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ABSTRACT

The evolution of the turbulence driven by runaway electrons has been
followed by means of a computer code based on the quasi-linear equa-
tions. The evolution is not characterized by periodic relaxations as
claimed in previous works but ends in a quasi-steady turbulent, yet very
persistent state, accessible from different initial conditions. This dis-
crepancy is clarified as being due to the excessive stiffness of the mo-
ment equations used to demonstrate the relaxations. Moreover, a theory is

developed to interpret the quasi-steady state found.



I.  INTRODUCTION

Five years ago, the pioneering work of Parail and Pogutsel indicated
how runaway electrons could drive a kinetic instability in toroidal dis-
charges via the anomalous Doppler effect. The authors attempted to pro-
vide a theory for the runaway instability observed in tokamaks? which ex-
hibits relaxations with a period of a few collision times. Numerous pa-
pers published afterward were devoted mainly to the study of the develop-
ment of one burst and its possible macroscopic consequences. It was ta-
citly admitted that, after the saturation of the instability (one burst)
due to the quasi-linear change of the distribution function, the system
was somehow recycled to a state from which the instability could grow up
again. In fact, the periodicity, a crucial point of the observation which
it was attempted to interpret theoretically, has as yet only been mathe-
matically demonstrated in two papers1’3; the proof, however, is based
on moment equations, the use of which to describe kinetic effects is
questionable. Thus, it is highly desirable to follow the evolution by

means of the quasi-linear equations themselves over a long time interval.

For this purpose we have extended our quasi-linear numerical code,
based on the Ritz-Galerkin method and special finite elements,” to the
problem of the runaway instability. It comprises the quasi-linear terms
due to Cerenkov and anomalous Doppler effects as well as the terms cor-
responding to the electric field and the Coulomb collisions. So, the code

allows us to study the dynamics of the formation and destruction of



the runaway tail in a consistent manner. We do not need to introduce ar-
guments of little conviction on the different time scales involved in or-
der to separate the roles played by the Cerenkov and anomalous Doppler
effects, on the one hand, from those of the electric field and colli-
sions, on the other hand. In fact, the interplay between the different
terms turns out to be very important since we find that, after one burst,
the time-scale of the turbulence adapts itself to that of the electric
field, which leads to a quasi-stationary highly non-Maxwellian but very
stable state. In contrast to previous work, it is fairly simple to de-
scribe a posteriori the turbulent state attained by the system using an
analytical model. In this model the Cerenkov and anomalous Doppler inter-
actions act as convertors of the work furnished by the electric field in-

to the energy of the Langmuir fluctuations and the gyration energy of the

electrons.

The plan of the paper is as follows: In Sec. II we formulate the
problem, discuss the onset of the turbulence and report on the develop-
ment of the instability as found from our computations. Section III is
devoted to the theory of the quasi-steady state; successively we discuss
its stability and present the equations and formulae of the model. Final-

ly, we use them for two brief applications in Sec. IV.



II. DYNAMICS

A, Formulation of the problem

Let us apply a weak electric field to a strongly magnetized, homoge-

neous plasma. The existence of Coulomb collisions prevents the electron

distribution from shifting away in velocity space, which results in the

growing of a runaway tail. This distortion of the initial Maxwellian

distribution may destabilize the plasma waves with frequencies wy =

mpek"/k that, in turn, modify the distribution function. Thus, a

consistent kinetic calculation should simultaneously take into account

the electric field, collisions, and collective effects. The relevant

quasilinear equations, normalized according to k > k/Ap, v + v Vtes

t > t/upe, > fn/vge, eirerdmTap’, are
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Here, E is the applied electric field and the collisions are modeled by a
Vedenov® term with v(vy) = V(1 + vﬁ)‘}& . Since this term is
linear, it simulates situations in which the dissipated energy is removed
into a thermal reservoir. On the other hand, this model well describes
the randomization of the distribution function toward a Maxwellian, which
would be expected to follow the quasi-linear stage, and so is convenient
for our purpose. In the units used, E is normalized according to
£ » E(4mT)’ , so that the ratio (vy/E) is just the critical velocity
Ve above which the electric field dominates the collisional drag and

the electrons become runaways. Alternatively, the ratio 2(E/vy) may be

regarded as the electric field expressed in units of the Dreicer field.

With regard to the evolution of the spectrum we use the equations
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The set of equations (1)-(6) conserves neither energy nor momentum.
The electric field term and the Vedenov term act as a source and a sink,
respectively, that destroy the momentum balance. In contrast, Eq. (1) is

conservative with respect to the number of particles insofar as there is

no flux at the boundaries.



Let us consider a distribution function with a runaway tail, and a
wave with a wavenumber k. The wave may interact with the distribution in
two different regions : the resonant velocity for the Cerenkov interac-
tion vy = 1/k (denoted by v%), which is smaller than the resonant
velocity for the anomalous Doppler interaction vy = wce/k” (denoted
by v%). Both resonances rapidly scatter electrons in velocity space
when the system turns unstable. The anomalous Doppler resonance
contributes to the part y; of the total growth rate [eq. (6)]. Y, is
always positive for a runaway tail and increases with vy/v, ; hence, it
increases with vg. The scattering associated is nearly elastic
(vge » wg). The electrons are scattered in pitch angle; they 1lose
some longitudinal kinetic energy to the benefit of their gyration
energy. In contrast, the part of the growth rate y, due to the Cerenkov
resonance 1is usually negative [eq. (5)]; it has the sign of the
derivative of the distribution function and decreases in absolute value
as vp increases. The Cerenkov interaction scatters the electrons in

energy and acts to produce a plateau on the distribution.

In view of the above comments, there is no one-to-one correspondence
between the spectrum and the distribution function. It is therefore
useful to introduce the two projectors : 6&(vy - k1)  and
8(vy - wee/ky). They allow us to project the two-dimensional
spectrum e(ky, k, ,t) onto the velocity subspace vy. For the Cerenkov

interaction one obtains

I°(g, t) = (‘;% ECh, b £)8(v,-k") -

R,>0

In the case of the anomalous Doppler interaction the projection yields

d 3
I (U'I’t):: %E}%B g(k,“ kl,t) S(Ja - %e) . (8)

k,>o



Let us note that the total fluctuation energy is equal to
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B. Onset of Langmuir turbulence

From Eq. (4) we see that there are only two ways for an instability
to be triggered. Either Y4 is large enough to overcome the damping due to

Yo and collisions, or vy, itself is also positive. Hitherto, the stu-
1v346-

dies 10 have considered only the first way, and the initial runaway
distribution functions used were modeled in some way suggested by the
classical asymptotic theory of runaway tails. The tails were given enough
particles for the distributions to be unstable with respect to the anoma-
lous Doppler effect, and the development of the instability was studied
from this point forward. However, the threshold for instability depends
very much on the shape of the distribution. A recent and seemingly more
consistent work!! has shown that for realistic electric fields the run-
away distribution is only marginally unstable. Nevertheless, the numeri-
cal code used is reliable up to a velocity of the order of 10-15 vi, so
that the shape of the distribution for higher velocities had to be extra-
polated. Thus, the other way of triggering this instability, namely the
onset of a positive slope, was missed even though the evolution of a run-
away distribution function was followed from an initial Maxwellian. This
phenomenon is purely dynamical and has to be understood as such. The ini-

tially Maxwellian distribution grows a tail under the influence of an

electric field. As the bulk depletes, the flux of electrons through



3
Ve = (vg/E) tends to diminish. Thus, unless there is a source of

electrons below v, strong enough to prevent the depletion of the bulk,
the flux of electrons that become runaways will decrease in the course of
time, which results in the onset of a positive slope on the tail of the
distribution function. Of course, in a consistent approach the collective
effects, which occur on a much faster time scale than the growth of a
runaway tail, will never allow the formation of a true positive slope
since the slightest tendency toward a positive slope will be immediately
thwarted by the Cerenkov effect. A  self-consistent spectrum of
electrostatic fluctuations is thus built, together with the runaway tail,
which in turn may cause the fastest electrons to diffuse via the

anomalous Doppler interaction. .

In view of this situation, any consideration of threshold turns out
to be unreliable. If we consider the first way, the system is only margi-
nally unstable and any perturbation may destabilize it. If we envisage
the second way, the threshold will be completely modified in nature by

the role of the source of the electrons. Nevertheless, the instability

remains whatever its origin.

C. Development of the instability and partial destruction of the tail

As seen in the previous section, the instability may originate ei-
ther from anomalous Doppler resonance, or from Cerenkov resonance. The
electric field and the Vedenov terms have been introduced in the computer

code, already used in Ref. 4, in order to investigate the two correspond-

ing sequences of events. The first sequence is simulated by integrating



Eq. (1) over the half-space vy > 0. We follow the evolution in time of
the system described by Egs. (1) - (6) starting with a Maxwellian for
f(vy , v, , t=0) and thermal noise for e(ﬁtt = 0). The use of the boun-
dary condition f(vy = 0, v, ,t) = f(vy = O,v,,t = 0) prevents the de-
pletion of the bulk and so amounts to introducing a source of particles
at vy = 0. However, the system evolves only toward a marginally stable
state as explained in Sec. I1.B and has to be triggered into the instabi-
lity domain. The second sequence is simulated by integrating Eq. (1) over
the full velocity space - « < vy < + «. Of course, technically the mesh
has a finite size but is chosen broad enough (typically
- 8 < vy < + 50) to avoid fluxes of particles at the boundaries. In
this case the distribution function conserves the number of electrons

present in the initial Maxwellian.

The two sequences of events differ only during the earlier stages.
Since the first case has already been abundantly treated in the litera-

1,3,6-10

ture, here we give the second sequence only, marking the point

where it becomes independent of the onset.

As the runaway tail grows, the bulk of the distribution depletes, so
that it may not continue to deliver as many electrons to the tail. This
shortage would allow a positive slope to appear on the distribution func-
tion if the Cerenkov effect did not flatten it immediately. As a result,
a spectrum of Langmuir fluctuations, which continuously widens, is built
and sustained during the growth of the runaway tail as shown in Fig. 1.
At the time of its appearance the spectrum is situated in too high a vg

to act on the leading edge of the tail via the anomalous Doppler interac-

d

tion. In v, the spectrum lies in a region of the velocity space where

there are no electrons yet.
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Nevertheless, the tail stretches with time so its head reaches the
edge of the spectrum. From this moment forward the characteristic time
scale of the events is dramatically reduced (Fig. 2). As derived in
Appendix A, the reduction factor is roughly 30
wceVo(E/vg)3/Zexp(vy/U4E).  The electrons in the head are then
scattered by the anomalous Doppler interaction and the runaway tail stops
growing. Simultaneously, there is a strong enhancement of the waves with
the smallest v;, because they become unstable both for the Cerenkov and
anomalous Doppler effects. As a result, a true plateau appears in the
corresponding region of the distribution function and the associated
backward flux allows the extension of the spectrum toward even smaller

v,

More electrons are then pitch-angle scattered via the anomalous
Doppler interaction, which leads to a shrinking of the tail together with
an increase in the local perpendicular temperature. The slope of the
distribution function, integrated over vy, then becomes sufficiently po-
sitive again to destabilize the plasma waves via the Cerenkov effect.A
backward flux pushes the electrons with high gyration energy down to the
bulk, which results in an increase of the perpendicular temperature and

of the level of turbulence all along the tail (Fig. 3).

From this stage forward the two sequences mingle irrespective of the
initial condition for the instability (cf. Sec. II B). Moreover, it turns
out that the electric field and the collisions may be completely neglec-
ted for a while; the "non-elastic isotropization" described in Ref. 4

takes place. Thus, the tail is destroyed little by little.

In the case of an electron beam, the end of the relaxation is cha-



- 11 -

racterized by two edge points C and D taking up their final positions.l+
In the present problem the electric field and the collisions play a role
and determine the position of C as being equal to the critical velocity
Vc. Once the positions of C and D are fixed, the fluctuations are dam-
ped by the collisions and their energy drops down by a few orders of maqg-
nitude (cf. Fig. 2). However, they do not disappear into the thermal
noise. The system reaches a very stable state, far from thermodynamic
equilibrium, which is sustained by a flux of energy going from the elec-
tric field into the thermal reservoir. The shape of the distribution
function as well as the projections of the spectrum IC(vy) and
1d(vy) are shown in Fig. 4. The distribution displays a very small
positive slope between C and D; the corresponding backward flux due to
the Cerenkov effect balances the acceleration of the electrons due to the
electric field. Beyond D the distribution function sharply decreases with
the degree of anisotropy that is needed to convert the work done on the
electrons by the electric field into gyration energy. Figure 5 displays
the two-dimensional spectrum; the dashed lines indicate the fluctuations
excited mainly by the Cerenkov effect while the dotted lines indicate

those mainly due to the anomalous Doppler effect.

I1I. THE QUASI-STATIONARY STATE

A. A non-Maxwellian attractor for the distribution function

One of the essential features of the distribution of the runaways at
the time of the instability is the backward flux of the electrons. The

backward diffusion is associated with the small positive slope that ori-

ginates from the shrinkage of the tail by the anomalous Doppler effect.
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This phenomenon was overlooked in the model proposed by Parail and
Pogutse.1 Moreover, in the moment equations, they modeled the Cerenkov
interaction ad hoc by a term that implies a negative slope a priori. From
our computations, however, it turns out that after the burst the distri-
bution function maintains the positive slope needed for the backward dif-
fusion to balance the electric field acceleration. Thus, the periodicity
described by the moment equations is an artefact due to their excessive
stiffness. In fact, the shape of the distribution function is flexible
enough to adapt the time scale of the turbulence to that of the electric
field. The quasi-stationary state found displays a remarkable stability.
Different numerical attempts were made in order to impede the proper de-
velopment of the burst by introducing extra damping effects, selective or
non-linear, in the wave equation. Yet in all cases the distribution func-
tion evolved toward the quasi-stationary solution while the history re-
mains hidden in the details of the final spectrum. Here, we wish to bring
to attention an inconsistency that affects all the works published so far
on the subject. During the burst the high value of the ratio between
fluctuations and kinetic energy indicates that the role of the non-reso-
nant interaction should be taken into account. However, after having stu-
died cases with an extra nonlinear damping, we are convinced that a pro-
per account of the non-resonant interaction might moderately affect the
history of the burst but certainly not the final quasi-steady state
found. It should be mentioned that other authors!? have already proposed
a stationary model for a runaway distribution including collective ef-
fects. However, contrary to the results presented here, no consideration
of the stability is used to support their stationary solution. In fact, a
comparison is difficult because, as distinct from Ref. 12, our work lies

in the commonly adopted frame of a homogeneous plasma. There is no link,
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in spite of appearances, between D = wye C and the point p. of
Ref. 12, since it is defined as the lowest edge of the spectrum in vg
and not as the point where a friction due to the anomalous Doppler effect

could balance the electric field acceleration.

On the other hand, we do not claim that there exists a true station-
ary state. The flux of electrons driven by the electric field through the
critical velocity (equal to C) does not vanish because of the turbu-
lence. Simply, the runaway electrons are blocked in the region between C
and D so that the state lasts for the time of the order of the runaway
production time 1 = (\)c,/E)3/2 exp(vg/4E) vl (cf. Appendix A).
The crucial point is that this time is much longer than the collisional
time, typically by a factor of 10", Therefore, this time has nothing to

do with the period of the relaxations observed in tokamaks. 2

Thus, what we claim is that, after one burst, the system described
by the equations used in Refs. 1, 3, 6-10 evolves toward a quasi-steady,
very stable and turbulent state; the system is not recycled to a state
from which the instability could grow up again. The problem of the addi-
tional physical mechanism which causes the periodicity observed in many

experiments is still open.

Let us now turn to the analytical description of the quasi-steady

state.



B. Analytical model

To the accuracy of the runaway production rate which 138
A = V(E/V)32 exp(- V,/4E) we may drop the time derivative in

Eq. (1):

This equation is simplified by introducing the Maxwellian ansatz dis-

cussed in Ref. 4

It reduces to an ordinary differential equation for F(v,t) where the

variable v signifies v, and t is a parameter

W

+E§—§ -%V(u)(u?f,« l.) =
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and v(v) = vo(1 + v3)-3/2 follow straightforwardly from the full

equations (1) - (3).

—

As for the spectrum,Eqs (4) - (6) become

) (12)

with
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On the one hand, we divide the velocity space into three regions

corresponding to the three different mechanisms that may thwart the acce-
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leration of the electrons by the electric field; the spectrum on the
other hand is separated into two parts depending on the emission mecha-
nism. The characteristic points of the model C and D are reported in
Figs. 4 and 6. C is the lowest edge of the spectrum in v%; for lower
velocities (region I) the distribution function is determined by the
electric field and the collisions only. Besides, we assume that at a
point L the spectrum may be separated into two parts; for vg <L, it is
excited by the anomalous Doppler interaction with the electrons in re-
gion III (beyond D); for L < vg < D it is maintained, via the Cerenkov

effect, by a small positive slope on the distribution function.

Let us now solve Eqs. (9) - (14) for the distribution function and
for the spectrum. We start from region III in this way following the
backward flux from its origin. It is worth recalling the dominant charac-
ter of the Cerenkov effect over the anomalous Doppler effect, already no-
ted in Ref. 4. For this reason, the perpendicular spread of the tail may

be considered as uniform wherever the Cerenkov effect may interfere,

namely, from C upward.

In region III, v > D, we balance the flux due to the electric field

with the backward flux caused by the anomalous Doppler interaction

eF=D (T vF), vsD

3 (15)

The distribution function has just the degree of anisotropy necessary to

maintain the level of the fluctuations in part I of the spect rum

(C<vS <L),
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The latter is assumed to have the shape

f(]?) = 5§ R - k,) E.(‘f) (16)

where

¢ < ko~'< L.

With this ansatz, the diffusion coefficient D takes the form

D, (v) = i R [1- (32 ) (2

4 W, WV kv )

b & Lp=wreas(g8)) V> D

The part of Eq. (15) that implies the shape of the distribution function

may be evaluated by means of the marginal stability condition 2 Y, =Vg.

This is written in v space via the resonance condition v=wce/k0cosq

(7.2 L vr) () (- G301 -

Now we are able to solve Eq. (15) for the spectrum

E‘ [«f:arc Cos (&‘)] =

Vv
1 E L viF(v) , UV >D. (19)
w, Y. R/

€
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Since vg is small in Eq. (18), it is reasonable to approximate F(v) by

the isotropic distribution

(v) = F(D ) QXP ZT ) y U>D (20)

In region II, ¢ < v < D, we balance the flux due to the electric field

with the backward flux caused by the Cerenkov interaction:

EF:Db_E C<uvcld

° v ) - (21)

As we shall see, Dy is much larger than E so that as a first approxima-

tion

F(”):T(D)f-}—(C) ) C<v<)D . (22)

However, to get part II of the spectrum (L < v, < D), Eq. (21) is
solved for Dg(v) with the shape given by the marginal stability condi-
tion 2 vy = vg. For the most unstable, parallel waves the latter

reads

U’aF(U'/Q) L<u< D

{
TT )
Substituting this expression into Eq.(21), we obtain

(23)

:DJU’):W.)%. U2 F(C) , L<VU< D

v
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where Eq. (22) was used.

We assume part II of the

spectrum to have the shape

for °<‘f‘¢) (24)

otherwise,

V
H\
]

so that Eq(IO) takes the form

D(U) ——T—r _cos¢) 8(/€=l/u»)

_E.J‘F(c)) L<veD . (5

In region I, - ¢ < v < C, the Coulomb collisions balance the elec-

tric field so that Eq. (9) reduces to

E .éf = -EL [ ~——lé———~ ( v F + :zjz ) ] .

(t+v? )3/"

Due to the boundary condition F(v = -¢°) = 0, this equation remains homo-

geneous after the first integration. The second integration yields

, 3E /iy,
Flob) =) (Lol 0

(1+ vt

exp [- e, ‘I_E)_):.g(.f i) (ot £] 5o cvecyan
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where ® is determined either by the condition jldvF(v) = 1 or by the
oo
condition F(v = o) = (2n)‘1/2, depending on the model assumed (cf. the

two sequences in Secs. IIB and C).

It is interesting to note that this expression displays a minimum at
v = vp beyond which it increases monotonically. The Cerenkov effect
would not allow such a distribution and so necessarily C < ve. On the
other hand, since for v <« vg, the collisions are strong enough to
compete with the electric field, they are a fortiori able to compete the
turbulence originating from it and to recreate a negative slope on the
distribution function. Thus, it is logical to choose C = Vos, which is
compatible with the situation at the end of the relaxation (cf.

Sec. 11IC).

As for the perpendicular temperature T,(v,t), at C it has a high va-
lue T, imposed from the right by the collective effects and in region I
it is determined by the collisional diffusion toward the bulk. Since F(C)
is determined by the matching condition for the distribution function at
C, T, is the only degree of freedom remaining in the model. Its value
depends, of course, on the extension of the tail at the onset of the
burst, and thus is closely related to the problem of threshold for the
instability discussed in Sec. I1IB. On the other hand, T, increases slowly
but continuously during the quasi-steady state at the same rate as the

anomalous Doppler interaction diffuses the electrons in region III.

Thus, il(t) consists of two parts

T, ()= T + AT, (t)
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where Tf’ (cf. Appendix B) is the value attained at the end of the burst
and is determined by the history of the instability; ATl(t) is the incre-
ment added during the quasi-steady state. Let us show how this increment

is determined within the frame of our model.

In view of the approximation of elastic scattering of the particles
via the anomalous Doppler effect, the power delivered by the electric
field to the electrons in region III is equal to the gain of gyration

energy per unit of time

: (27)

Besides, we may simply write Kl as Tl times the number of particles in

thetail so that

g.t(Kl)= F () [f (D-c)+ Zgj]

where the dots mean the derivatives with respect to time.

Hence,

i

(D-¢) +

S

K3
D
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By integrating this equation with the initial condition T;(t =0)=T,°

one obtains

Et = (D-c)fn(io) ‘ —%(T}- *L) . (;8)

Now, since the increase in the perpendicular spread during the quasi-

steady state is a slow process, we assume ATL/TLO « 1. Then, Eq. (28)

yields

AT, (t) = QZE (,__ C(wce f))t

which is in agreement with our computatlonal experiments.

One of the important results presented in this paper is the
quasi-steady turbulence. Let us show how the analytical model yields

simple formulae to estimate the level of turbulence from the values of

the parameters £, vy, and weg.

The part of the spectrum excited by the Cerenkov effect (part II)

contains the energy




On performing the transformation v = 1/k in the last integral and substi-

tuting az(k) from Eq. (25), one obtains

D

- 2 E
W, = Trcrd (D) > vdv - (29)

o

On comparing this expression with Eq. (7))We note that the projection
I¢(v) is limear in v. This is consistent with the numerical results

reported in Fig. 4. Using the approximations 4) — 0, L —C, Eq. (29) may

be written as

\A/zz-%:F(C) _D_z.:_QZ= %F(c)(wi—l) . (30)

This expression offers a simple interpretation: The work done by the
electric field on the electrons in region II is transformed into the

fluctuation energy Wo which in turn is dissipated via collisions in the

bulk.

The. part of the spectrum due to anomalous Doppler effect (part I)

contains the energy

B de — _ ki‘( S -
Wy= 2| =h E(R) = 2 | d(cosg) €, (y)

that we rewrite in the variable v = Cou/ko cosp. Using Eq. (19) one




obtains

8

On introducing the isotropic approximation, Eq. (20), we find

W.=1 E L (31)

Again, in the limit L » C, we have ko D = D/C = wge and Eq. (31) may

be written as

3

Wi==7(0)T v Flv) dv (32)

[
te Y. wce
D

S

Here, it should be recalled that, in the case of a magnetized plasma, the
energy of the plasmon emitted via the anomalous Doppler effect is negli-
gible compared with kinetic energy transfer in the pitch-angle scatter-
ing. Within this approximation the amount of energy which is not con-
served (energy in the fluctuations) scales as (wee)™! times the kinetic
energy transfer. In comparison with Eq. (27), Eq. (32) simply expresses
that the amount of power not conserved is (wce)‘1 dK, /dt, namely, the
part which goes into the fluctuations and is ultimately dissipated in the
thermal reservoir. The formulae (30) and (32) are found to be in fairly

good agreement with the computational results. Moreover, they are very
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simple to use. Apart from the value of Ti which, in principle, is given
by the histofy,all the quantities involved may be evaluated by means of
the expressions displayed in this section. Often one may do without the
value of Tl insofar as the number of particles beyond D is small; hence,
W, < W,. Moreover, Tf may be estimated, if necessary, by a formula given
in Appendix B. It might be surprising that the two formulae yield values
which seem relatively high at first glance. However, it should not be
forgotten that they are measured in units of the initial Kkinetic enerqy
which is much less than the final one. Thus, in the spirit of
quasi-linear theory, they should be renormalized to the actual kinetic

energy; this operation has been performed for IC and 19 in Figs. 1,

3, and 4.

Iv. MACROSCOPIC EFFECTS

By way of application one may use the analytic model to calculate

the current and the fluxes associated with the trapped electrons.

A. Current and conductivity

+09

The first moment of the distribution function .jng(v)dv consists of

“bo }
three distinct parts. The first contribution is written by means of

Eq. (26), conveniently simplified:

Y/ 2
<U'.>1= -—E);U(uul) (V+.§)]Jw_

2
xverpl-g v g

o

3 °



The second contribution is due to the flat domain of the distribution

function
D
- J - CZ 2
<V > = () vdv = +(C)-Z—'(wcc-‘> ;
C
where the relation D = 6062 C has been used. The third contribution is

evaluated using Eq. (20)

o0

4 =

U = | FO) exp(- L) vde = F(e) T,
D

)

where TL may be estimated via the formula proposed in Appendix B. For
wee ~ 3 and E/v, within the range 6% - 12%, the first contribution is
negligible compared with the others, so that it is possible to write the

formula for the conductivity as

U2y + <UD,
4TE

G =

3 ) 2 Cdz - 2 ) 1
I Ly e R

o

where the relation C = vg = (vy/E)1/2 has been used.

The correction factor to the classical conductivity [(4r vg)~! in
our units] is a complicated function of the applied electric field and
enhances the conductivity typically by one order of magnitude. For
example, with E/vy = 8% and wee = 3 we obtain a factor 50, as in our

numerical calculations.
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B. Particles trapped in the ripples of the magnetic field

During the quasi-steady state there are energetic electrons near C
with a large pitch-angle that can be trapped in the local magnetic
mirrors and leave the system with the toroidal drift vy = YE/ZR“CB' Let
us try to use our knowledge of the distribution function between C and D

to estimate the number of trapped electrons and the associated fluxes.

From Eq. (22) and the Maxwellian ansatz defined at the beginning of

Sec. 1I1IB, one estimates the fraction of trapped electrons as

fc{v foltf Y ex/;(-_z‘_’_)}:(c)
¢

§:

e

n, 2 F(c) 'gz ""‘P(‘Efé)

d ¢

where 8 = (B/26B)1/2,

In the same way one estimates the flux of drifting electrons

b o gt )

8

i ~ ;=L T Ti -
Chd = i%ﬁh“ f (C) ( C + 3 ETE? ) ZJ(P (

and the associated flux of energy
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For typical tokamak parameters, E/vg> 0.1, wee/wpe* 3, R/Ap= 104,
and § ~ 10, we find in succession Ngp= 6 10"6, g = 1 10'7,

be = 7 10‘5; in physical units ¢g = 100 W/em? for a plasma tempera-
ture of 1 keV.
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V.  CONCLUSION

We have studied the dynamics of the formation and destruction of the
runaway tail together with the self-consistent spectrum of fluctuations
generated. The roles of the electric field and Coulomb collisions, as
well as the quasi-linear Cerenkov and anomalous Doppler interactions,
were taken into account simultaneously without any separation of the dif-

ferent time scales involved.

Instead of periodic relaxations, we have found that after one burst
the time scale of the turbulence adapts itself to that of the electric
field, which leads to a quasi-steady and very persistent state. It turns
out that the backward diffusion of the electrons due to the Cerenkov in-
teraction plays an essential role: it is simply its neglect that introdu-
ces the periodicity of the relaxations predicted in Refs. 1 and 3. Also,
our self-consistent calculations of the formation of the runaway tail
have shown that the notion of a precise instability threshold is ques-
tionable. The depletion of the bulk caused by the growth of the tail may
or may not be prevented by a source of particles. In the first case, we
have found, in agreement with a recent work,!! that the distribution is
only marginally unstable and so has to be triggered into the instability
domain. In the second case, we have exhibited a purely dynamical phenome-
non that causes, via the Cerenkov interaction, the growth of fluctuations

which help the instability to develop.

In spite of the uncertainty tied to the onset of the turbulence, the
system always evolves toward the quasi-steady state. This feature led us

to develop a simple theoretical model. The state, which appears highly
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non-Maxwellian, is sustained by a flux of energy originating from the
work done by the electric field on the electrons (cf. Fig. 6). While for
the low velocity electrons of region I (vy < C) the work is directly
dissipated into the thermal reservoir for the runaway electrons
(vi > C) the quasi-linear interactions act as intermediate convertors
of the work. For the high velocity electrons of region III (vy > D) the
work 1is converted via the anomalous Doppler interaction into gyration
energy and into the energy of Langmuir fluctuations. For the intermediate
velocity electrons of region II (C < v, < D) the work is converted via
the Cerenkov interaction into the energy of Langmuir fluctuations. The
fluctuations are then damped and their enerqgy dissipated into the thermal
reservoir. Due to the cooperation of the two quasi-linear interactions, a
suprathermal level of turbulence as well as a non-Maxwellian shape of the

electron distribution function is maintained.
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APPENDIX A :

VARIOUS TIME SCALES OF THE PROCESS

The evolution of the quasi-linear equations [Egs. (1)-(6)] involves
at least four different time scales. First, there is a time for building
a runaway tail which may be estimated as Ttho'i(vo/E)s/z. Se-
condly, there is a time of the burst which may be estimated via the
growth rate for the anomalous Doppler effect g ~ 10 Yi'i. Using
Eq. (14) for the optimum angle one obtains roughly 1530 wee (v F)-1
that may be evaluated at v = v, wee DY means of the asymptotic run-
away distribution given in Ref. 8 to yield 14 ~ 30 wye exp(vg/4E).
Thirdly, there is a time of the relaxation toward the quasi-stationary
state which scales as (cf. Fig. 2) Tr ~ vo'i. Finally, there is a
time of duration of the quasi-steady state that may be roughly estimated
as the inverse of the runaway production rate. Again using a formula gi-
ven in Ref. 8, one obtains Tq ~ v'-oi(vo/E)s/2 exp(vg/4E). This
time may still be larger in current experiments due to the value of

Leff-
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APPENDIX B :

ESTIMATE OF ‘ff

In the case where the instability originates from the positive slope
on the distribution function, one may attempt to determine the perpendi-
cular temperature attained at the end of the burst by means of formula

(17) given in Ref. 4: T, = D(vp - D).

The beam velocity may be estimated as vy = [ (wee+1)/2]vg
* (wce/2)vg, where vg is the velocity at which the positive slope
appears on the distribution function while growing the runaway tail. Now

a simple numerical parameter study allows us to propose the empirical

formula

Ug= U exp(oyu)

Thus, one obtains

© 2

=D (0.5 exp (04 V) - 1)
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Figure Captions

Fig. 1:

Typical electron distribution function and spectrum at the onset of
turbulence. The distribution looks flat since ifs tendency to
build up a positive slope is continously quenched by the Cerenkov
effect. The two-dimensional spectrum is represented by the two
projections defined in Eqs. (7) and (8). The area under the curve
I (or Id) yields directly the fluctuation energy measured in
units of the actual kinetic energy. The parameters used are:

E/vo = 8%, wee = 3.

Fig. 2:
Time evolution of the kinetic K, perpendicular kinetic Ky, and fluc-
tuation energy W. A typical long time evolution is displayed at the
top. The total kinetic energy increases monotonically except for the
instant of the burst where a part is shared temporarily with the
fluctuations. At this instant the perpendicular kinetic energy exhi-
bits a sudden rise and a sharp spike appears in the fluctuation
energy. W then relaxes to the quasi-steady value while K increases
slowly. K, Ky, and W, respectively, are equal to 5, 4, and 0.1 times
the numbers indicated on the ordinate axis. In the bottom the tempo-
ral behavior of the burst is detailed by a factor of 400. The para-

meters used are: E/vg = 8%, wge = 3.
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Typical electron distribution function and spectrum during the
burst. The fully-excited two-dimensional spectrum is projected
twice: I® (dashed line) covers the domain of interaction via the
Cerenkov resonance while I9d (dotted line) covers the domain of in-

teraction via the anomalous Doppler resonance. The parameters used

are: E/v,= 8%, wse = 3.

Fig. 4:
Typical electron distribution function and spectrum during the
quasi-steady state. The shortened tail of the distribution has a
small positive slope (not visible) between C and D = wee C. The
representation of the spectrum and the parameters used are the same

as Fig. 3

Fig. 5:
Typical spectrum during the quasi-steady state as obtained from the
numerical computations. The dashed lines indicate the waves driven
mainly by the Cerenkov effect while the dotted lines indicate those
driven by the anomalous Doppler effect. The parameters used are:

E/vg = 8%, wpe = 3.

Fig. 6:
Schematic diagram of the energy fluxes involved in the quasi-steady

state.
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