussion of Fig. 1 by
describing the global eigenmodes of the Alfvén wave. These modes have
often been called ion-cyclotron modes and very recently "discrete
Alfvén waves" “*. For small k they correspond to the combination A ~
i, kp > 1 satisfying eq. (10). As can be seen from Fig. 1 there is
no physical interest to obtain solutions for k << 1 because the whole
class is extremely densely packed; in the MHD limit the solutions are
even infinitely degenerate. For k > 1.5 the eigenfrequencies of the
lowest radial modes (only A, m = £1 are shown; all the higher modes,
As, s > 1, lie between A} and A,) are distinctly detached from the
accumulation point A,. In the case shown, rg = 1.5, wej = 2, the

largest distances have been found around k =~ 3.5. The relative

distances (w, - wg)/w, are 7.2 %, 3.2 % and 1.7 % for the modes
s =1 2, 3, m = -1 and 3.6 %, 1.8 %, 1.1 % for m = 1. It is
interesting to note, that the set of Ag, m = -1 seems to contain one

mode more than m = 1, namely the mode A . All the other modes can, in
fact, be put into a close one-to-one correspondence, AS+1(m=-1) s
Ag(m=1), with respect to frequency and radial wavenumber kr (not
shown). At small k the surface mode S has been identified as an
eigenmode of the fast wave; at high k it now appears as a part of the
Alfvén wave. This is, however, from a purist's point of view, somewhat
misleading. Strictly speaking, the mode lies always above A, and
should therefore not be identified with any eigenmode of the Alfvén

wave.

A detailed investigation of the behaviour of the surface mode as

a function of k and of the radius of the conducting shell, rg, has
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been made. The most striking result is shown in the upper part of
Fig. 3. The radial wavelength kr changes from real to imaginary as k
grows. This fact explains the change (Fig. 2) from a global wave
form at k = 0.4 to the surface wave form at k = 1.5: at k = 0.4 the
eigenfunction for B, is given by JI(TCTE r) whereas at k = 1.5 Buis
given by a exponentially growing 11(, kr‘ r). We note the strong
effect of the conducting shell. The smaller the vacuum gap the higher
are the axial phase velocities w/k at small values of k (see lower
part of Fig. 3). This fact is well described by eq. (14) which for
k X 0.4 approximates the exact result within 10 %. From eq. (14) we
conclude that the phase velocities of the mode Fiy m = 1 show the same
tendency to increase, when the shell is approached to the plasma, as

those of the surface wave. This effect has been described by Paoloni
13

1V. DIFFUSE PROFILES

An alternative to the analytical dispersion relation, eq. (10),
which is limited in its application to a homogeneous plasma cylinder,
1s a numerical dispersion relation which involves numerically deter-
mined fundamentals instead of the fundamentals Jns Km and Ip.
The procedure is almost identical to that used in the calculation of
the plasma loading impedance of an antenna surrounding the plasma 16

and will therefore not be described here. A similar procedure has been

used by Karney et al, 15,
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The first case shown here is (Fig. 4) that of a parabolic density
profile, pg = 1-0.99r2, with no axial current. As a consequence of the
inhomogeneous density we now have a continuous spectrum of the Alfvén
wave, in additon to discrete spectra. The continuum is given by eqs.

(3) and (4) which for A = 0 yield

xp(r) = x = |k“|/(powci2 + knz)l/z. (15)

Note that in general both k" and g, are functions of r. In Fig., 4,
the lower and wupper bound of the continuum, xa{lr = 0) and
XA (r = 1) respectively, are shown. In this fiqure k“ = k since
Byo = 0. Only the most important global modes (Fj, m = 1; S and A,
m = -1) are represented. The frequencies of F, and S are somewhat
higher than in Fig. 1, which is consistent with the fact that the
average mass density for the parabolic profile is lower by a factor of
two compared to the constant density profile. These modes Fi and S
therefore appear to be the eigenmodes F; and S which have been
discussed in Fig. 1. However, for those values of k where they lie
inside the continuum they are not solutions of the boundary value
problem but merely time-asymptotic solutions of the corresponding
initial value problem 1, They have a complex frequency; the imaginary
part is not shown in Fig. 4, but has been discussed in work related to
Alfvén wave heating 9110415416 | o gre pleased to conclude from Fig. 4
that the modes F; and S ignore the above-mentioned subtle difference

between an eigenmode and a mode immersed in a continuum,

This conclusion remains more or less true even in the much more

complicated case of a current-carrying plasma cylinder (Fig. 5)
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In addition to the parabolic density profile we have now included a
peaked current profile ~ (1-r?)* which results in Bpg = .06
[1-(1-r2)5]/r2. For an aspect ratio of 3.3 this field yields a safety
factor of 1 on the axis and 5 at the plasma edge. The current makes
the Alfvén continuum non-monotonous in r. We show therefore the lower
bound min xp(r) of the continuum in addition to xp(r = 0) and
xplr = 1). Due to the current the solutions depend on the sign of
k. We remark that the current merely shifts the two branches of the
surface mode S by a small amount. The small shift in k is
approximately equal to that observed for xpa(r = 1). Apart from this
small shift the dispersion relations of F; (not shown) and S seem to
be unaffected by the current. In Figs. 4 and 5 they coincide up to
values of k of the order of one. The deviation at higher values is
accompanied by the appearance of an imaginary part of x (not shown) of

the order of the real part.

The global eigenmodes of the Alfvén wave are distinctly separated
from the continuum in the whole range of negative k values, but have
completely disappeared from the positive range of k. In the negative
range of k it looks as if the continuum, under the influence of the
current, has withdrawn from the global Alfvén modes, whereas in the

positive range of k the continuum has moved downwards hiding these

modes.

The most striking new feature, however, is the existence of

unstable eigenmodes. The graph has been obtained by plotting the

imaginary part of x of the unstable eigenmodes; their real frequency
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is practically zero as one would expect from MHD. The absolute value
of the growth rates and the marginal stability points are not correc-
tly given in Fig. 5 because the approximation used in the derivation
of the basic equations, namely first order in Bg/Byz, is insuffi-
cient. A correct treatment would require at least quadratic terms 17,
The results are nevertheless easily interpretable. The mode A is
known in MHD as the external kink mode. In Fig. 5 its growth rate
turns out to be roughly twice the correct MHD result. The range of
instability is a bit too large in Fig. 5. Ideal MHD theory gives 0  k
£ 3. The modes As, s > 2, are called internal kink modes. They
appear in the k-range where Suydam's stability criterion 8 is viola-

ted.

Inspecting Figs. 4 and 5 one can draw an important conclusion
concerning Alfvén wave heating. Since the radial component of the
Poynting vector Bﬂ E, 1is non-zero only for compressible plasma
motions, i.e. Bu # 0, one relies on the compressible fast magnetosonic
wave for good antenna-plasma coupling at frequencies lying in the
Alfvén continuum. In the low-frequency range the modes (Fl’ m > 0) and
S = (Fj, m < 0) are the only candidates. It is a goal of the heating
scheme to place the conversion layer (i.e. the Alfvén resonant sur-
face) as near as possible to the center of the plasma. From Fig. 4 we
learn that the surface mode has its resonant surface nearer to the
center than the fast mode F;. We select therefore the surface mode S.
An inspection of Fig. 5 then leads us to choose the mode with a nega-
tive value of k, i.e. the mode whose helicity has the same sign as

that of the equilibrium magnetic field.
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V. CONCLUSIONS

On comparing the spectra of a homogeneous currentless. plasma
cylinder with those of nonuniform plasmas with and without axial
current we have presented a unified and simple picture of the
low-frequency modes in a tokamak. We have shown that the lowest radial
eigenmodes of the fast magnetosonic wave have a distinctly different
character depending on the sign of the azimuthal wavenumber m. In one
case it is the eigenmode Fi» known from MHD, whose frequency varies
from zero to infinity when the axial wavenumber k varies in the same
range. In the other case the frequency does not exceed the
ion-cyclotron frequency. This mode of the magnetosonic wave can assume
the character of a surface wave if certain conditions are fulfilled.
We have also shown that the subtle mathematical difference between an
eigenmode and a mode immersed in a continuum does not have any
consequence as far as the real dispersion properties of the mode are
concerned. This fact facilitates the discussion of how the energy is

coupled from the antenna to the plasma in an Alfvén Wave Heating

scheme.

‘Moreover, we have shown that the kink and internal kink instabi-
lities are identical with the global eigenmodes of the Alfvén wave,
i.e. the modes which have also been called "discrete Alfvén waves" or
ion-cyclotron modes. Implicitly we have shown that the classical
scheme of Alfvén Wave Heating does not rely on the resonant absorption
of a kink mode as we have claimed in earlier publications 18 but on

the resonant absorption of a fast magnetosonic surface mode !0, we
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have been misled by the fact that the kink mode is clearly connected
to the first radial eigenmode of the fast magnetosonic wave in the
ideal-MHD spectrum of a current-carrying plasma with upiform 2 or
almost uniform 2119 density. For realistic density profiles we have
never found a connection betweeen the kink and the magnetosonic

surface modes.

Some of the features of the surface wave have been noted by

G.A. Collins in his thesis 20,
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FIGURE CAPTIONS

Fig.

Fig.

Fig.

2

The frequency spectrum, x = w/wci, 0f a currentless
plasma cylinder with uniform density as a function of the
axial wavenumber k. For the two azimuthal wavenumbers
m =+ 1, the lowest radial modes of the fast magnetosonic
wave are designated as F; and F,, those of the Alfvén wave
as A . The broken line A, represents the accumulation
point of the eigenfrequencies of the Alfvén wave. The

symbol S stands for "surface eigenmode".

The wave field of the surface eigenmode in a currentless
plasma cylinder with uniform density as a function of ra-
dius. The three figures for different axial wavenumber k
illustrate the metamorphosis of the global mode Fism= -1

(at k = 0.4) into a surface-confined mode S(at k = 1.5).

The radial wavenumber squared, krz, and the frequency,
X = w/wei, Oof the surface mode as a function of the axial
wavenumber k for different shell positions rg. The accu-

mulation point of the eigenfrequencies of the Alfvén wave,

A., is shown with a broken line.



Fig.

Fig.

5
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The frequency spectrum, x = w/wcj, Of a currentless
plasma cylinder with parabolic density profile as a func-
tion of the axial wavenumber k. The upper and lower bounds
of the Alfvén continuum are shown with broken lines,
xp({r=1) and xp(r=0) respectively. Only the most impor-

tant modes, F}, S and A; are shown.

The frequency spectrum, x = w/wpj, Oof a Eurrent-carrying
plasma cylinder with a parabolic density profile as a
function of the axial wavenumber k. The Alfvén continuum is
characterized by the values of xa in the center r = 0 and
at the plasma edge, r = 1. In the region -0.8 < k < 0.3
xp(r) is not monotonous in r and has a minimum which is
also shown. The stable global eigenmodes of the Alfvén wave
are connected with the unstable kink (A ) and the internal
kink (A, , A;) modes. The surface mode (S) is only slightly

affected by the current.
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