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ABSTRACT

In the variational form of the ideal magnetohydrodynamic equations for a
toroidal geometry two of the three displacement components appear to be
"one dimensional". By an adequate discretization procedure the matrix
blocks of the block diagonal matrix do not entirely overlap. This fea-
ture can be used to advantage when solving the eigenvalue problem by
sparse matrix techniques. Appreciable gain in computing time, memory and

disk storage as well as in input-output operations can be obtained.



1. Introduction

The ERATO /1/ code computes the stability of an equilibrium with respect
to the linear magnetohydrodynamic equations in an axisymmetric geometry.
This code has input - output problems /2/ when run on a very rapid compu-
ter such as CRAY 1, CDC Cyber 203, Fujitsu M200 or an IBM 3033 AP. The
turn-around time can be 2 to 5 times the CPU time. Big cases, say more
than 60 intervals in both directions, can sometimes cause disk overflow.
Running ERATO on slow machines such as the VAX or CYBER 170-720, CPU time
and, for the CYBER, memory space limit the number of intervals to less
than 40 x 40. These difficulties come from the part which solves the
eigenvalue problem Ax = cazgz. by inverse vector iteration using the
HYMNIABLOCK /3/ package. In this package the sparseness inside the

blocks of the block diagonal matrices A and B is not taken into account.

The first attempt to diminish CPU time, disk and memory storage and num-
ber of input - output operations was to consider only the stability index
/4/, i.e. only the sign of the potential energy matrix A was checked. In
this dW code we got rid of one component by the incompressibility condi-
tion. A second component appeared to be blockwise one-dimensional and

could be eliminated easily.

In the present paper we show for the full problem how we can profit from
the blockwise '"one-dimensionality" of two of the three displacement com-
ponents obtaining the same gains as in /4/. The idea is to renumber the
unknowns in each block of A so that the non-overlapping part in each

matrix block remains untouched when decomposing the matrix A and reorder



the subblocks in between each matrix block of A. We also take full ad-
vantage of the sparseness of the matrix blocks of B when we multiply the
eigenvector by B at the beginning of each iteration. In the present
version the gain in CPU time and memory storage compared with that of the
published version /1/ for a case with 50 intervals in both directions is
roughly a factor of 4. The amount of input - output operations as well

as the total disk space used is reduced by one order of magnitude.

2. The Numerical Problem

The eigenvalue solver in ERATO code has to find the eigenvalue ¢»>2 and

the corresponding eigenfunction x of the eigenvalue problem

Ax = w2Bx . (1)

The two matrices A and w?ZB represent the discretized potential and ki-
netic energies, respectively. They are both symmetric and B is positive
definite. The structure of the matrices is shown in Figure 1. They are
both block diagonal. Each block is subdivided into 16 subblocks (see
Figure 2). Each subblock consists of a band matrix with a band width of
7. The overlap with the previous block is made through the first sub-
block (1,1). The overlap with the next block is made through the last
subblock (4,4). This matrix structure has been obtained by discretizing
the ideal MHD equations /5/ by a finite hybrid element approach /1/. The
non-overlapping midparts of the blocks come from the fact that there are
no radial derivatives in two components (V,Y) of the displacement vector
x = (X,V,Y). The discretization is chosen such that V and Y are piece-

wise constant in the radial s-direction. The position of the nodal va-

riables has been chosen as shown in Figure 3. At the mesh points we



place the component X, the V and the Y nodal points are situated at the
center of each s-interval. Since there is no interaction in the radial
direction between the V and the Y components, we can consider them to be
one-dimensional for each s-interval. This one-dimensionality is lost
when we perform the decomposition of the matrix A without touching the
structure shown in Figures 1 and 2. This is the case when we solve the
eigenvalue problem (Eq. 1) by the block diagonal matrix solver HYMNIA-
BLOCK /3/. Only the upper triangles of zeros in the subblocks (1,2),
(1,3) and (1,4) can be used to diminish the computing time by about a
factor of 2. We show now how we can make maximum use of the sparseness

of each matrix block when decomposing A and then solving the eigenvalue

problem by inverse iterationm.

3. The Equations in a Matrix Block

The eigenvalue problem (1) is solved by first decomposing A into
A = LpDLT (2)

followed by inverse vector iteration (see Ref. 6 )

Az:_k+1 = L.p.LT £k+l = Ek = Bik . (3)
When performing the decomposition (2) in the original form shown in Figu-
res 1 and 2 the non-overlapping parts of the matrix blocks fill in. The
one-dimensionality of the components V and Y is destroyed. To prevent
this, the decomposition of each matrix block is preceded by a re-

arrangement which consists of reordering the equations and renumbering

the unknowns.



3.1 Rearrangement of a Matrix Block of A

The rearrangement of each matrix block is done by moving the subblocks as
given in Table 1 and then renumbering the unknowns V and Y so that they
alternate V;, Yy, Vp, Yy, ... as shown in Figure 4. This renumbering is
applied to both the rows and the columns to keep the matrix symmetric.
These operations lead to the new structure shown in Figure 5. In this
new block, A; is formed out of the original subblocks (2,2), (2,3), (3,2)
and (3,3), Ay out of (1,2) and (1,3), A3 out of (2,4) and (3,4), A, out
of (1,1), A5 out of (1,4) and Ag out of (4,4). Note that subblock (i,j)
= (j,i)T . The new subblock A] is a band matrix of band width of 15.
The new subblocks A, A3 and A5 are never transformed during the calcula-
tions and it was convenient to keep them in their original forms, i.e. as
off diagonal banded matrices, subblocks (1,2), (1,3), (2,4), (3,4) and

(1,4) of bandwidth 7. The matrices A, and Ag are considered to be full

subblocks. For the ith matrix block the reordered eigenvector is xj
(29,29,23) where Z; = (Vi,Y{), Zy = X5, Z5 = X;+1 and the right hand side
vector is u; = (U;,Uy,U3). Note that Z;, Z,, Z3, U1, Uy and U3 are only

introduced to show how the elimination in between one block is done.

3.2 The Matrix Equations of One Block

The rearranged block matrix equation is shown in Figure 5. The 3 equa-

tions can be written

Alzl + AZZZ + A3Z3 = U].

coevaees ¥ A9Z) + AZg + AgZy = Uy (4)
A3Z; + AgZy + A6Z3 + o = Ug

previous next

block block



It is possible to express Zj as a function of Zy and Zj from the first of

equations (4),
Z, = AII(Ul - Azzz-A3Z3) (5)

and replace it in the other two :

..... + A422 + 2523 = 62
AT N A (6)
ASZZ + A6Z3 & = U3
where

”» — [ad -

A4 = A4 - A;'AlltAz U2 = U2 - A;tAll Ul

N T -

Ag = Ag - Ay-A7l.ag (7)

V.Y
Re = ag - A3-A7lag U3 = U3 - A3afl u)

Since the previous blocks have already been triangularized, we can con-

tinue the elimination in Eqs. (6)
zy = AzL(Uy - Aszy) (8)

and obtain the coupling part to the mext block

A A

A6Z3 + ... = U3 9)
where

A _ NT A A

Ao = Ap ~ AsrhyAg

R ~ A A

Uz = Uz - g'ﬁal Us . (10)

We are now ready to show how we make use of the sparseness of the matri-

ces Ay), Ay, A3 and Ag.



4. Implementation of the Sparse Matrix Techniques

4.1 Decomposition of the Matrix A

Before starting the inverse vector iteration, we first replace the in-
versions of the matrices A} and A, by their decompositions. The sparse-

ness of Aj is untouched when decomposing A; into
T
Ay = Ly;'D'Lp . (11)

The transformed matrix

A

Ay = Ay - ayA7Lay = A, - ATL{Tepfloploa (12)
is obtained through sparse matrix operations. All multiplications with
the inverse of the triangular band matrices Ly or LI are replaced by
solving systems of linear equations. The operations (11) and (12) are
"cheap'" sparse matrix equations. The transformed matrix XA is a full

matrix. It is decomposed into

A

A A AT
Ay = Ly Dy Ly . (13)
This decomposition and the rectangular rule

%6

are the only parts of the code where the CPU times are proportional to

N
Ng * N3... The matrix 26 becomes matrix A, of the following block.

For the last block we have to decompose

A A A a
A6 = L6'D6' L-(‘; . (15)



4.2 The Inverse Vector Iteration

We have to solve the system of linear equations (3) repeatedly. For a

given k we solve (3) in two steps
(a) The forward reduction
The elimination to a matrix triangular form implies a forward reduction

for the right hand side vector HF' For each block we have to perform

(see eqs (7,10,11,12,13) )

U, = Uy - az-LiTpylirgl U,

0y = U - a3-LiT.oil.17l U) (16)
A R

U3 = Uy - ALA0,

A ~N ad
= U3 - (af - a3-ril.piloLiToay)-1;T.D41. 11 6,

b) Backsubstitution
We are now ready to solve the linear system from the bottom to the top.
For the last block we first solve for eqs. (9,10,15)

n A A o
z3 = 1ghpgl.igl vy . (17)



For all blocks we solve from the bottom to the top (see eqs. (5-8,11-13,

16,17) )
zp = LzT.p;117l (y - (a5 - apToLiT.pil.Lil.a3) 23)
zy = LiT.pjl.fl(u; - Ayzy - A3z4) (18)
Z3 = Zp .

At the end of the iteration we reorder the final eigenvector back to its

original form.

5. The Gain due to Sparseness Techniques

5.1 CPU time

The CPU time in seconds for a CYBER 170-720 of the published version Tp

can be expressed in terms of the number of intervals in radial direction
(Ng = number of matrix blocks), in poloidal direction (Nys, 8Noe + 8 =
dimension of one original matrix block, 2N,.+ 2 = region of overlap) and

in terms of the number of iterations Ni¢
Tp £ N (N + 1)2% [7.5 * 1074(Nye + 1) + 2,7 * 1073 Nit__l sec (19)

For the new version which includes the described sparse matrix

operations, the CPU time Ty can be approximated by

Tg = Ng (Ny+ 1) 251074+ 12 + 6.4%1073 (N, + 1) + 3.141072 +

+ Nit(10-4(N;(+ 1) + 0.0Zﬂ sec (20)
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Comparisons between CPU time of the published and the new version are
made in Table 2 for the eigenvalue solver. Note that the whole ERATO
code includes also the calculation of the mapping, the vacuum, the matrix
elements, and the diagnostics. The CPU time of these parts strongly
depends on the cases one runs. However for large meshes the total CPU
time is dominated by the eigenvalue calculation. When we consider the
asymptotic gain coming from the decomposition for Ny —= o , TP/TS =

3.75. This factor can be explained in the following way

The number of rectangular rules Mp we have to perform for a whole

filled in block in the published version is (N = 2N, +2)

M, = 1083 + N-(N2-1)/2 . (21)

Here we did not take into account that the upper triangles of the blocks
(1,2), (1,3) and 1,4) (see Figure 1) are empty. The published version
takes advantage of these zeros. A reduction of the CPU time of about a
factor of 2 is observed. The number of rectangular rules Mg for the new

version is given by

Mg = N3+ N-(N2-1)/2 . (22)

The leading terms for N —* oo are Mp = 63/6 and Mg = 7/6. 1If we could
not take advantage of appearing zeros in the published version, a theore-
tical gain of 9 could be obtained for N —* ee. 1In reality this gain is
3.75 as we have seen above. We have seen that this gain in CPU time can
only be obtained on a scalar machine. On a vector machine such as a
CRAY1l no gain in CPU time in respect to the HYMNIABLOCK /3/ subroutines
has been observed. This is due to the short band widths of the banded

matrices which wunables us to make full wuse of the vectorization.
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5.2 Memory storage

The memory space required by in the published (MP) and the new (MS)

version is given by

n

MP 12700 + 2(2N,- +2)(3Ng + 16N, + 23)

(23)

n

MS 16800 + (2N, +2)(3Ng + 4N__. + 69)

x

Table 3 shows the memory space used in the eigenvalue solver for

different mesh sizes. For Ng = N - 1 — oo, MP/MS = 5.4.

5.3 Disk storage

Disk storage in the published (DP) and in the new (DS) version are given

by

124

DP 174 000 + 48NN, (2N, + 5)

(24)

n

DS 140 000 + NgN,, (2N, + 364)

The constants 174 000 and 140 000 contain all the CDC-UPDATE files, i.e.
SOURCE, COMPILE, LGO for all the 5 main programs of ERATO. Table 4 shows
the disk storage for both versions for different mesh sizes.

For Ng = Nx - 1 ——+ 0o, DP/DS = 48,
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5.4 Input - output operations

The amount of input - output operations is mainly defined by the number
of iterations where the decomposed matrix blocks have to be read 2*N;.
times. For the published (IOP) and the new (I0S) versions the number of
words to be read during decomposition, iteration and to perform the

Rayleigh quotient is given by

ne

Iop 32 N, (N + 1)2 [5 + ANit] (25)

e

10s 4 Ng (Nye+ 1) [135 + Njp Ny + 108)]
Table 5 shows the number of words which have to be read in from disk in
the eigenvalue solver. Asymptotically, for Ng = Ny = l—us o,

I0P/I0S » 32. 1t depends on the number of iterationms.



13

6. Conclusion

In the variational form of the ideal linear MHD operator it is possible
to find a coordinate system as well as vector components such that there
are no radial derivatives on two of the three components. By choosing a
piecewise constant basis in the r-direction for these components the re-
sulting matrix eigenvalue problem has a particular form. Half of each
matrix block does not overlap with the previous or with the following
block. Sparse matrix techniques can be used to take advantage of this
blockwise 'one-dimensionality" of the two components. As techniques we
apply matrix reordering, renumbering of the unknowns and solving linear
systems instead of inverting matrices. The gains in CPU time and memory
storage is of order of 4., The gain in disk storage and input - output
operations is of order of 10. For a vector machine no gain in CPU time
has been observed. However the gain in memory space, disk storage and IO
operations remains and reduces drastically the turn-around time on such a

machine.
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Table 1 : Rearrange matrix
block of A
Subblock ° becomes

(1,1) (3,3)

(1,2) (3,1)

ﬂ1,3) (3,2)

(1,4) (3,4)

(2,2) (1,1)

(2,3) (1,2)

(2,4) (1,4)

(3,3 (2,2)

(3,4) (2,4)

Table 2 : CPU-times in seconds
(Njp = 4) on CYBER 170-720
Ng = Published New P/S
Ny -1 |version (P) | version (S)

10 29 27 1.1
20 260 160 1.6
30 1 100 500 2.1
40 3 000 1 300 2.3
50 6 700 2 600 2.6
60 13 000 4 800 2.7
70 24 000 8 300 2.9
80 39 000 13 000 3.0
90 61 000 20 000 3.1
100 91 000 29 000 3.1
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Table 3 : Memory storage (60 bits words)

Ng =| Published new P/S
N.~1| version (P) | version (S)

10 23 700 20 300 1.2
20 50 000 " 26 200 1.9
30 90 700 35 000 2.6
40 147 000 46 500 3.2
50 218 500 60 800 3.6
60 305 100 78 000 3.9
70 407 000 97 900 4.2
80 524 100 120 700 4.3
90 656 400 146 200 4.5
100 . 803 900 174 500 4.6
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Table 4 : Disk storage in Kwords

Ng = Published New P/S
Ny-1} version (P) version (8)

10 317 K 183 K 1.7
20 1 222 K 311 K 3.9
30 3 165 K 537 X 5.9
40 7 023 K 872 K 8.1
50 13 271 K 1329 K 10.0
60 22 486 K 1 919‘K 11.7
70 35 243 K 2 655 K 13.3
80 52 118 K 3 549 K 14,7
90 73 688 K 4 612 K 16.0
100 100 371 K 5 914 X 17.0

Table 5 : 1input - output operations

(Nj¢ = 4) in Kwords

Ng = Published New P/S‘
Ny - version (P) version (S)
10 | 968 K 297 X 3.3
20 6 505 K 1 146 K 5.7
30 20 644 K 2 654 K 7.8
40 47 417 K 4 913 K 9.7
50 90 855 K 8 019 K 11.3
60 154 991 K 12 068 K 12.8
70 243 856 K 17 157 K 14.2
80 361 483 K 23 380 K 15.5
90 511 903 K 30 835 K 16.6
100 599 149 K 39 617 K 17.6
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Block 1

Block 2 ‘ Y9

Block 3 Y3

FIGURE 1
The left hand side part Ax of the eigenvalue

problem Ax = cozﬁi. Ng = 3.
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XX

10 20 30 40 50 60 70 80 90 100
7 A———@ 4 ¢ & .

9 19 29 39 49 59 69 79 89 99
8 18 28 38 48 58 68 78 88 98
® A * A » A ®

7 17 27 37 47 57 67 77 87 97
6 16 26 36 46 56 66 76 86 96
¢ A ' A ’ s & -9

5 15 25 35 45 55 65 75 85 95
4‘ 14 24 34 44 64 64 74 84 94

& A &

3 13 23 *33 43 63 f63 73 83 ’93
2 12 22 32 42 62 Lez 72 82 92
® & < A & &

1 11 21 31 41 6l 61 71 81 91
Xy VoY X9 Vo, Yy X3 V3 Yq X,

FIGURE 3.

Initial numbering. Two unknowns per nodal
point for real and imaginary part. Ng=3, Noc =4.
® Nodal positions of X.

4 Nodal positions of V and Y.
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Renumbering. Ng=3. Ny =4,
® Nodal positions of X.

& Nodal positions of

(v,Y).

X
10 28 30 40 58 60 70 88 90 100
? & 2 3 A o & ?
9 27 29 39 57 59 69 87 89 99
[T ——
8 24 26 38 54 56 68 84 86 98
e A ' A P A ¢
7 23 25 37 53 55 67 83 85 97
6 20 22 36 50 52 66 80 82 96
. A ¢ A ? 3 A ®
5 19 21 35 49 51 65 79 81 95
41 16 18 34 46 48 64 76 78 94
¢ 4+ 4 # A— ®
3 15 17 33 45 47 63 75 77 93
O _____
2 12 14 32 42 44 62 72 82. 92
¢ A i A ® A ¢
1 11 13 31 41 43 61 71 81 91
FIGURE 4.
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FIGURE 5.

Rearranged structure of the ith matrix block
of A multiplied with the reordered part of
the eigenvector which multiplies this matrix.

Zl = (Vi’Yi) ’ ZZ = Xi, Z3 = Xi+1.



