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ABSTRACT

Recent experimental and theoretical studies have revealed the exis-
tence, in a current-carrying plasma, of hitherto unknown global eigenmodes
of the Alfvén wave (discrete Alfvén spectrum). The potential for a new RF
heating scheme using the resonant excitation of such modes in Tokamaks, the
"Alfvén Eigermmode Resonance Heating" (AERH) is explored. It is concluded
that such a heating scheme is most efficient for axisymmetric excitation
(toroidal mode number n = 0). In this case the antenna load is one to two

orders larger than that of the resonant absorption scheme of Alfvén Wave
Heating.

1. INTRODUCTION

Recent experimental [1] and numerical [2] results concerning the anten-
na loading for Alfvén wave heating of Tokamak plasmas show evidence of re-
sonance peaks at frequencies just below the lower edge of the Alfvén con-
tinuum. We have provided a simple interpretation [3] of this phenomenon by
means of the ideal MHD theory. In particular, we have shown that the reso-
nance peaks can be related to the excitation of a new class of eigenmodes
of the Alfvén wave which we call "global eigenmodes of the Alfvén wave"
(GEAW) to distinguish them from the well-known singular eigemmodes.
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The objective of this paper is to explore the potential for a new

heating scheme using the resonant excitation of GEAW.

2. GLOBAL EIGENMODES OF THE ALFVEN WAVE

We consider low-frequency (w & wpj) small-amplitude perturbations in

a cold current-carrying plasma. The plasma motion can then be described by

the linearized ideal MHD equations
a_\L - 3 B + i B (1)
PEat T X5 +Jy X5
cE + vxB_ =0, (2)
- =" -0

where v is the plasma velocity, J and j, are the perturbation and equi-
librium current densities, B and By are the perturbation and equilibrium
magnetic fields, E is the electric field and p is the equilibrium mass den-
sity. We adopt a cylindrical geometry and assume that the equilibrium quan-
tities are functions of radius r only. We may then take the time and space
dependence of the perturbation quantities as exp[i(kz+m®-wt)]. Moreover. we
introduce a local coordinate system with ¥, & = & x f., 8 = By/B,
and assume |Boe/Boz| &€ 1. On combining Egs. (1) and (2) with the Fara-

day law we can determine a relation between J and E, and hence obtain the

expression for the plasma dielectric tensor E. Up to the first order in
Bpo/Byz and for c/cp > 1 we find
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where cp is the Alfvén speed and kyBy = kBy, + (m/r)Byg.
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The other components of g are not needed since £y = 0 in the MHD
model. On swstituting the expressions (3) and (4) into the Maxwell
equations expanded up to the first order in Byg/By,, we obtain two

coupled first-order equations for the quantities E and By

AL (g )= P00 Boz ko kE, + 22 (A-k2c2)B (5)
r dr L’ T 7 4mrp n “ate o To WATKICA)BY
dB 28 _ o k2 g% 28 B

A r . c_ ( 00 "oz amoA2| E 00 "oz K k B (6)
dr ~ iw T Gwp TP L ¥ "anrp Ly

These are the basic equations of our model.

We shall now seek a solution to Egs. (5) and (6) in the WKB approxima-
tion. Simple algebra yields the following dispersion relation:

2,22
(ZBoe/r) kHBoz

(wz—uﬁ) [wz-c:(ki + kf + kﬁ):\{wz—uﬁ + o, (7)

2.2 2
(Kr+kL) (4npcA)

where kp is the radial wavenumber. This dispersion relation has obviously
three branches. The first and second ones correspond to the usual Alfvén
wave (AW) and the fast magnetoacoustic wave, respectively. The third

branch, hitherto unknown, corresponds to the modes which we call "global
eigenmodes of the Alfvén wave" (GEAW).

Figure 1 shows schematically the dispersion relation (7) as a function
of p. For parameters typical of present day Tokamaks the fast magnetoacous-
tic wave is cutoff, and sometimes called the surface wave (SW). It is worth
mentioning that the new modes cannot be found in a slab geometry. Their

existence is intrinsically connected with the curvature of magnetic field
lines [4].
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The global eigemmodes can be found numerically by means of the
one-dimensional spectral code THALIA [5]. For this purpose we choose the

following profiles of the equilibrium current and density

. . . T\y271 K Ly2
Joo =05 Jg, = 300 [1-°] %, o = 0(0) [1 - 0.95 (5?], (8)
where a is the plasma radius. The quantities j(o) and « are free parameters

while p(o) appears only in the normalizing Alfvén frequency

B
0z

w, = (9)
N afame(o) ]V2.

The plasma is surrounded by a vacuum region which is limited by a concen-
tric wall of radius 1.6a.

In Fig. 2 is shown the spectrum associated with the global eigenmodes
in the stable region. The distance sz/wNz of the eigenfrequencies from
the lower edge of the Alfvén continuum is plotted as a function of the to-
roidal mode number n = kR, where R is the major radius., The parameters used
for this figure were « = 4, m = 1, Boz = 1 and j(o) was determined from
the condition that the safety factor at the axis Go = 1. Only the eigen-
frequencies with Aw?/wy? > 10-° are given. At n = ng (marked by II) we
find 13 eigenfrequencies. The number of eigenfrequencies decreases for
n < ne (region I) and for n > ne (region III)., For high (n > 7) all the
eigenfrequencies seem to disappear. For negative n numbers, the mode cor-

responding to the uppermost eigenfrequency becomes unstable and the other

global eigemmodes disappear.

3. "ALFVEN EIGENMODE RESONANCE HEATING" SCHEME

The existence of global eigenmodes associated with frequencies below
the Alfvén continuum suggests most naturally that, for heating purposes,
these modes could be excited resonantly [1,2,3]. A priori there are as many
modes for candidates as there are combinations of radial (%), poloidal (m)

and toroidal (n) mode numbers. Noting that the excitation of modes with
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m > 1 usually resembles even quantitatively the excitation of modes having
m =1, we may restrict our interest tom = 1. The remaining problem is then
to find the best combination of % and n. By the "best" (2,n) we mean the

eigenmode characterized by (%£,n) whose excitation leads to the largest an-

tenna loading impedance, Z.

Concerning the radial mode number % one presumes that the lowest mode
number, % = 1, must be the best. It has indeed been shown [3] that the ra-
dial displacement £.(a) at the plasma-vacuum interface, attains a maximum
value for £ = 1. The basic or "ground" mode (& = 1) is therefore the most
easily accessible mode and its excitation should lead to the largest anten-
na loading impedance. That this is the case has been demonstrated by the
Texas group in a kinetic calculation concerning PLT [2].

In order to optimize the toroidal mode number n a bit more is needed
than just the solutions of the eigenvalue problem in cylindrical geometry.
In what follows use is made of the cylindrical [6] and the toroidal [7,8]
Alfvén Wave Heating codes which treat the wave excitation problem in the

framework of ideal MHD,
~(w+iv)®pg = F(E). (10)

In the resonant absorption studies the artificial damping coefficient v
simply ensured causality. In the present investigation we use v to simulate
electron Landau damping and obtain in this way reasonable estimates for the
antenna loading impedance.

Since the GEAW have much of the physical properties of the usual Alfvén
waves it is reasonable to assume that their Landau damping is the same. In
the limit » € we; and ky < (K5 + kpy2)1/2 one obtains [9]

m
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The radial structure of modes with n > 0 may roughly be approximated by
kp2m2/adk . With ky*n/R we then find (KZ+k2.) /2 /iy=2m(R/a) (2/n)
The frequencies of GEAW are of the order of Ky ca.
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Using these estimates and assuming Bmj/mg = 1 or vpphe2/cp®=0.5.
we have calculated v/w for the modes n=2, %2=1,2 in PLT. The parameters were
taken from Ref. 2. We find the values 4+10-° and 1.610-". With these va-
lues of v/w the cylindrical MHD model yields impedances within a factor of

2 of those obtained with the kinetic model [2] assuming w/wqj < 1.

Restricting our investigation to £ = 1, we now show that the mode n=0
leads to the largest impedance. The estimate (k3 + Kkp2)1/2/Kk, =
(R/a)qg for the case n=0 is, with an assumed safety factor at the plasma
surface qg =~ 3, of the same order of magnitude as for n=2. Applying the
calculation to a specific TCA equilibrium (By, = 12 kG, q = 1,
N = 3+10'3 com=3 Deuterium, Te, = 800 eV. R/a = 3.6, « = 4) we obtain
as a rough estimate v/w = 0.01 irrespective of n. In Figure 3 we show the
exciting frequency w and the antenna loading impedance Z as a function of n
for a helical antenna of radius 1.2a. The impedance clearly reaches a maxi-
mum for n=0. In reality this maximum would even be more pronounced because,
in a better estimate, v/w would tend to smaller values with decreasing n

instead of remaining constant. The mode n=0 is therefore the best!

From preliminary toroidal calculations using n > 1 we arrive at the
same conclusion. These calculations show that a large fraction of the power
is deposited near the plasma surface. The situation appears to be similar
to that encountered with the usual Alfvén wave heating scheme for which to-
roidal coupling leads to surface heating [B]a It therefore appears that
AERH using an n > 1 antenna is not advantageous compared to resonant ab-
sorption. On the other hand, for the case n=0, AERH has attractive fea-
tures. The low frequency involved does not appear in any Alfvén continuum.
Therefore, there is no possibility of coupling to the plasma surface. Since
only the cases n > 1 can be treated with the present version of our toroi-

dal heating code. we cannot unfortunately corroborate this assertion by a

numerical calculation.

Another advantageous feature of AERH is the simplicity of an n=0 anten-
na structure. In the resonant absorption scheme the n=0 antenna is not well

coupled to the plasma since the global eigenmode is far from the continuum.
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The most attractive point of the AERH scheme, however, is the fact that

the antenna loads turn out to be 10-100 times larger than those in the
usual Alfvén Wave Heating scheme.

The AERH scheme might encounter certain difficulties due to the sharp-
ness of the resonances (y/w ~ 10~" = 10‘2). It is known that the frequency
of the n=0 modes are affected by the equilibrium profiles, by the ratio of
the plasma radius to that of the conducting wall, or by the elongation of
the plasma cross-section. If, during the heating pulse, the profiles evolve

either by themselves or under the influence of the heating, frequency
tracking might be necessary.

In order to illustrate this problem, we calculate the frequency and the
loading impedance for the mode (n=0, 2=1) in two simple families of equili-
bria. We vary j(o) and «, Eq. (8), in such a manner that in the 1st family
of equilibria qg = 5 and gy = 2.5 <+ 0.5 (Fig. 4) and in the second fa-
mily g5 = 1 and qg = 2 + 9 (Fig. 5). TCA parameters lead to the estima-
tion y/w =~ 4.10~% gg2.

The equilibria investigated in Fig. 4 have all the same total current.
We remark that in this family the sensitivity of w and Z to profile changes
is weak. In contrast, we find a strong dependence of w and Z in the case
where the change in profiles results in a change of the total current
(Fig. 5). We find roughly v ~ 1/qg and Z ~ 1/qg3.

In conclusion it may be noted that although definite assurance cannot
be given that the AERH scheme with axisymmetric excitation (n=0) is likely
to work, there is a certain confort to be taken from the fact that reso-
nance peaks have been observed experimentally [1] and that they have been

identified positively [3] as GEAW as described by simple MHD theory.

Note added after the Symposium

At the Symposium A.W. Kolfschoten and T. Hellsten pointed out to us
that J.P. Goedbloed was aware of the complexity of the Alfvén spectrum as
early as in 1975; see Phys. Fluids 18 (1975) 1258.
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Figures Captions

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Schematic diagram of the dispersion relation (7): radial wave

number vs. density for a typical Tokamak plasma,

Spectrum associated with the global eigermodes. The distance
Aw?/w?
vén continuum is plotted versus the toroidal mode number n for

of the eigenfrequencies from the lower edge of the Alf-

different radial mode numbers %. For negative values of n, the

mode corresponding to the uppermost eigenfrequency is unstable,

Antenna loading impedance Z/7y and frequency w/wy versus
the toroidal mode number n for the made £ = 1. The normalizing

impedance Zy = (4w)2-10‘9(R/a)cA[0hm].

Antenna loading impedance Z/ZN and frequency w/mN versus
the safety factor at the axis qg. The safety factor at the

plasma surface qg = 5.

Antenna loading impedance Z/7y and frequency w/wN versus
the safety factor at the plasma surface qse The safety factor

at the axis qq = 1.
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