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Abstract

The non-linear wave equation for a magnetized two ion species plas-
ma enclosed in a cylindrical cavity can be obtained from a Lagran-
gian integral. The Lagrangian contains the description of the den-

sity modifications due to the ponderomotive force.



I INTRODUCTION AND RESULTS

Large amplitude waves whose frequencies lie close to the ion cyclo-
tron resonance can exert forces which tend to spatially separate

ions of different charge to mass ratio. Hidekuma et al.l and

S. Hiroe et al.? have observed this effect in magnetic cusps.

J.M. Dawson et al.3 give experimental evidence for such separation-
in a uniform magnetic field. Much earlier, T. Consoli et al.* used
the ponderomotive effect of electron cyclotron waves to accelerate
plasmas. The waves involved were electrostatic. The ponderomotive
force due to electromagnetic waves can also produce isotope separa-
tion. As we have shown recent1y5’6 a left circularly polarized

wave propagating in a two ion species plasma tends to spatially sepa-
rate them provided that the frequency of the wave lies between the
two ion Larmor frequencies. Unfortunately this result cannot be
checked experimentally since it is impossible to set up a pure left
circularly polarized wave in a finite volume, It is even diffi-
cult to create an approximately pure wave of this type. Boundary
conditions always cause the presence of oblique waves which are gene-
rally much stronger than the wanted wave, as we show in the appen-—
dix. We therefore have extended our work to the case of waves reso-

nating within a cylindrical cavity, of radius O. and height #L .

We consider a plasma consisting of two kinds of ions and of electr-
ons whose masses, charges, densities, and temperatures are desig-

nated by Mo Qe > Ne s To., , where G =\,2 @ | A constant



—>
magnetic field 3‘, is present. We use a cylindrical coordinate
—y
system whose z—axis is parallel to :Bo + We assume the plasma to be

cold as far as the wave propagation is concerned, that is, we

assume

W > ‘&VTG‘

‘(A)-'-Szc'l>> ‘&VT'\" (1

where '6. is the largest wave number and &) the frequency of the

v

i
wave while .'16_" q,_'Bo /W\P and V-r: (TG./W\G_) . The temperatu-
res cannot be neglected when we determine the densities from the

equilibrium of the pressure gradients and the ponderomotive force.

The plasma is assumed to be collisionless, that is

T “*"*p‘s'l > 1 )
o

where ’ta- is the collision frequency of the ion. These are strin-
gent conditions, but they can always be met by sufficiently reduc-
ing the plasma density. They are graphically represented in Fig. 1
for singly ionized neon assuming an ionization degree of one per-
cent. The inequality (2) has been evaluated for coulomb colli-
sions. The condition for ion-neutral collisions is less severe

than (1) and (2) combined.

The description of cavity modes necessarily leads to a non-linear

partial differential equation for the electric field vector. Nume-



rical solutions have been obtained by means of a variational formu-
lation of the problem. A particular solution is presented in the
Figures 2, 3, 4 and 5. They pertain to a singly ionized neon plas-
ma containing both isotopes, Ne20 and Ne22, in their natural con-
centrations : ﬁl = 0.0882 (Ne22) and F,.L = 0.9118 (Ne20). The
calculations were made using the dimensionless quantities given in
section V. Therefore a single numerical solution represents a fa-

mily of physical situations. The relevant input parameters are

o = V“‘"V"‘W‘E. = 0.0476|
w + 2
€.= 'ZVVHW\.LlAi_ - l.o

eBo (W\"'ML}

2 mowm, W1,
k3
T (m+ W‘J '_Bo

34.56

~S
1
]

These values are obtained, for instance, if one takes 3°= 1.0 les@e

o= ‘ol‘ w;3 and (4): Q' 56 ”H2

o

In the Figures 2 and 3 the electric fields are measured in units of
V‘L
CT. /V\n) Bo where MM = 'ZW\‘W\,_ /(W\\ +—VV\,_) while the co-

ordinates are measured in units of the radius.



Figures 4 and 5 show respectively the density distributions of the
two isotopes. The largest density modification occurs at Yt = 0.6 a
and 2=0 . There the density of the minority species is increased
by 28 percent while the density of the majority is reduced by S
percent. The nonlinear eigenvalue belonging to this solution is

A = 2.583*%10"%. 1t yields a radius of OL = 7\\,7‘C C'J“ . For the

abovementioned example this becomes O = 1056m so that g\.= 10.56m.

The numerical techniques used to obtain these solutions are of suf-
ficient interest to warrant their description together with other
solutions, in a forthcoming report. In the following sections na-

tural units, C= M, = T,= 1 , will be used.

II THE NONLINEAR WAVE EQUATION

We write the electric field in the form

E(Y“q’ 2 ,t) = \ﬁ [Er(m.) Cos 2 | E?(\f,&) scv\.(ac), E%('r.z) Cos ’&] (3)

where

® = wt -ve



is the phase and V an integer. The amplitudes E} R E* s Eé are

real. On the conducting walls of the cavity they must satisfy the

boundary conditions

Eq(a,'e)

!
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Q

Eq(r,o)

(4)

]
C

E (r, 0)

EE?C)”.é{) E;(‘V ﬁL)

]
C

where CL and 'au are the radius and height of the cavity. Solu-

tions which are singular at the axis can be excluded by the bounda-

ry condition

(5)

It will be convenient to use the real vector

E(r2) = (E E,  E,) )
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which must not be confused with [E defined in (3). The wave equa-
tion can be written in the form
> | =D
- ) —")
N ¥\ xE) — w1<1+7()E =0
i Y .

€~
where 7( represents the susceptibility. The differential operator in
Eq.

(7

(7) has the form

ﬁnx(flnx E) =

L2 > p) vV D (8)
dr ¥ v ¢ Bz"-E" * \)3‘. rEV* r 22 E% )

L 2,8 4 e - 2 g
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which must not be confused with E: defined in (3). The wave equa-

tion can be written in the form
L s -
— [ - (7)
Vx@ xE) - bf‘(l*X)E =0
Yu Yy
- ’

where 7( represents the susceptibility. The differential operator in

Eq. (7) has the form

IRCRLE

2 3 .

Ye -2 -2 2 E + 2 g
1Y 22 v Y o2r ¢ oro2 )

_2 13, _ 2 2 v 2 (8)
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The susceptibility



has only real components. They are given by

X= 2 (X + X))

A= 1% %)

and
O ..
® = WL+
5 w;¢
’XL= ) Zc? (L) -
w‘L
rx; = - 2 w::
where

w'L - q:: V\Q\
P M
L = q"‘ Bo

o —
MT‘

(9)

The wave equation (7) is a real equation for the real vector (6).



The ponderomotive force acting on the species G~ is the gradient
of the potential
(R * " “
qt‘ El.. ER Ez

+ ——

- +
Cb“‘ Im W \W- W+Re W

where

€ - (E- €)/R
E.- (E.+ Eo)/V2

represent the right and left circularly polarized components of E.
Since the ponderomotive force produced by the electric field is
different for the three species, it tends to separate them spa-
tially. Therefore an electric charge density appears which produ-

ces an electrostatic potential ]L.governed by Poisson's equation

V.lu - - Za: q¢mr (10)

In equilibrium the pressure gradient must equal the ponderomotive

force and the electrostatic force for each species

T+ 0.7 (d,+ 4 U) =0

Therefore we obtain the Boltzmann distributions

N = e exp (- C()¢—-;-O|¢.u (11)

g
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for the densities. The constants YN can be chosen freely. The

o
densities (11) must be introduced into Eqs. (7) and (10) which thus
become nonlinear partial differential equations. Our objective is

to find solutions of these equations subject to the boundary condi-
tions (4) and (5), and to determine the density variations accord-
ing to (11). There exists an infinite number of such solutioms.

We shall restrict our work to a few which seem particularly inte-

resting and relevant in connection with the problem of isotope se-

paration.
We shall assume that the plasma consists of two isotopes of which

the lighter one is more abundant. The frequency of the wave will

be chosen to lie between the two ion Larmor frequencies.

IIT VARIATIONAL FORM

Consider the integral

I= (ﬁ'xlf)lrol\ro(%ow = 1{ @Y%x @)Yclr A2

where

- —y

NxE =

¥

Ve _ 2p P 2 12 )
YE% 3;_"‘0 ) ﬁEr—ar 2 ) ré‘rrE?‘?Er

(12)
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The integral is evaluated within the volume of the cylindrical ca-

vity. It is easy to see that the variation of 1 with respect to
-—

E equals

$1 = 7 ([T, % (T~ £)] s€

-
provided the variation §E satisfies the boundary conditions (4)

and (5).

Consider now the total pressure of the plasma

D T - i
= . 1) = Z - ( )/
| ;z- T ¢ Lr V%ro (LOlkD da?-* OL}L 7:;
N
If this expression is varied with respect to the electric field E

and with respect to the potential u one obtains

L o )

s7 = (XE)SE - Z qum, SU

Consequently the wave equation (7) and Poisson's equation (10) are

Euler's equation for minimizing the Lagrangian

L= T\[L(I~EY + LU rarda

under the condition

=9 (ll E"‘+,Z’P) r v k2

and

(13)

s U 2U
quu = or \Yiu' D2

In this form the problem becomes amenable to numerical computation.



IV CHARGE NEUTRALITY

It is possible to reduce the number of unknown functions and of
equations from four to three. 1In all cases in which we are inte-
rested, the Debye length will turn out to be much smaller than the
scale of spatial variations. Therefore the plasma is nearly per-

fectly charge neutral, so that we may safely put
Z 9.wm_=0.
9 Mg

We determine 11. from this equation rather than from Poisson's

equation (10). Once ll is so determined, we express the densities

in terms of the ponderomotive potentials alone. To simplify
i

T =« T. - -
matters we assume . T.L = = TQ_ s ﬂl_ ol1.= _GIC_ = &

and introduce

We obtain

T
lel -1 (L 4T
w ) — cmm— = — e
I Neo T enyp -

where

and

T \
n 14T ;E L+T - e
- T —— A ——
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It is not difficult to show that the wave equation (7) is now

Euler's equation of the Lagrangian

T ) -\
£ = T VQ‘&E v oy 2

where the auxiliary condition has the same form as before, Eq.

oo, . .
(13), but F is now given by the expression

|
- v+ 1+T — be-
P = (:F;Li‘l; ) e, Ef €L4X'r3 7i;:;fa

s

f.?

We seek solutions of this problem under the following conditions.
The plasma composition is initially specified, the temperatures are
given, the magnetic field and the aspect ratio of the cavity 4L/Q.
are prescribed, as well as the frequency W of the wave. If we

scale the linear dimensions of the cavity with radius, then we see

that

becomes the nonlinear eigenvalue to be computed together with the
~>
field € itself. Thus the eigenvalue determines the size of the

cavity,



V DIMENSIONLESS FORM OF EQUATION

We introduce the following dimensionless quantities

W, - Waq
d = . >0 ,
VV\\{-VV\-L
m, WA
wh = 2 = ,
W\‘+VV\1
2 = mw ,
e 5,
Moo= 2 '
w
W, X
e B LR
N+ .,

We assume that the lighter isotope is more abundant S’)_,.)P . The
\

electric field is measured in units of
v
2
B(T,/m)

This permits us to write

=T Ae
(P.___ (l+‘t) 2 Q/XP (— _l.:"(: (14)

where

_A, )
2. op e, ﬁem
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and
“ LS a
— € E E
22 \ g4i-a T-1+ 4 £
LS T N
A = | +4 Ee A E “+ E_é_)
z 2T \ 414 4 g=1-d 2
LS L} -
E E E
A = "!.: (hﬁ + - + —=
< 2T /nkt-l l'&t'-f‘ /At

To summarize we write the Lagrangian and the auxiliary condition

L

(15)

%(ﬁa %« E)* rdvda

X

! —_-)(G_ E* .,.?"P) r olr A3 (16)

Lt

-
where fP is given by (14) and V\";_( E by (12). The Lagrangian
- . 2
multiplier ‘A will become the eigenvalue A= (0-"0) .
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VI ITERATION PROCEDURE

We have to minimize the Lagrangian (15) under the auxiliary condi-
tion (16), which leads to a nonlinear eigenvalue problem. The

eigenvalue 7\ and the solution ?; depend on the intensity,I(E),
of the field which we define in terms of the minimum value assumed

within the cavity by the ponderomotive potential acting on the

majority species.,

I(g) T A T qDzw.\'m /T‘

2win

To obtain solutions to this problem, we use a procedure of itera-
tion and progression in intensity. We solve repeatedly a linear

- ‘&IA’

eigenvalue problem for E in which the auxiliary condition

has the form

_ T S ‘a'JH & jn
=1 [gdpwgp(s N]E " B rdvda

where

58 \ O 28y
E i A [(1-4)5 ' LERY ]

The constant O < £ < | is sometimes called a 'brake". It slows
down the iteration to ensure convergence and is determined

empirically.



During iterations on A' » the intensity is held at a fixed value

4
by choosing at each step the normalising factor A ¢ , such that

o~

— v
For each normalized linear solution E & the total number of

4, Ly
particles of each species, NI {J , ,vz & , 1s computed. For the

next step the values of J‘Sl and F" are adjusted by putting

&
J,'H
R

. NN

)

N/ N
(17)

where '\/l and I\/z are the number of particles initially present in

the cavity.

-)‘&~
As & increases the linear solutions , E 3

-4 8 4
linear solution E having the intensity I and eigenvalue)\ .

converge to the non-

The adjustments (17) guarantee that this solution reproduces the

initially given particle numbers.



For each level ]:& of the intensity the interaction starts with
the solution corresponding to the previous value of the intensity
- -
E’ ‘3,0 E 6-:

——
—

The entire progression begins at zero intensity with a particular

. . To . . °
linear solution E corresponding to the eigenvalue N (see Appen-
dix). Any linear solution could be used. However, we restricted
our numerical work to YV = | and choose the solution for which Er

has one null in the radial direction, while E% has one null in

the axial direction.
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APPENDIX : The Linear Problem

As explained in the main text, our numerical scheme starts out from

a particular solution of the linear wave equation obtained in the
~

linit E =0 . Although cylindrical cavity modes of a magnetized

plasma have been determined before, we briefly give here our method

of solution which is simpler than those we have seen in the litera-

ture7’8’9).

We start with the well known plane wave solution

§=(1, 03, % Y exp (iw(ngx w,"%_t)) (al)

where h.l. s h‘ » are the perpendicular and parallel refraction
]

indices. They have to satisfy the dispersion relation!®

Sv\l +[(S+’P) V\‘\L‘ - PS - (?L]n_t +1)((R~h’;)(L—\4:) =0
where R= 14X , L=+ X , S=4(R+l) ,P=14%, .

We assume that the X  axis makes an angle X with respect to the di-

rection @= O and express the fields (Al) in cylindrical coordinates

(A2)

E;: (E\, , Eq »E%\U"P[i“(v‘u?-“ t) +wonr COSH'J‘)]

with
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EY = Cos (Y-4) ii.z_ SCW(C{~J~)
Eq = - SLK(‘-{~J) -+ | ?2 COS Cc(‘.()
€, - 2,
The coefficients 2_7_ s 23 are given by
D
£ - —
* wt- S
T = M
3
T -y
V\..L - 1
with
D= 3 (R-L) =

= lz<’xu‘ ’X-—)

We now superimpose the plane waves (A2) for all angles o with the
weight MP(‘V"\)
Xy
E

o]

E: exp(iva) da

The resulting integrals are Bessel functions and we obtain
| - N iwn,2=-t) +ive
E - - -‘ A (g "
c 3,03) + g 3 KV Y e

tw (M2 ~€) +ive
e

= ’

= =T +Z 5 (e :]
% l.% 3\, ) Y \)( ) (A3)
_ M2 -E)4ive
!:7} = 23 I\,(?) e
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with

= r
g = Wn,
The real part of (A3) is not a physical solution. The general

solution must be obtained by superposition of such solutions for

=

Thus, imposing the boundary conditions Er’= E?=O at €=0 and

2-—-—& we find

m
n

.= A scn (Ln3z) Con (VY —wt)

T
L

=~ B son(Lne) (Ve -wt)

g% = C con(on,?®) c,os(\"f-we)

A a.[ ' N ]
o i 1\)(3{) + 22 gc IVCQ;B-

O

Z a| (5} ]
c=ta LS I\)(’g‘) + T Iv (3:)

~

C=- &L a g, Kv(g‘.)

(AR}
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The boundary condition EY=O at Y= 1leads to the equation for

the radius

(A4)

where

It should be noted that the solutions for opposite signs of <)
are not identical. Tt is a simple matter to find numerical solu-

tions of Eq. (A4), which yield the linear eigenvalue 'X, .
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FIGURE CAPTIONS

Figure 1 Domains of the plane :Bo , T for which the inequali-
ties (1) and (2) are satisfied with a margin of 10,
assuming l1~ U/ﬂ\'—‘- 0.04S . 30 is measured
in Tesla, T in eV and N in m 3. The logarithms are

to the base of 10.

Figure 2 The electric field, EY s E‘f s E% as a function

of radius. The electric fields are measured in units

of (T; /W\>V2 30 .

Figure 3 The electric field, E'r , E" s E% as a function

of height. The electric fields are measured in units

of Q.‘- /VV\>'II :Bo .

Figure 4 The density variation of the majority species in frac-

tions of the original density as a function of ¢ and 2 .

Figure 5 The density variation of the minority species in frac-

tions of the original density as a function of ¥ and 2 .
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