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ABSTRACT

In this paper we discuss certain aspects concerning the transport
and focusing of a high-power far-infrared laser beam into a plasma for

Thomson scattering measurements.

To attain the required MW power level in a B0 laser, it is im-
portant to use efficiently the volume of the optically-pumped vapor.
The best-known method to achieve this is the use of an unstable reso-
nator which produces a beam with an annular intensity profile. This
has a negative effect on the quality of the focused beam and on the
intensity profile incident on the beam dump. A system utilizing a
cassegrain telescope and spatial filtering techniques is found to be a

good solution.



I. INTRODUCTION

Development of far-infrared (FIR) lasers for plasma diagnostic
purposes is advancing at a rapid pace. While FIR interferometry with
cw lasers can already be considered to be a standard technique for
density measurements, scattering experiments (e.q. to determine Ti)
have suffered so far from lack of adequate laser power. However, la-
sers have recently been built or are under construction which almost
achieve the required power level of ~1 MW and it is expected that a
successful Tj-measurement by this method will be reported in the

very near future.

While waveguide structures might be used in the laser cavity.
free space propagation is usually chosen for beam transportation to
the plasma device. For the design of a transport system involving se-
veral mirrors. apertures and focusing elements, one has to be able to
compute the beam propagation. While this can often be done with suffi-
cient precision by geometrical or Gaussian optics in the visible., the
importance of diffraction effects in the FIR, causing a significant
spreading of the beam. calls for a more sophisticated method. Gaussian
beam propagation is still applicable as long as the radial Gaussian
beam profile can be maintained along the whole beam path. For the par-
ticular application discussed in this paper this is. however. not the
case for two reasons: (i) to achieve the high powers necessary. FIR
oscillators of a large volume are required. Unstable resonators will.
therefore. generally be used to match the mode volume to the volume of
the active medium. In the commonly used confocal. positive branch.

unstable resonator! output coupling occurs around the edge of the

smaller, convex mirror, resulting in a ring-structured intensity pro-



file. (ii) to keep the cost of the reasonably large mirrors required
(of the order of 20 cm diameter) within limits. their diameters will
not wusually be much larger than the beam diameter and they will.
therefore. always clip a fraction of the beam. introducing diffraction

effects.

Several methods exist to simulate the propagation of a beam in-
cluding diffraction effects. It is not the aim of this paper to pro-
pose a new method, but existing methods will be compared and evaluated
with respect to their use for FIR beam transport. Specific prohblems
such as the conversion of a ring-structured beam profile into a smooth
focal spot distribution of Gaussian-1like shape will be discussed and
tables and graphs will be presented to serve as quidelines for the

design of a beam transport system.

II. COMPARISON OF BEAM PROPAGATION CODES

Propagation of optical wave fronts can numerically be treated in
two different ways: either by solving the differential wave equation
(differential method) or by evaluating the Rayleigh-Sommerfeld djf-
fraction formula which mathematically describes the Huygens-Fresnel
principle (integral method). Both methods have been discussed and com-

pared in an earlier paper.2

The differential method is suitable for short propagation dis-
tances and allows us to include distributed effects such as loss or
gain or refractive index nonuniformities. It is. therefore. VETY use-
ful for mode calculations in resonators with an active medium. With

its fixed radial step size it cannot easily be applied to converqing



and diverging beams and reaches its limits when the propagation
through a focal spot has to be investigated. It is possible to inves-
tigate diffraction effects with this method since this is implicitely
included in the wave equation. However, the discontinuity introduced
in the intensity distribution by an aperture with a sharp edqge cannot

be handled adequately.

With the integral method the radial step size can be varied from
wave-plane to wave-plane. This allows us to compute the intensity dis-
tribution in the focal spot of a lens or focusing mirror and its pro-
pagation beyond this point. Sharp-edged apertures can be treated, but
in order to include non-uniform effects of the medium the beam path
has to be divided into short sections. For short propagation distan-
ces, however, the fresnel approximation used to solve the double inte-

grals breaks down. This has been discussed in detail by Southwell .3

For the free-space beam transport problems discussed in this
paper, both short propagation distances and distributed medium effects
are irrelevant, but sharp edged apertures have to be considered. Thus
the integral method has been used for most of the numerical results

reported.

An efficient method for beam propagation calculations is the
spectral approach“ invalving Fourier transforms for which very fast
algorithms exist. However, it requires rectanqular coordinates while
all the profiles discussed here are cylindrically symmetric. If a spa-
tial resolution of the order of 1000 radial steps is desired, the
storage requirements of this method usually exceed the capacity of a

smaller computer.
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Since it is difficult to measure beam profiles accurately in the
far infrared and thus to compare results with experiments, at least a
comparison of the integral and differentjal methaods can be carried out
to obtain information on the accuracy. After all, the methods are

based on different mathematical principles.

We have compared beam profiles of a flat ring-shaped initial in-
tensity distribution using a resolution of 1200 radial points for a
range of propagation distances. In the calculations reported in this
paper the wavelength was 385 wm corresponding to one of the principal
emission lines of an optically-pumped D,0 laser. To avoid the problems
with discontinuities mentioned earlier, the inner and outer edges of
the intensity distribution were slightly smoothed in the way described
in Ref. 2. With a beam of 20 cm diameter and a 10 cm diameter hole,
beam profiles were practically indistinguishable for propagation dis-
tances between 10 cm and 2 m, (see Fig. 1). After 5 m the fine struc-
ture (ripples) are slightly different. These differences increase, but
even at 20 m the coarse structure is recognizably similar. 0Only the
intensities on axis are noticably different. At 50 m the similarities
are lost. While the integral method now shows a smooth almost
Gaussian-like profile with a few side-lobes, hence a complete filling-
in of the initial hole, the differential method produces a spiky
irregular profile which is interpreted as being due to numerical

instabilities.

For distances less than 10 em the rapidly oscillating phase term
in the double integral creates trouble. This manifests itself in a
ghost intensity profile folded into the real profile. There are pro-

bably numerical techniques to avoid this problem, but this was not



further investigated.

The conclusion is that for Fresnel numbers between ~2.5 and ~250
both methods show good agreement. Below this range the inteqral method

only should be used and above the differential method.

ITI. FILL-IN DISTANCES FOR HOLLOW PROFILES

For an ion temperature measurement by Thomson scattering of
pulsed FIR radiation the following points are important for the beam
transport: (i) the transport efficiency, (ii) the intensity distribu-
tion in the focal spot and (iii) the beam divergence and profile be-
yond the focal spot. Since it is difficult to achieve the required
power levels in the first place, the transport efficiency has to be as
high as possible. The beam distribution in the focal spot is important
for the scattering process. While side lobes can be tolerated to a
certain degree, the area over which scattered radiation can be collec-

ted with a given solid angle is limited with heterodyne detection.

Even more important is the beam quality beyond the focal spot. It
is well known that the efficiency of Thomson scattering is very low
of the order of 10-12 to 10-15. The suppression of stray light is
therefore of paramount importance. Hence the incident beam has to be
dumped very efficiently and this is obviously much easier for a beam
with small divergence and a rapidly decaying radial intensity distri-

but ion.



If a beam with a ring-structured profile is focused, the quality
of the intensity distribution in the focal spot is quite good: a large
Gaussian-like central lobe with a few much weaker side lobes. However,
this beam emerges from the focal spot with a “memory" of its initial
shape. At a distance of two focal lengths from the focusing element
the beam has again a hollow profile which is fairly similar to the
initial ome, as shown in Fig. 2. As pointed out earlier this is not
desirable and methods have to be found to improve the beam profile

before focusing.

Since the hole in a flat, hollow intensity profile fills in auto-
matically due to diffraction after some distance. the easiest way to
smooth such a profile is free Space propagation. This is illustrated
in Fig. 3 which shows a plane-wave with a circular cross-section of
20 cm diameter and a hole of 10 cm diameter propagating over a dis-
tance of 45 m. Each x-z plane in this pseudo-3D plot shows a radial
intensity distribution (from -p to +r) for a different axial posi-
tion y. After an irreqular initial behavior with sharp axial spikes
caused by edge diffraction, the emergence of a smooth, axially peaked
profile is clearly visible. Some diverging side lobes which carry away
energy from the central feature can also be observed. While a smooth
profile can indeed be obtained in this way, especially if the side-
lobes are now cut off with an appropriate aperture, the conversion

efficiency of this process is obviously limited.

We have calculated the distances of propagation necessary to
diffract a certain fraction of the initial beam intensity into the
central lobe, for a range of initial beam profiles. The results are

shown in Table I. Fach hole diameter corresponds to the size of the



output coupler in a telescopic unstable resonator with a cavity feed-
back €2 of 5, 10, 15, 20 and 25% respectively. Note that ¢ is the

ratio of the diameters of the two concentric circles bounding the beam

profile,

The main conclusion from this table is the following: while the
fill-in distances are not unreasonable - space for a 50 m long beam
path can certainly be found in an experimental hall containing a plas-

ma machine - the diffraction losses encountered are quite severe.

IV. DIRECT FOCUSING

Whether it is more important to avoid losses or to work with
smooth intensity profiles depends on experimental parameters such as
the laser power availabe, the access to the plasma machine and the
construction of the beam dump. It has been pointed out earlier that
the beam profile in the focal spot is satisfactory even in the case of
focusing a ring-structured profile. The problem is that the beam

emerges from the focal spot with a "memory" of its original shape.

In the following discussion we assume that an annular beam pro-
file bounded by concentric circles of diameters d and ed(e < 1) is
focused by means of a lens of focal length f. We compare the beam pro-
files in the focal plane and in a plane at a distance f beyond the

focal spot.

As beam qualifiers in the focal spot we use the half-width Iy

of the central lobe (radius of the first local intensity minimum), the



intensity ratio I} /I of the peak of the first side lobe and the
main lobe and the fraction Eo/Etot of the total energy funneled
into the central lobe. These parameters are shown in Fig. 4 as func-

tion of ¢.

Based on the Fraunhofer diffraction theoryﬁ this case can be
treated analytically and thus provides a means of verifying the accu-
racy of the code. With the dimensionless variable p = ndr/(AF), the

radial intensity distribution in the focal plane is obtained from
Lp) = 4/01-e2)2 « [3(0)/p - e?3 (o) /ep 2 o 1, (1)

where J is the Bessel function and Ij, the intensity inside the ori-
ginal annulus. The fraction of the total enerqgy contained in a disk of
radius p, is

x

Ea/Etot = 1/2( (1-e2)1(p)/I, + o d (2)

With increasing diameter of the hole in the annular intensity distri-
bution, we observe in Fig. 4 the following effects: (i) the diameter
of the central lobe decreases slightly, resulting in a somewhat im-
proved resolution, (ii) the ratio of energy contained in the second
and first maxima grows so that the contrast is reduced and (iii) more
and more energy is diffracted outside the central lobe and is thus
lost for the scattering process. For e > 0.3 the focused energy de-

creases almost linearly with g .

While the improved resolution, on the scale observed, is not sig-

nificant in the context of Thomson scattering, the decreasing
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contrast and mainly the loss of focused enerqgy are rather severe. How-
ever, up to an e-value of ~0.2 the curves are fairly flat. This means
that the output of an unstble resonator with small feedback (~5%) can
still be focused almost as well as a flat circular intensity profile.
Recent experimental investigations7 of a high power D,0 laser with an
unstable resonator showed that the optimum feedback is indeed around

5%. From the point of view of the beam quality in the focal plane

direct focusing is thus feasible.

To qualify the irreqular beam profile emerging from the focal
point is more difficult. We calculated the diameters of cross-sections
containing 10, 20, 80 and 90% of the total intensity and define as
beam qualifiers the ratios of these radii to the radius of a

cross-section containing 50% of the total intensity.

In table IT we list these qualifiers for a plane at a distance f
beyond the focal point of a lens of focal length f. For comparison the
same qualifiers are also shown for a thin annulus, as well as for a
flat and a gaussian distribution. To dump a beam efficiently, a steep-
ly decreasing profile, such as for example a gaussian, is desirable.
In this case, the beam qualifiers span a large range. Their values are
closer together for a profile with uniform intensity and are all equal
for the worst possible case of an off-axial energy distribution. These
observations serve as a guide on how to interpret table II from which
we can draw the two following main conclusions: (i) it is easier to
dump beams with small central holes and (ii) lenses of long focal

length produce profiles with a flatter central part but steeper edqges.
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V. A PRACTICAL CASE

In our laboratory the design of an experiment to investigate the
feasibility of measuring the ion temperature in the TCA tokamak is
currently nearing completion. In this experiment the output radiation
of an optically-pumped D,0 laser with an unstable resonator is focused
into the torus by means of a 90 ° off-axis elliptical mirror. While
this mirror was designed using 3D geometrical optics laws, we neglect
in the following calculations the non-cylindrically symmetric aberra-
tion effects due to this mirror. The output of the FIR oscillator is
sent through an intermediate focus with a telescopic mirror arrange-
ment, as shown in Fig. 5. This has the following advantages: (i) the
TPX window used to couple the FIR beam out of the tank containing the
resonator can be much smaller and hence also thinner, reducing losses.,
(ii) fill-in propagation distances are reduced and (iii) apertures can
be placed at the intermediate focal spot to improve the beam quality

(spatial filtering).

Referring to Fig. 5, the beam transport starts with a ring-shaped
intensity profile in plane P1 of outer diameter 20 cm and a 5 cm dia-
meter hole. This fixes the diameters of mirrors M1 and M2. However, to
avoid unnecessary diffraction losses we have chosen mirror M2 somewhat
bigger: 25 cm diameter. We fix the radius of curvature of mirror M2 to
1 m, If M1, M2 formed a truly telescopic system, mirror M1, with a ra-
dius of curvature of 25 cm, would have to be placed at a distance of
37.5 cm from mirror M2. On the other hand, to obtain a focal spot in
the center of mirror M2 the radius of curvature of mirror M1 should be

37.5 cm. Due to diffraction, however, the diameter of the beam inci-
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dent on mirror M1 is larger than predicted by geometrical optics, re-
sulting in additional losses. Increasing the distance M1-M2 reduces
these losses but enhances the coupling losses through the hole in mir-
ror M2. Careful optimization showed a mirror separation of 40 ecm to be
optimal. The radius of curvature of mirror M1 is obtained from geome-
trical optics considerations® according to equation

R, - 2d

Rl = 2 4d < RQ (3)

where R1,2 are the radii of curvature of the 2 mirrors and d the
mirror separation. The size of the hole in mirror M2 has a two-fold
influence on the transport efficiency in counteracting ways. A smaller
hole results in a smaller aperture for the focused beam but in an in-
creased reflecting mirror surface. We found numerically a hole dia-

meter of 3.5 cm to be optimal.

In Fig. 5 we show the calculated intensity distribution incident
on the planes P2, P1, P2 (intermediate focus), P3, P4 and PS5, listed
here in the order in which they are encountered following the beam
trajectory. The focal length of mirror M3, which is shown as a lens in
the drawing (Fig. 5), but is actually an elliptical mirror deflecting
the beam by 90°, is 50 cm. For a fixed distance P2-P4 of 250 cm one

obtains for P2-P3 180.9 cm and for P3-P4 69.1 cm.

We will now compare this arrangement to one without a telescopic sys-
tem. Using the same focusing mirror M3 and the same distance P1-P4,
one obtains an intensity distribution in the focal plane P4 which is

not very different.
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This is illustrated in table III where the beam qualifiers defined
earlier are given for the two arrangements. The intensity contained in
the central lobe in the focal plane P4 is 71.6% of the initial inten-
sity for the telescopic system and 73.2% for the one-mirror arrange-
ment. A significant difference is observed in plane P5 beyond the main
focal spot (compare Figs. 6a and 6b). The requirements for a beam dump
placed at this position are certainly relaxed considerably with the

telescopic arrangement.

The transport efficiency with respect to the central lobe of the
focal plane P4 is not reduced if an aperature for spatial filtering is
placed in the hole of mirror M2, cutting off everything outside the
main lobe. The improvement of the beam profile at the position of the
beam dump (plane P5), however, is quite drastic (see Fig. 6c). In

addition there are practically no side lobes in the focal plane P4,

In table III the four beam qualifiers defined earlier are given
for the plane PS5 beyond the focal point. From these numbers alone,
without referring to figure 6, it follows that the distributions for
the first two systems are relatively flat while the telescopic system
with the aperture produces a distribution resembling a Gaussian (see
also table II). It may not immediately be obvious why a Gaussian
profile, incident on the beam dump, should be preferable to a flat
one. While the intensity in a Gaussian profile decreases very rapdily
with increasing distance from axis, the wings stretch to infinity.
Indeed, if a truly rectangular distribution with sharp edges and zero
intensity outside could be produced, this would be optimal for
efficient dumping. However, in reality wings always exist. What is
important is their rate of decrease which is optimum for Gaussian

profiles,
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VI. CONCLUSIONS

We have compared two beam transport codes and established the
range of propagation distances over which they can be applied. The
integral code was then used to investigate problems connected with the
focusing of a beam with a ring-structured intensity profile. Tables
were presented which allow one to estimate the distance of propagation
necessary to fill in the hollow beam profile and to obtain information
on the beam quality in and beyond the focal plane of a focusing

element.

Finally, the beam transport system used to interface a DN laser
with the TCA tokamak for an ion temperature measurement by Thomson
scattering was investigated. It was found that a telescopic mirror
system inside the FIR laser tank which creates an intermediate focus
offers some important advantages. While the beam transport efficiency
is not significantly deqgraded by its presence, the beam quality in the
main focal plane and especially at the position of the beam dump is

greatly improved.

This work was supported by the Swiss National Science Foundation
and Euratom. We wish to thank P.D. Morgan for discussions and comments

on this paper.
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FIGURE CAPTIONS

Fjg. 1:

Fig. 3:

Beam profiles of a flat annular intensity distribution (dia-
meter 20 cm, hole diameter 10 cm) for propagation
distances z of 2, 5, 10, 20, 50 m. Left hand side:

integral method: right hand side: differential method.

Focusing of a flat annular intensity distribution with a
lens of f = 50 cm. Curve (1): initial profile, (2): profile

in focal plane, (3): profile at distance f beyond focus.

Free space propagation of a flat annular intensity distribu-
tion. Radial intensity profiles are shown for axial distan-

ces up to 45 m.

Three beam qualifiers for the intensity distribution in the
focal plane of a lens as a function of the size of the hole
of an initially flat, annular profile. a) half width of cen-
tral lobe, b) intensity ratio of the second and first

maximum, c) fraction of energy contained in central lobe.

Schematic of beam transport system for Thomson scattering
measurements with an unstable resonator D,0 laser. A tele-
scopic system allows to use a small output window and
spatial filtering. Calculated radial beam profiles are shown

for several positions.

Beam profiles at the position of the beam dump for three
beam transport systems (compare with Fig. 5): (a) direct
focusing with element M3, (b) system shown in Fig. 5, (c¢) as

(b) with aperture at P2.
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Table I

Fill-in distances for annular beams of 20 cm external diameter

feedback of diameter of distance fraction of
unstable hole in of intensity in
resonator beam propagation central lobe

(%) (cm) (m) (%)

25 10 19 20

25 30

40 40

© 48

20 8.9 19 20

24 30

33 4n

68 50

o 54

15 7.7 18 20

22 30

28 40

38 50

o 60

10 6.3 19 20

22 30

24 40

30 50

40 60

® 67

5 4.5 18 20

20 30

25 40

31 50

41 50

@

75
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Table T1I
Initial profile:

Beam qualifiers in the plane at distance 2f from the lens.

flat, annular, 20 cm outer diameter.

cavity feed- diameter focal r(1=10%) | r(1=20%)| r(I=80%) r(1=90%)
back of un- of hole length | r(I=50% r(1=50%)| r(I1=50%) r(1=50%
stable in beam
resonator
(%) (cm) (cm)
25 10 25 .74 .81 1.15 1.21
50 74 .81 1.13 1.20
100 .74 .86 1.17 1.27
200 .75 .84 1.18 1.39
20 8.9 25 .70 77 1.17 1.22
50 71 .78 1.14 1.22
100 .72 .82 1.18 1.29
200 .73 .84 1.19 1.41
15 7.7 25 .65 .74 1.18 1.24
50 .66 .75 1.17 1.24
100 .68 .77 1.17 1.30
200 .70 .84 1.22 1.42
10 6.3 25 .59 .72 1.20 1.26
50 .61 71 1.19 1.27
100 .62 .73 1.18 1.29
200 .64 .81 1.26 1.43
5 4.5 25 .52 .68 1.23 1.30
50 .54 .68 1.22 1.30
100 .55 .68 1.20 1.31
200 .57 .76 1.27 1.45
Thin annular profile *) 1. 1. 1. 1.
Flat profile .45 .63 1.26 1.34
Gaussian profile .40 .58 1.44 1.63

*) Annulus of radii a and ga, with e + 1.




- 19 -

Table I1I

I

Beam qualifiers in the planes P4 (focus) and P5 (beam dump)

for the system shown in Fig. 5

System with one
focusing mirror

System with
telescope

System with
telescope and
aperture

TS transfer| inten- | r(1=10%) £(I=20%)| r(1=80%)| r(1=90%)
effi- sity r(I1=50% r(1=50%)] r(1=50% r(I=50%)
ciency ratio

(mm) (%) of
lobes
(%)

1.1 73.2 3.6 .56 .68 1.19 1.27

1.6 71.6 2.8 .48 .67 1.29 1.48

1.9% 71.6 0.0 .40 .57 1.48 1.73

* this value is inaccurate.

referring to
focal plane P4

reFerrfnq to plane
of beam dump PS

intensity minimum between the central lobe and the first side lobe is

not well defined. In fact

from the one without aperture.

» the central lobe is almost indistinquishable

Since there are practically no side lobes, the
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