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ABSTRACT

The adiabatic interaction of low frequency ion—acoustic-

like perturbations with high frequency ion acoustic turbu-
lence is studied. The turbulence is found to become unstable
provided certain conditions are met. These conditions are

explicitly derived.



I. Introduction

The stability of stationary turbulence is of recent interest in labora-
I . 2 . .

tory and astrophysical plasmas. To determine whether or not a given

type of turbulence is stable, it is sufficient to examine its inter-

action with a certain type of wave. If no growing mode is excited,

the turbulence is stable with respect to that sort of perturbation and

is therefore unaffected by noise of the same kind.

Much work has been devoted to the stability of Langmuir turbulence.

One knows, for example, that Langmuir turbulence can be modulationally
unstable if its spectrum is sufficiently narrow or its level sufficiently
high3. On the other hand, little is known about the stability of ion-

acoustic turbulence.

The objective of this paper is to investigate whether high frequency
ion acoustic turbulence is unstable with respect to low frequency ion -
acoustic perturbations, i.e. within the context of the "adiabatic wave
interaction with weak turbulence". The arrangement of this paper is as
follows : In section II, the master dynamical equationsin wavenumber
space, which describe the nonlinear interaction of ion acoustic waves,
are used to construct a set of self-consistent equations describing

the adiabatic interaction of small-amplitude coherent waves with weak

turbulence, by means of a method proposed recent1y4. - These equations



are then linearized, in section III, and used to deduce an appropriate
dispersion relation. The latter will be analyzed in section IV within

the "cold wave" approximation.

ITI. Basic Equations

Consider a collisionless, non-magnetized plasma composed of a cold ion
fluid and a warm isothermal electron fluid. If electron inertia

effects are neglected, the plasma will be governed by the equations of

momentum transfer
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with the Poisson equation

V¢ = n 41 - exp ( B), (3)

for closure, where V¥ and 4) are the ion velocity and the electrostatic
potential, and n denotes the deviation of the ion density from equilibrium.

Here, length, time, electrostatic energy, ion density and ion velocity
-1
pe >

electron thermal energy -Ls'Fe » equilibrium density n, and ion sound

are measured in units of the Debye length I'\o , ion plasma period W

speed €4, in that order.

If the electrostatic energy is much smaller than the thermal energy, i.e.

if cb << 1, we may expand equation (3), retaining only quadratic and



cubic nonlinearities, which are sufficient for our purpose. We may
. . 5.

then cast equations (1) and (2) by standard techniques® into the

corresponding master dynamical equations in wavenumber space for the

$
wave variable Cf’
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where r’* are wavevectors, $'S are indices running throught the
eigenmodes of the linear system, and V and K are respectively the
quadratic and cubic interaction kernels. The normalization of the
wave variable is chosen such that to first order, CP = CbP

We find

s & & s (’.") 2 .pt 2 .JI 2 ‘
VAR oL (-0 (EE0r 1],

2| groole Yo Pt v oo
hpp L9 b“’r" W Wy Wp Sy
“, sl/ ‘Ill 13
Kr'r"r"'y"‘ = wrz[ :! + 7_' * : -1 ] ’ (6)
12 pr PP_PI Fr_ru Fr_ rul‘
where
* £ NG (7)
UP = S__.Aqm(f*) ) Ff= (I.‘.‘r) ) § = ;-

Fe



Notice that
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and that K is invariant with respect to all permutations of the

primed indices.

We proceed now to construct a set of self-consistent equations describ-
ing the interaction of a low-frequency small-amplitude coherent wave

with high frequency weak turbulence. To do so, we assume that the
. s . L pd s
wave variable CF consists of a stochastic part, Cf , and a coherent

one, C i.e.
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with Cr T < CP > <C|’> = 0 , where < O indicates an ensemble

average.

By averaging (4), we find to first order in C-| and 1 ﬁ,a'
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In a straightforward manner, we construct a similar equation for I{"‘\ s

from equation (4), (9) and (10). We find
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This system of equations [(10)7 (11)] is quite complicated. However, it
may be considerably simplified if the "adiabatic approximation" is in=-
troduced. To do so, we assume that the coherent wave and the turbulence
are far apart in frequency-wavenumber space, e.g. we consider only low

frequency coherent waves and only high frequency turbulence.

In other words

‘1' << |f‘| } 'wc‘l << ‘w{._‘ [} q:ﬁ = C‘;ﬁ = O, (12)

where q refers to the coherent wave and % to the turbulence. This
approximation ensures the existence of a small parameter, |1/Q‘ in
which (10) - (11) may be expanded. For our purpose, zero order is
sufficient for (10). We obtain
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Equation (11), on the other hand, will have to ba expanded toé first

order. We obtain

l
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where k{: =-MJQ has been used.

ITI. Dispersion Relation

At this stage, we make two further assumptions. First, that in the

absence of the coherent wave, the plasma is in a stationary state where

only the turbulent waves with positive wave velocities along the z-axis
. . . . . . . -10

are excited. This situation is often met in experiments "..vSecond, that -

in the presence of the coherent wave, a small, time-dependent change

in the level of the turbulence will occur, i.e.
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where 1 R 1 and 1 refer, respectively, to the turbulence with or
without the coherent wave, and the small change brought about by the

1
coherent wave,with the condition |1 ) 4 | << If‘ .
1



Introducing (15) into equations (13) and (14), linearizing, and
assuming a time dependence of the form exp (-a.nt) for both the co-

herent wave and the perturbation of the turbulence, we find
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where (8) has been used and N, = _I_ﬁf_&_ is the plasmon number.

wi
Deriving the dispersion relation from (16) is straightforward. Intro-

ducing the interaction kernels with (51 ~ 4. , we find, to first order

in the wave energy density,
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The denominator appearing in equation (17) bears a direct analogy with
that in the theory of Landau damping : the group velocity of the plas-

mons playing the role of the particle velocity. Taking the limit

%

acting on the plasmon number, we obtain

3
2, — Jdﬁ , and integrating by parts to eliminate the {_—derivative
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where Df‘:: X - STA(&.l)oose.
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IV. Analysis

Despite all our simplifications, the dispersion relation (17) remains
formidable. To solve it in full geﬁerality, one would have to use
contour integrals, as in the Landau problem, since the denominator may
be singular (as opposed to the case given in Ref. . 4). Tn thiS‘paper,
however, we shall confine ourselves to instabilities of the hydrodynamic
type. Furthermore, we shall make the "cold" wave approximation, i.e.

we shall take a plasmon distribution of the form

N( = NoS(%"go)‘
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This is justified if the plasmon distribution is peaked around some

-_ﬁ_, (e.g. a shifted Gaussian) satisfying

'D!‘O, 4 A.k (19)

where &, is the "thermal" spread. (19) guarantees that the regions
in which I\IQ is nonvanishing and Dg_ vanishes are far apart, and is
the validity condition of all the results that follow. One sees now
why the tedious operation of integrating equation (17) by parts was
carried out, since one cannot introduce directly the cold wave

approximation into (17).

With this approximation, the dispersion relation (18) reduces to a
quartic polynomial in x (normalized frequency)
2
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where the subscripts have been dropped to simplify the notation.

We proceed now to analyze equation (20) for various scales of the para-

meters & s, cos ® , and the variable X
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A. Perpendicular Case

Considerable simplification occurs if the coherent wave is perpendicular
to the turbulent waves, irrespective of % (turbulence wavevector). The

dispersion relation reduces to a biquadratic

-

o xa('+(Nl_e~_€_'lAfl£3) - INI}";3 = o, @D
p P 4p°

that admits two real roots similar in form to a result obtained in

Pef. 4 and two purely imaginary ones

x o= 2o (AT (22)
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Then, provided
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the turbulence is always unstable if the perturbation is perpendicular
to the turbulent waves. Notice that the evolution due to (22) is aperio-

. %
dic.

From now on, cos & will be considered non-vanishing.

* A result similar to (23) has been given by Vedenov3 for the case of

Langmuir turbulence.



- 12 -

B. Resonant Case

What is meant by resonance here is situations where

)

X = S?h(‘e(%) cose//gi* s X

o N
with | X J<<|x], i.e. when Dy is a small quantity. To lowest

order then, (20) reduces to
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By using the properties of quadratic polynominals, we find that the

turbulence is unstable if

2
cos*0 < _*’5___*_1_ . (25)
4 &+ 1
(25) is valid if
3 |
INI" 3> 4, (%)" (26)

C. Non—-Resonant Case

Non—~resonance here refers to situations in which Dﬁ is of the same order

as X , i.e.

' X - s““(.&}) CO‘S/F3 l ~ EXL,
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Factorizing (20) into the various powers of X » we obtain the

equivalent equation
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which is more amenable to the analysis that we will now perform.

We first assume that ﬂ))l » and examine (27) for various scales of X.

1. x> 1

Neglecting 1 with respect to X , and keeping only the lowest order
terms, (27) becomes

x* = 2Newso & (28)

which always has complex roots. The growth rate J= Im x nere is

given by

Y= L (2Nest) &3 (29)
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(28) - (29) are valid if

ll3
INcos 0 & |~ > Qg (30)

We may no longer neglect 1 with respect to X . We now have

x® . x(l+ /f\“) - 2 Necos ® % = O (31)

which yields the instability condition

lces &1 > ___!___(l-o-g-lkrl). (32)
33 INI&

The growth rate now goes as

7 ~ ‘Mcose'&,, (33)
since all terms in (31) are of the same order.
(31) - (33) are valid if
'Muss‘&' > A“. (34)

It is worth noting that results similar in form to (29), (32) and (33)
can be readily obtained from equation (18), without any assumption as
to the form of the plasmon distribution, since so‘u(&*) i‘;‘_i.e may be

discarded in comparison with X if x 21 , & o>
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This time, X will be neglected in comparison with unity. To lowest

orders, equation (27) becomes a quadratic

b 2 + 2 X coes b ( Nﬁ - M)) + gﬁ_;_e
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small. The solutions of (35) are given by
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Again, using the properties of quadratic polynominals, we find the insta-

__bility condition to be
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The growth rate here is quite small. It is approximately given by

(39)
I~ :m' £s

(35) - (39) are wvalid if

Ihrooseﬂ| > 4 (40)

No non-resonant instability appears for { £ i

The results obtained so far apply only in limiting cases, and were
sometimes obtained at the cost of drastic approximations. One is
justified in questioning the accuracy of these results. Bearing this

in mind, we have computed the boundaries between stable and unstable
regions in the phase space ( N , A , €03 6 ) of the dispersion rela-
tion (20), by means of the Sturm theoremll. These boundaries are
plotted in Fig. 1 and 2, along with the conditions derived analyticallyf
We note with satisfaction that the agreement is quite good, especially
for large . Moreover, the two plots seem to indicate that for

cos 0 = 1 (i.e. the one-dimensional case), only one unstable region is

to be found (non-resonant, for A% 1), and that no resonant instability
occurs. We have verified this numerically. It is worth mentioning that
the dispersion equation derived keeping quadratic nonlinearities only

gives results similar to the above only for large k . Théreason for this is
that although the cubic contribution is much smaller than the quadratic
contribution for &>>|, both are of comparable magnitude for fe <

This is due to the structure of the cubic and quadratic interaction

kernels.
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V. Conclusion

We have applied a method using the correlation function together with
a . Fourier«transform technique to study the interaction of weak high-

frequency ion-acoustic turbulence with low-frequency ion-acoustic-

like perturbations.

We have found that provided certain conditions are met, the turbulence

becomes unstable. These conditions have been explicitly derived and

verified numerically.

It is worth noting that a one-dimensional analysis would have been

incomplete, since it masks the resonant instability.
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Figure Captions

Fig. 1 Boundaries of the instability in the plane cos®, £ for
N 2.1 , S0lid lines show the results obtained numerically.
The dotted line represents the resonant instability condi-
tion (25), whereas the dotted-dashed and dashed lines
represent the non-resonant instability condition % »1

X << (37), and % »l ., X~ (32), respectively.

Fig, 2 Boundaries of the instability in the plane <os8, & for
N :.001. The solid line shows the results obtained
numerically. The dotted line represents the resonant
instability condition (25), whereas the dotted-dashed line
represents the non-resonant instability condition for
£c>)| s X << (37). The non-resonant instability
condition for €5t , X ~ | (32) does not appear here,

due to the scale of 4& .
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