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ABSTRACT

The various problems that are encountered in searching with ERATO
the limits of stability of axisymmetric toroidal equilibria are

described and illustrated with specific examples.
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1. INTRODUCTION

The value of any computer code, no matter how well it has been
tested, can only be assessed after it has been utilized in a number of
different situations. MHD spectral codes have been in operation for
some years, mainly to study B limits in specific axisymmetric
configurations. In this paper we describe our own experience with one
of these codes, ERATO [1], the problems and the difficulties in
interpretation encountered and how we have solved them. We hope this
information will be useful to all ERATO users and especially to the

newcomers in the field.

2. THE EIGENVALUE PROBLEM

The eigenmodes of an axisymmetric toroidal plasma, corresponding

to a given toroidal wave number n, can be obtained by extremizing the

Rayleigh quotient

ESWP[Z)I] + vi[Ec'/_?.t'}
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where GWp, oW, are the changes in the plasma potential energy and

the vacuum energy caused by a displacement £ (r) of the plasma
equilibrium and &W, is the norm of £ weighted with the plasma
density. The complex displacement vector £, which is also the
eigenvector of the resulting eigenvalue problem, is a function of 2
variables defined in a poloidal plane : a radial variable s = \/;7;;‘
» where Yy is the usual poloidal flux function, which varies between 0

(magnetic axis) and 1(plasma surface), and an azimuthal angle X*,



chosen to vary between -w and w as shown in Fig. 1. The index i
designates the plasma surface. The expressions of the various terms of

Eq. (1) in terms of &(s,¥) one given in Ref.[1].

Substituting the resulting eigenvector £ into Eq. (1), the
Rayleigh quotient becomes equal to the eigenvalue w?. The physical

displacement Eph is obtained from the complex eigenvector & through
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where ¢ is the toroidal angle around the main axis.

Stability depends only on the sign of the lowest eigenvalue
wzmin- In most cases of interest, singular surfaces defined by nq =
m, where q is the local safety factor, n the toroidal wave number and
m an integer, lie within the plasma. This implies the existence of
overlapping stable Alfvén continuums reaching the marginal point w? =
0. The pressure of the plasma vanishes at the surface so that the slow
wave continuum extends also to the marginal point. The continuum
extends all the way to W =+ oo because of the toricity and
non-circularity of flux surfaces. Discrete modes can only exist in the
unstable region w? < 0. If the Mercier criterion is violated on any
singular surface there is an infinite number of unstable eigenmodes,
the eigenvalues of which accumulate to the marginal point. If the
Mercier criterion is satisfied on all singular surfaces there is a
finite number of unstable modes. The limit of stability corresponds to
the moment when the last unstable mode reaches the highly degenerate

end-point of the continuum at w® = 0. If the lowest eigenvalue wzmin



is plotted against a characteristic parameter, such as the plasma B,
the resulting mzmin(ﬁ) is expected to reach the marginal point w’® =
0 from the unstable side with a non-vanishing slope dwzmin/dﬁ- The

break in the slope of wzmin(p) corresponds to the 1limit of

stability.

3. DISCRETIZATION EFFECTS ON THE SPECTRUM

For the numerical treatment, half the plasma domain, 0<s<1,
0<X<w, is divided into Ng intervals in s and N, in the direction X.
The equilibrium is assumed to have up-down symmetry with respect to
the mid-plane. In ERATO, the displacement vector Eﬂs,Xb is expanded in
hybrid finite elements of lowest order. The spectrum is discrete, the
continuum being represented by a dense discrete spectrum. The
transition between the true discrete modes and those that will
eventually become part of the continuum is no longer clear (Fig. 2).
Weakly growing modes have a structure reminiscent of a true singular
mode, with a large shear displacement on the singular surfaces. The
denominator in Eq (1) receives a large contribution from the vicinity
of the singular surfaces, which explains the low growthrate. In order
to identify correctly the mode it is necessary to do a convergence
study which requires calculating w? for a number of values of Ng,

and extrapolating to N = =,

4. GENERAL CONVERGENCE PROPERTIES

We are only interested in the lowest eigenvalue which derermine

if the plasma is stable or not. If the plasma is stable this

eigenvalue will converge to w? - 0, the marginal point. It is

Ny !



unstable it will converge to some w? < 0. It cannot converge to a
positive value. This is a point which has been missed in the past.
When the curve wzmin(N) seems to converge to w? > 0 it is a sure
sign that resolution is not sufficient. It happened frequently with
the early versions of ERATO when the highest feasible resolution was
of the order of Ng = Ngu = 30 and it will still happen when one tries

to calculate high values of n.

The discretization error on 6Wp and Wy is quadratic in the
mesh size (O(N-2)). In the standard version of ERATO the vacuum
contribution is evaluated by solving a Fredholm equation with a
singular kernel. Because of the way in which the singular term has
been handled the discretization error of the off-diagonal terms is
expected to be asymptotically in O(N-?1n N). But 1n N is a slowly
varying function of N and the discretization error of the diagonal
term has no In N term, so that the error may look more like O(N‘z)
when the range’of N is not sufficiently large. This mixed behaviour
has indeed been a source of uncertainty when the eigenmode shows a
sizeable surface motion. In the new vacuum treatment introduced
recently as an option for the case where there is a shell which limits
the extension of the vacuum region, the discretization error is the

same as in the plasma, namely quadratic in the mesh size.

These asymptotic convergence laws are in fact upper bounds on the
error due to discretization. The coefficients cannot be evaluated. The
real error sz - w’» is not a smooth function of N. It can become

very noisy in the vicinity of the marginal point.



The error is a rapidly increasing function of the wavenumber n.
All unstable modes have a fast dependence given by the ballooning mode

theory, A L"nqﬁ‘

i=%e : (3)
To follow this oscillation,the number of intervals N, has to

increase as n. The number of singular surfaces increases too as n, so

that Ng has also to increase as n, or maybe J?T“ if the mesh is

properly adjusted to match the radial localisation of the mode. The

computing time then increases at least as n’/2 just to keep the same

accuracy. The quasi-mode option described in Reference [2] has been

introduced precisely to solve this problem.

In these considerations it is assumed that equilibrium quantities
are known. In practice, the flux function vy(r,z) is obtained
numerically by solving the Grad-Shafranov equation discretized on a
rectangular mesh. All the equilibrium quantities needed for ERATO are
obtained from this table of values of y by interpolation, fitting and
differencing. The error associated with this procedure is not
included. It is certainly a source of noise in the equilibrium
quantities. Since we do not know how it affects the convergence laws
of ERATO, it is necessary to calculate the equilibrium with as high a
resolution as possible to make it more accurate than ERATO at the

highest values of N. A better solution is not yet available.

We have gathered during the last few years a large amount of
information on how to use effectively ERATO to determine limits of
stability. Both Tokamaks and Spheromaks have been studied. We present
the most "typical" problems that have been encountered. By typical we

mean problems that are always met but never mentioned.



5. THE TOKAMAK REGIME

The Tokamak regime is characterized by the fact that dq/ds > 0
everywhere. There are always unstable modes, at any resolution, which
means that the discretization scheme is pessimistic. A stable plasma
will only be found stable in the limit N—» =. The main advantage is
that by converging the most unstable mode one obtains a good estimate
of the accuracy of the final result, with an upper bound on the
growthrate of the most unstable mode. It is not possible to miss an
instability. As an illustration we use the results obtained in a study
on B limits in INTOR [3]. A sequence of equilibria having the INTOR
D-shape (aspect ratio = 4, elongation = 1.6) has been generated by

solving the Grad-Shafranov equation with the source terms.

dp e
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Rm is the radius of the magnetic axis. The constants o, and a3 are

JPE - AWVL', (4)
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adjusted to keep qp ~ 1.15 and qy = 2.4 constant, while a; is
changed. Instead of o) it is more convenient to use the plasma
B(volume average). We determine with the standard ERATO the growthrate
of the most unstable n = 1 mode, assuming an infinite vacuum around
the plasma and a flat density profile. Fig. 3 shows the square of the
growthrate, normalized to the Alfvén transit frequency across the main
radius Ry, wusing a linear scale and a logarithmic scale. The
resolution is held constant with Ng = 2N 4 = 60. On the linear scale
there is a change of slope which one might be tempted to ignore by
extrapolating linearly to the marginal point. This might appear

Justified by the change of character of the mode, which develops an
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internal structure with large shear flow around the 2 singular
surfaces q = 2 and q = 3 in the plasma. This was standard practice
until very recently. But looking at the logarithmic scale nothing

striking occurs until wzmin A/10-qw2A where there is a pedestal.

A convergence study is clearly needed to identify the correct
limit of stability. In the range ,wzmin] > 10-3 sz a plot of
wzmin versus N'z, keeping Ng = 2N, , gives a smooth curve and the
extrapolated value shows little difference from the 60/30 value. But
at  lower lwzmin’, the convergence curves, wzmin(N), become
progressively noisy and the modes peak more and more on the singular
surfaces. Fig. 4 shows such a convergence for one the equilibrium of
the series, at B = 2.2 %. The points obtained with an equidistant mesh
do not fit smoothly on a straight line. By concentrating points around
the singular surfaces the convergence is improved, although there
remains some noise. If the two points at Ng = 70 and 90, which
corresponds to odd values of Nr are eliminated the convergence is
quadratic and extrapolation shows a residual unstable mode with very
small growthrate. It is an empirical fact that one should use in a
convergence study values of Ng, N, with fixed parities. We have not
verified in this case if the residual instability is due to
inaccuracies of the equilibrium, since such a small growthrate and
such a highly singular mode are not physically relevant. In the
Rayleigh quotient given by Eq. (1) there is a cancelation in the
numerator which becomes more complete as N increases, and the
denominator becomes larger as the eigenvector peaks on the singular
surfaces. The noise on the convergence curve is sensitive to the

radial distribution of the points around the singular surfaces. By



working systematically with a concentrated radial mesh the pedestal at
10-* drops sharply. These results are an indication that the pedestal
at 10-" will converge at the marginal point. In this INTOR study we
have  concluded that the stability limit  corresponded to
wzmin/lsz = 10-* for a resolution of 60/30, doing occasional

convergence studies to verify that the eigenvalue drops rapidly as the

resolution is increased.

Our second example shows the problem encountered with larger values
of n and how it has been solved. The equilibrium is a well documented
high B JET equilibrium proposed in Ref. [4], with a shell tight
against the plasma surface so that there are only internal modes. The
current is chosen such that ballooning modes are unstable. With the
standard version of ERATO one finds it is indeed unstable for all n.
But these modes have to be converged. The convergence curves are
shown in Fig. 5 for n = 1,3 and 5 (dotted lines). In this study Ng =
Na . The extrapolation is not credible for n > 3. On the same figure
the convergence curves obtained with the new quasi-mode option are
shown (solid lines) for the same values of n, and to demonstrate its
power, at higher values of n. Quadratic convergence is clean in all
cases. We have also used it on the same INTOR equilibria used in Fig.
4 with n = 2 and the shell tight on the plasma. We find clean
quadratic convergence to the marginal point w? = 0. We have not had
enough experience to claim that the quasi-mode version with the new
treatment of the vacuum has no difficulties, but we have not yet found

any, while it has already solved the problem of calculating

intermediate values of n.
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6. SPHEROMAK REGIME

The spheromak regime is caracterized by dq/ds<0 and q = 0 at the
plasma surface. It is probable that ERATO will behave the same way in
any configuration with dq/ds<0 (including screw-pinches and reversed
field configurations), but we do not have enough experience to back
such a claim. We have made extensive calculations on the limits of
stability of Spheromaks and we use these as evidence that the
convergence properties are different in this regime from that in the
Tokamak regime. The sequence of Spheromak equilibria is generated by

solving the Grad-Shafranov equation with the source terms

dT
e Ta )

and fixing ay such that T(yi) = O when o = 0. The plasma has an
elongated D shape with an aspect ratio of 1.45. The q profile is
insensitive to the pressure in a large range of B (o1). The maximum
value of q is at the magnetic axis and is about .67. The main
difference with the Tokamak regime is that, at low resolution and with
a shell tight on the plasma (internal modes only), all eigenvalues are
on the stable side w® > 0. The first mode is very near w? = 0. To

obtain any unstable mode it is necessary to increase the resolution.

The advantage is that once the unstable mode becomes visible the
eigenvalue converges nicely. The main inconvenience is that when no
unstable mode is found one is never sure that an unstable mode will
not appear at higher resolution. Fig. 6 is an example we have

encountered. There | wzmin | /sz for n = 2 is plotted versus B
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(a1). At high B, the values are converged, but the curve stops
suddenly when no unstable mode is found at the highest resolution we
can use on our computer. Extrapolation to wzmin = 0 would give a
critical B of the order of 8 %. But we know that the Mercier criterion
is violated on the q = 0.5 singular surface at B > Bo.=3 % so that
there should be an infinite number of unstable modes in this range.
Fig. 7 shows at least part of the problem. The strong radial
localization of the mode requires a large number of radial intervals
to be correctly represented. The distribution of the potential energy
density averaged over a magnetic surface is represented in Fig. 8.
There is a cancellation between the positive and negative
contributions which becomes more complete as P decreases. When the
width of the unstable region, As, is plotted versus B (Fig. 9)
extrapolation to zero-width gives the same value of B as the Mercier

limit on q = 0.5.

An interesting comparison can be made with the Tokamak regime. In
the Tokamak case the discretized expression for the plasma potential
energy corresonding to the lowest eigenvalue, does not change sign as
resolution is increased. So the marginal point can only be reached in
the limit N «. In the case of the Spheromak the sign can change as
resolution is increased. Since extrapolation from the stable side is
impossible the computation of the internal modes stability of
Spheromaks is very costly. With a vacuum region the convergence

behaviour is very similar to that of Tokamaks.
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CONCLUSION

We have shown that ERATO is a powerful tool to study limits of
stability of Tokamak configurations. Working first at low resolution
the most unstable mode can be found and diagnozed (mode, potential
enregy, distribution). Selected convergence studies are usually
sufficient to identify the critical growthrate below which it can be
assumed that it will converge to the marginal point. The standard
version of ERATO cannot be used for n large. The new version of ERATO,
with its quasi-mode representation and its new vacuum solution,
extends considerably the range of n. In Spheromak configurations it
appears that, execpt for the fastest growing free boundary modes, high

resolution is needed to find the correct limit of stability.
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FIGURE CAPTIONS

Fig. 1 The s,a coordinate system
Fig. 2 Comparison between the exact and discretized spectra

Fig. 3 The lowest n = 1 eigenvalue Iwzminl/sz as a function of
the plasma B. The parameters of this sequence of equilibria
are those contemplated for INTOR. In a the scale is linear

while it is logarithmic in b.

Fig. 4 Convergence plot of I“zmin‘/sz as a function of the
number of radial intervals Ng, keeping N, = Ng/2, using 2

different radial mesh concentrations.

Fig. 5 Convergence plot of wzmin /sz as a function of the
number of intervals N = Ng = N for some selected values of
n. The dotted curve is obtained with the standard ERATO while
the solid curves are obtained with the quasi-mode

representation.

Fig. 6 The lowest n = 2 eigenvalue Tz/sz as a function of the
plasma B, for a Spheromak surrounded by a rigid boundary at

the surface.

Fig. 7 Localization of the internal n = 2 unstable mode around the

singular surface q = 0.5 as a function of P.
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Figure Captions (cont'd)

Fig. 8 The radial profile of the plasma potential energy density,

averaged over each magnetic surface, showing the localization

of the unstable region.

Fig. 9 The width of the unstable region A as a function of the plasma
B.
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