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ABSTRACT

By extracting the ballooning phase factor from the displacement
vector, the most unstable modes of the internal ideal MHD
spectrum of two families of JET-like Tokamak configurations (with
high shear and with low shear) can be calculated with a spectral
code over a wide range of Qalues of the toroidal wave number n.
In the range of intermediate n-numbers (3 < n < 100), we present
the radial and azimuthal structures of the amplitude of the
displacement and the corresponding potential energy
distribution. The eigensolutions behave qualitatively as expected

from the ballooning mode theory.
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1. INTRODUCT ION

Recently there has been a lively interest in the spectrum of in-
ternal modes of axisymmetric toroidal plasmas. Extensions to the bal-
looning mode theory (Connor et al., 1978) are still being considered
in order to increase its range of applicability to low shear (Hastie
and Taylor, 1981) and lower toroidal wavenumber n (Charlton et al.,

1980; Dewar et al., 1981; Hastie and Taylor, 1981; Takeda et al.,

1981).

Standard spectral codes (Grimm et al., 1975; Gruber et al.,
1981a) provide information for the lowest values of n. However, there
remains a sizable gap in the intermediate range of n for which the
modes exhibit some features of a ballooning mode while still involving
all, or a large fraction, of the plasma. In practice, the largest va-
lue of toroidal wavenumber that can be handled with the published ver-
sion of ERATO (Gruber et al., 1981a) is given appro*imately by ngmax
< 10. This limit is due to the difficulty in reproducing numerically
the fast angular variation of the mode (since it is very expensive
with respect to computing time). Extracting from the eigenvector the
fast varying ballooning phase factor (see Gruber et al., 1981b), the
angular dependence of the amplitude is given, for all values of n, by
the angular variation of the equilibrium quantities. In general, there
remains a fast radial variation due to the many singular surfaces
within the plasma. With this new code we can now study a much wider

range of n values, which is expected to overlap the range of applica-

bility of the ballooning codes.

In this paper we present the results of calculations using this

new code which investigates the transition from the low-n global modes




to the high-n localized ballooning modes for two families of Tokamak
equilibria. Realizing from the theory of ballooning modes that shear
is a crucial parameter, we have chosen one family with high shear and
the other with low shear. Both have been already studied in some
detail for low-n modes (Berger et al., 1980; Gruber et al., 1979) and

in the limit n = « (Sykes et al., 1979; Rousset et al., 1979), so that

some points of reference are available.

2. THE EQUILIBRIA

An axisymmetric toroidal equilibrium is described in cylindrical

coordinates r,z,¢ by the well-known Grad-Shafranov equation for the

magnetic flux ¢(r,z)
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where p(y) is the plasma pressure, T(y) == rB¢ the toroidal flux,
B¢ the toroidal magnetic field and J¢ the toroidal current densi-
ty. The normalization is chosen such that ¥ = 0 on the magnetic axis.

We shall only consider equilibria having an up-down reflection

symmetry.

A poloidal-like angle, Xs is constructed according to
dy = sz/qrzBp, where df is the differential distance along a
meridian cross-section, q is the safety factor and Bp Ile/r is
is the poloidal field. The origin of x is chosen to lie on the outer

plane of symmetry, z = 0O,r > Rm (where Rm is the radius of the

magnetic axis), and y varies from -m to += (Fig. 1).




We consider two families of JET-like equilibria. The first (la-

beled W) was proposed by Sykes et al. (1977). Its source functions are

given by
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where $'= v - ¥g and g is the flux at the surface with the boun-
dary condition T = 1 at the surface. There is only one free parameter,
o, the so-called Oak-Ridge scaling parameter. Changing the value of o
does not change the magnetic field topology. Designating by the index
1 the values of quantities for o = 1, the dependence on ¢ of the most

important quantities is
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when I denotes the total toroidal current defined by

H j‘/’ dx . )

The scaling allows the possibility of varing B8, while keeping
Bl = 2.13 constant. This family of equilibria has been studied exX~-

tensively in the past with the tools then available (Gruber et al.,
1979; Sykes et al., 1979).




The second family is a particular subset of Solovev equilibria

(Solovev, 1968; Kippers et al, 1971) characterised by its source func-

tions
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and the shape of the plasma surface

25y ? +<r2-—i>L = 0.5 . (6)

The surface is D-shaped with an aspect ratio of 3 and an elongation of
2. The scaling factor again provides for control over the total cur-

rent while keeping B] = .90 constant.

Graphs of q/qacjs Versus s = /y/ys are shown, for the two
families of equilibria, in Fig. 2. The equilibria denoted by Wé have
high shear and high By, while the Solovev equilibria, denoted by $1,

have low shear and moderate B1-

3.  EXTRACTION OF THE BALLOONING PHASE FACTOR

Around the marginal point of the linear ideal MHD operator, the

poloidal (x direction) variation of an unstable displacement £ is

given essentially by
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This fact suggests a variable transformation
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The transformed displacement £ with its components X, V and Y (in the
radial, poloidal and toroidal direction, respectively) only contains

the amplitude of the oscillating function £. The up-down symmetry con-

dition at y =

f(r+e) = §+(7T-g_) (10)

which was imposed in the original ERATO code (Gruber et al., 1981a),

now becomes
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The procedure for including this symmetry condition in the ERATO code

is described in detail by Gruber et al. (1981b).




4. INTERNAL STABILITY OF HIGH Bps HIGH SHEAR, JET-SHAPED PLASMA

EQUILIBRIA

In a search for high-g stable equilibria, Sykes et al. (1977)
considered an interesting class of JET-shaped equilibria. The stabili-
ty of these equilibria was subsequently examined in great detail in
the low-n region (Gruber et al., 1979) and in the ballooning limit
(Sykes et al., 1979). Stability was found with a conducting wall at
the boundary of the plasma, both for low-n modes and in the ballooning
limit, up to a maximum value of B. This B limit was found to be rough-
ly the same for each value of n studied, n = 1, 2 and 3, but substan-
tially higher than the value given by the ballooning limit. The impor-
tant question of the transition between the low-n and the ballooning
limit was beyond reach so that the relevance of the ballooning limit
could not be assessed. It was noted, however, that above the instabi-
lity threshold, the most unstable mode, for each value of n, exhibits
strong ballooning on the outside of the torus. This last feature sug-
gests that a code in which the ballooning phase factor is extracted
(Gruber et al., 1981a; 1981b) is well suited to study the stability of

these equilibra.

In Fig. 3 is plotted, for different toroidal mode numbers, n, the
square of the growthrate, Fz, versus the safety factor on axis, do -
For a given value of qy, the growthrate increases monotonically with
mode number. Increasing q,, the low-n modes are stabilized first.
The extrapolated curve for n = « fits the analytic stability limit of
the ballooning theory for r?2 - 0. The stability limit given by the

ballooning theory is formulated for infinitely small wavelengths. We

know, however, that for this case MHD is no longer valid. Introducing

finite Larmor radius effects, which is often referred to as "w* stabi-




lization" (Itoh and Itoh, 1981), one finds that the n = 100 curve is
stabilized by kinetic effects for Go > 2.15. This means that the
"realistic" high-n stability limit is not at o = 2.4 but at

Go = 2.15, which corresponds to an increase of 8 from 4.8% to 5.7%.

In Fig. 4 are shown the azimuthal and radial profiles of the
eigemmode amplitude for different values of n. The azimuthal profile
of the radial displacement, X(y), is shown for the magnetic surface on
which the potential energy density is a minimum. The position of this
magnetic surface is different for different values of n. For the re-
presentation of the radial structure, we fix x = 0. The safety factor
was chosen to be q, = 1.09 which guarantees a strong ballooning
mode. As predicted by the ballooning theory, the amplitude rapidly va-
nishes in azimuthal direction. This is even true for very low values
of n. Peaking in both the azimuthal and radial direction becomes more
pronounced for larger values of n. This tendency is presented in a
more detailed fashion in Fig. 5. In the upper graph the radial half
width, Hg, is plotted as a function of the growthrate squared, Pz,
for different values of n. With increasing n, the half width decrea-
ses. A cross-plot of Hg as a function of 1//n for different values
of T2 is shown in the lower graph of Fig. 5. It can be seen that Hs

is proportional to 1//n and approaches zero for n + =,

The unstable region in which the potential energy density

2T
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is negative and proportional to 1//n becomes narrower as gg increa-

ses., Figure 6 shows the radial domain in which wp(s) < 0 as a func-




tion of gg. The dashed curve has been calculated using a ballooning
code for n = = with which each s = constant surface is checked. For
the calculations using finite but high n number, there are, in gene-
ral, many unstable modes with different radial wavenumbers. What we
present in Fig. 6 is the radial region for which Wp < 0 for the most
unstable n = 3 and n = 100 modes. The "unstable" region of the most
unstable n = 100 mode does not cover the whole n = 100 unstable bal-
looning region. There are other unstable n = 100 modes with lower
growthrates which show negative potential energy densities at other
radii. Increasing n increases the number of such unstable modes. The
region where Wp(s) < 0 for n = 3 exceeds that of the ballooning
theory for n = », The width of this "unstable" region is almost inde-
pendent of gqg. There are strong positive contributions to Wp near
the axis and near the surface which nearly cancel the negative contri-

butions. For do > 1.65, the mode suddenly becomes stable.

4. WEAK BALLOONING MODES

Both the radial and the azimuthal localization of the mode struc-
ture are drastically different for the weak shear Solovev equilib-
rium. fFor the strong shear case, the amplitude of the mode almost va-
nishes inside the torus at x = = (see Fig. 4a), whereas for the weak
shear case, the amplitude oscillates radially (Fig. 7). The positions
of the maxima of the oscillation correspond to the positions of singu-
lar surfaces. A similar oscillatory behaviour is exhibited in the
graphs, for n = 3 and n = 10, of the potential energy density (Eq. 12)

versus the radial coordinate, s (Fig. 8). The positive contributions

to wp are located around singular surfaces. Between singular sur-
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faces are negative contributions. This is different to that observed
for the strong shear case where only one region of negative Wp(s)
appeared. The square of the growthrate, Pz, depends on the number of
singular surfaces in the plasma, as is shown in Fig. 9 where r? is
presented as a function of a fractional n-number. Here, n plays the
role of the continuous longitudinal wavenumber k in cylindrical geo-
metry. In the high-n region, we have many singular surfaces in the
plasma which results in a continuous increase in the value of r?(n) as
n is increased. The more singular surfaces are near the plasma sur-
face, the less the mode feels the boundary. For small values of n,
however, the boundary is strongly felt by the mode and, as a conse-
quence, an oscillatory behaviour of T'?(n) is observed. The minima and
maxima are related to the number of singular surfaces in the plasma
(see Table 1). The maxima at n = 1.8 and 2.8 occur when there are 2
and 3 singular surfaces whereas minima at n = 2.1 and 3.9 appear when
there are only 1 and 2 minima in the plasma. For low, integral values
of n, it is possible, by an appropriate choice of Go» to fall into

the stability regions.

5.  DISCUSSION AND CONCLUSIONS

By using the new ERATO code, which incorporates an extraction of the
ballooning phase factor, we have been able to confirm numerically that
the marginal points of the high n modes smoothly approach the
prediction of ballooning theory. The width of the radial localization
of the modes is proportional to 1/Vn in the case of strong shear. For

this case, the amplitude of the mode is smoothly varying in both the

radial and azimuthal direction, and can be well represented by our
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code for values of n up to 100 by accumulating the mesh cells
properly. Including finite Larmor radius effects (Itoh and Itoh,
1981), one sees that ballooning theory gives pessimistic limits. The
real B limit is found to be 20% higher than that predicted by
classical ballooning theory. In the case of law shear, the modes are
sensitive to the presence of the singular surfaces. Due to the
oscillatory nature of the position of the singular surfaces, the
growthrate and the marginal value of o oscillate when changing n
continuously. We see that the radial structure of the amplitude is

more pronounced than the azimuthal structure.

This work has been supported by the Ecole Polytechnique Fédérale

de Lausanne, by the Swiss National Science Foundation and by Euratom.
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FIGURE CAPTIONS

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

The coordinate system Ry is the radius of the magnetic

axis.

The profiles of the safety factor, q, for the strong shear

case, W6, and the weak shear case, S1.

Growthrate squared, I?, as a function of qo for different
toroidal wave numbers, n. The n = ® curve is determined by
extrapolation. The dashed curve is the stability limit cal-
culated when finite Lamor radius stabilization effects are
included. All calculations are performed with 50 intervals
in radial and azimuthal directions. The dot () at
do = 2.4 indicates the stability limit determined by bal-

looning mode theory for n = «,

Azimuthal (a) and radial (b) structures of the amplitude of
the symmetric normal component for different toroidal wave

numbers.

Radial half width as a function of the growthrate squared,
Tz, (upper graph) and of the toroidal wave numbers (lower
graph). The lower graph is a cross-plot of the upper one.

Note that the extrapolated lines qgo through the axis
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Figure Captions (cont'd)

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Radial domain in which the potential energy density,
Wp(s), is negative versus qy. The dashed curve indicates

the n = «» ballooning limit.

Radial structure of the amplitude of the symmetric component
outside (yx = 0) and inside (x = =) the torus. The upper

graph is for n = 3 and the lower for n = 10.

Radial structure of the potential energy density, Wp(s),
for n = 3 (upper) and n = 10 (lower graph). The positive re-

gions are located around the singular surfaces.

Growthrates squared, Fz, as a function of continuous n va-

riable for three different values of Go. The oscillatory

behaviour arises from the position of the singular surfaces.




Location of extrema of Pz(n)
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Table 1:

Number of

n n Nas singular sur- r2
q surfaces of

the plasma
1.8 1.89 3.34 2 maximum
2.1 2.21 3.87 1 minimum
2.8 2.94 5.15 3 maximum
3.1 3.26 5.71 2 minimum
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