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ABSTRACT

The quasilinear equations are derived for an inhomogeneous
magnetized plasma without using the random phase approximation and the
expansion in the ratio of the Larmor radius to the inhomogeneity
scale. The equations take into account both resonant and non-resonant

interactions, and possess the necessary conservation properties.



I. INTRODUCTION

In a recent paper 1, it was shown that the quasilinear equations
for an unmagnetized inhomogeneous plasma can be derived without making
use of the random phase approximation. Instead, the method of
correlation functions together with a Fourier-transform technique was
applied 2, Moreover, the authors pointed out inconsistencies arising
from the use of the random phase approximation. The equations they
obtained comprise new terms which do not appeér in conventional

derivations.

In this work we generalize these equations to the case of a
plasma in a uniform magnetic field §0 interacting with electrostatic
waves. The plan of the paper is as follows. In Sec. II we derive the
quasilinear equations for arbitrary ratio of the turbulence spatial
scale to the plasma inhomogeneity scale. In Sec. III these equations
are simplified using the adiabatic approximation to obtain equations
of motion for both the averaged distribution function and the
correlation function of the potential. Finally, in Sec. IV, we prove

that the equations possess the necessary conservation properties.

I1. QUASILINEAR SYSTEM

A. Fluctuating and averaged equations

Within the electrostatic approximation, the distribution function

fq (V,T,t) for species o obeys the Vlasov equation
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where ¢(T,t) is the fluctuating electrostatic potential and ﬁb is the

uniform magnetic

field.

‘Fqllowing

conventional

procedure,

the

distribution function fy is split into an averaged part fy, and a

fluctuating part ?;, i.e.,

with

(2)

where the angular brackets < > indicate an ensemble average. The

evolution equation for the averaged distribution Ffunction Fo ‘is

obtained by taking the ensemble average of (1)
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The evolution equation for the fluctuating part is found

subtracting (3) from (1). Thus, ?; obeys

by
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The last two terms on the right-hand side of (4) (i.e., those
involving Vo 3?0/8V1,may be neglected since they describe the

(higher order) wave-wave and wave-particle-wave interactions which

lie outside the scope of the quasilinear theory. Doing so, and
introducing cylindrical coordinates in velocity space,

V= (v, Vys @), with the axis parallel to EB, (4) becomes

where wpy is the cyclotron frequency. Equation (5) will be solved
for F:, which, in turn, will be swbstituted into (3), thus yielding
the evolution equation for the averaged distribution Ffunction Fo.

Closure is, of course,ensured by the Poisson equation

~
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B. Solution of the fluctuating equation

It is judicious, for reasons that will be apparent in Sec. IIC.,

to solve (5) in Fourier space. It becomes, upon Fourier transforming,
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where @ = {kK,0} and & = d3kdw/(27)%. The circumflex indicates the
Fourier transform, and will be dropped to unburden the notation
whenever this does not cause confusion. The convolution on the
right-hand side of (7) takes into account possible space and time
variations of the averaged distribution function fy. Equation (7) is
an inhomogeneous first-order 1linear differential equation. Its

solution is
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where k = (k,y kus ¢ ). In other wordsfg 2,0 is the primitive, with
respect to the velocity polar coordinate o, of the free-streaming
operator 3/3t + V « V in Fourier space. Notice that the integral in
(8) is evaluated only at the upper bound. This ensures that ?; is

periodic in a.
C. Averaged distribution function

The form of the averaged distribution function will be chosen so
that it is compatible with the equilibrium conditions of the plasma,
which we assume to occur when the electrostatic fluctuations are
absent. Under such conditions the distribution function obeys the

equilibrium Vlasov equation

v.v—%ﬂ N (VxB,).2 %G‘o = O . (9)
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Equation (9) is satisfied if fg( has the following form °
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i.e., if f;o is the distribution function of the guiding centers. We

assume that in the presence of electrostatic fluctuations the averaged

distribution function has the same form as (10) with a time dependence
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Notice that the velocity dependent shift of the variables x and vy
renders the o' integration in (8) difficult. The usual way of
overcoming this difficulty is to expand ?; around (x,y), invoking

the smallness of the Larmor radius pL = Vy/wpeg with respect to the

inhomogeneity scale,
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This procedure will be avoided. Using the properties of the Fourier

transform, one can easily separate the spatial dependence from the
velocity dependence in Fo' Taking the Fourier transform of (11) we

find
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The dependence on the velocity polar coordinate o is now

explicitly carried by the exponential. Note that since no variation of
F; along the axis is assumed, its Fourier transform will always

contain a function §(k,). Expression (12) shall now be introduced into

(8).



D. Fluctuating distribution function

As a preliminary step, we shall state explicitly the operator
-
(E:k')-a/ﬁv acting on the Fourier transform of the averaged

distribution function in (8). In cylindrical coordinates, it reads
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On applying this operator on (12) we have
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This term now is substituted into (8). Upon systematic use of the

identity

ap(iaaid) = Z exp (in6) Ju (@)

where the J, are Bessel functions of the first kind, we obtain
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Wé heve replaced {k,u} by @ = {&, e}, where § = {q,,q,, ¥}, for
further convenience. To obtain (13) we have shifted thé indices of the
Beesel functions, and used their recurrence properties. Equation (13)
may be put in a more compact form by using Graf's addition theorem

which for our case reads
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E. Evolution equation for the averaged function

The fluctuating distribution function, given by (14), is now
swstituted into the nonlinear term of (3). Transforming (3) into
Fourier space, regrouping all the angular velocity terms into the
right-hand side, and averaging over the velocity polar coordinate, we

obtain
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where we have again used the properties of the Bessel functions, and
kL
the reality condition o = o2 35 Ig§ is the correlation

function of the potential, defined by
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F. Closure equation

Transforming (6) into Fourier space, we have

1 ~
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Multiplying this equation by ®%-Qs taking the ensemble average, and

substituting (14) for ?‘0, we obtain
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where dv = vy dv, dvy . Equations (15) and (16) govern the
self-consistent evolution of the averaged distribution function and

the correlation function,
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IT1. ADIABATIC APPROXIMATION OF THE QUASILINEAR SYSTEM

We now make the assumption that the spectrun of the averaged
quantities is much narrower than the spectrum of the fluctuating
quantities. Keeping the notation of the preceding section, this may be

expressed as
—-’( l

|l?l >> IQl, |Iq . (17)

-d
Condition (17) ensures the existence of small parameters r!il/|K, ’

'ﬁ"l/|ﬂ in which we can expand (15) and (16).
A. Expansion of the averaged equation
-y ) -l -l
On expanding (15) to first order in |Q|/|K|, lQ'|/|K|, and

transforming back to space and time with respect to the variables (_J:

@', we obtain
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where the operator 0, is defined by
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and Tp = Ix(R), J5 = 35 (kivi/ug), Ty = Fy (v, v, )R),
and R = {T\t}. Notice that (18) has been obtained without any

assumption on the magnitude of the Larmor radius

Separating the resonant and the nonresonant terms, one obtains
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Notice that all the terms in (19) are real

» since all imaginary parts

vanish (due to the parity of the integrand).
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B. Expansion of the closure equation

Expanding (16) to first order in |ﬁ|/|ﬁ|, |6'|/|f| and

transforming back into space and time with respect to the variables Eﬁ

6’, we obtain
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C. Dispersion relation

To the lowest order, the real part of (20) yields
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From (21), we have the dispersion relation

(22)

where xr is the real part of the susceptibility defined by

X, (R7%)= LW ""W{Z_? dv Ji Oc §< . (23)
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It is worth noting that some authors®'* include within the definition

(23) some higher-order terms. We do not keep them in order to be
consistent with our ordering.

D. Equation of motion for the correlation function

To the lowest order in the expansion parameters, the imaginary

part of the closure equation reads

. In (24)
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where yj is the imaginary part of the susceptibility, defined by
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Equation (24) becomes, after some algebra and using (21),
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Equation (26) governs the evolution of the correlation function.
Together with (19), it forms a closed system describing the evolution
of the averaged distribution function (the plasma) and the correlation

function (the fluctuations).

IV. CONSERVATION LAWS

Equations (1) and (6) constitute a conservative system. One
should verify that the equations derived therefrom (i.e., (19) and
(26)) possess the same conservation properties, namely those related

to the densities of particles, momentum, and energy.
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A. Particles

One can show that (19) conserves the number of particles of each

species locally. To do so, one only need to integrate (19) over all

velocities. This yields the equation of continuity

2n, 4 V(neVe) =°, (27)

2t

where ng; and 'Vo are the particle density and average velocity,

respectively. The former is defined by

—

Ne = Zﬂj"'" fe (28)

- :
whereas v is given by

2 -ty
V., - _ 2Waq ax (&, x%&) 7,

1
Wee Ve Me ¢

1 A
~Igw|av J—J 8 (w —'&“Vn-}wcv) vofg"

+

;_"p v (QJJ' ZARAL 6‘? g‘¢
W - leu _J‘wCG‘

(29)

+ + I Plav (3J; /5k,). V. O, g,,*

W - envu - (iwco‘

o (21w Iy 2\ o Y
1P| [ GE) - AGF) vl 0 052 )

]-‘_7-»‘ 67 ’t)""

W - Q“V" -&.wco

X



- 17 -

where ?h is the unit vector parallel to the axis. Notice that V; is
perpendicular to the magnetic field. Multiplying (27) by q; (the
particle charge), and summing over species, one obtains the equation

of continuity for the total electric charge,

x$§ + V-} = o, (30)

where the charge density p is defined by

§ = Z-‘],, wm d"f'r, (31)

o

and the current density j‘is given by

T o= lak(&x D) f:{ v, olv
J ety ( « ok,
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To obtain the expression for j, use was made of (24). Notice that J is
a first order quantity and is therefore small. Global conservation is
guaranteed since local conservation implies global conservation

whenever boundary effects are neglected (as is the case here).
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B. Energy

Multiplying (19) by my/2 (vZ + v2) one obtains

I (33)
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where Wy is the energy density and §; is the energy flux of

species o. The latter is given by
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The term on the right-hand side of (33), Vgs May be interpreted
as a source term, arising from the action of the other species of
particles. Such a term did not appear when particle conservation was
considered since even though particles of different species may
exchange momentum and energy, via their interaction with the waves,

there is no creation or annihilation of particles. Its explicit form

is given by
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If we sun the quantity v; over all species, swstitute (24) and

integrate by parts with respect to w, we obtain

(37)
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where

Vv = Z, vG" . (38)
G

One can see that v consists of the sum of a time derivative term
and a divergence term. Thus if (33) is sunmed over all species, it can

be written in a completely conservative form,

P :
5E ("d + VJ}:) + V. (E;. + §;l=) =0

’ (39)
where
W - z‘,-’ "J" ’ (40)
< _ > S
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WF and §% are the electrostatic enerqy density and energy flux,

and are given by

N 3 (42)
8N

and
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C. Momentum
Due to the presence of the magnetic field it is the momentum'ﬁ}
defined by
- ~o ~—
ro’ = Mc‘ (V * “ocr e'll x X ) (44)

that is conserved for each particles. The momentum density 3; is

obtained by averaging (44) over all velocities,

=y o~ 3 3
= v
K- S o e d (45)

We therefore have to multiply (19) by 36, integrate over velocities,
and see whether or not we obtain an equation of the continuity type.
Let us consider first the direction parallel to the magnetic field. We

obtain

- T

a_. P 4 V . 1_:0 = (sf (46)

ot v

The quantity 7y may be interpreted as a part of the pressure tensor,

and is given by



- 22 -

P ;‘k“- a |ax (& <%) L, _PJ‘,V
o i

x Vu (aji /QE.L)'VLI? .6r gﬁ“

w- &,v, -wa

- Plav Vi [m(%él‘f)

- (47)
I-. - s A
-k (35)-GF) v (@R)2) 6. &

2

! QWI?J“V Vu J‘} S(N-&“v,,-&ww) 76‘-:‘;

Iz play v Qlizet) . 9, 5.4,

W - Q"n Vu “&.Wr.r

s

while B, may be interpreted as a source term arising from the

interaction of the other particles with the particles of species o,

via the waves, It reads
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As in the case of energy, the source term simplifies when it is

summed over all species, and when the equation of motion (24) is

used., We find

Z‘;[scr = -V-1., (49)
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where Nf is given by

T = - ae &, [ 42 2L Tz 2 (%) ] oo

41 o,

Notice that there is no time derivative term in the expression
(50). This is due to the fact that the Poynting vector is zero
since we work within the electrostatic approximation. If we sum

(46) over species, we find

a i N
5:P" + v'(;i"'i’;-) =0, (51)
where
iL = %., '—Z’? . (52)

Equation (51) shows that the total parallel momentum is locally

conserved,

We now turn our attention to the components perpendicular to the
magnetic field. Multiplying (19) by Po and integrating over

velocities, we obtain

N + M W, (é-“..x;) V-(n.-vc) = O ¢« (53)
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Commuting the V operator with (é.“ x X) yields
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where the V  operator acts on both n(,"v'(I and (é"" x X). The three
terms of (54) are, from left to right, the time derivative of the
perpendicular mementum density, the perpendicular component of the

divergence of the pressure tensor, and a source term. It can easily be
shown that the source term of (54), which we designate JIy, reduces

to a gradient term once it is summed over particle species,

of,

where (24) and (29) have been used. Thus, if (54) is summed over

species, we find

T . %’”c‘“’m(v'“c;:) Eurx ../_1. = 0,056

2
ot
where
R -
(P = Z/ 'Pau. (57)
. G .
In view of (55), the perpendicular momentum is also locally

conserved.
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V. CONCLUSION

We have derived the quasilinear equations for an inhomogeneous
magnetized plasma interacting with electrostatic turbulence. These
equations were obtained without using the expansion in the ratio of
the Larmor radius to the inhomogeneity scale, and without introducing
the random phase approximation. They locally conserve particle number,
momentum, and enerqgy and simultaneously take into account both the
resonant and nonresonant interactions. To the best of our knowledge

such equations have not yet appeared in the literature.
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