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ABSTRACT

The energy absorption of rf waves at the spatial Alfvén resonance
of a cylindrical plasma is investigated using ideal MHD equations. It
is found that the absorbed power exhibits a resonant enhancement if a
collective mode is excited. The dependence of the optimal power upon
the characteristics of the plasma equilibrium, the type of the

antenna-shell configuration and the type of the collective mode is

established.



1. INTRODUCTION

It is widely recognized that supplementary heating, in addition
to the basic ohmic heating, will be necessary to bring a tokamak
reactor into the ignition regime. One of the many schemes proposed for
this purpose is resonant absorption of Alfvén waves in a nonuniform

plasma. It has the basic merit of using low-frequency rf fields for

which high-power sources are readily available.

Up to now, two mechanisms were considered to heat plasma by means
of Alfvén wave absorption. First, GROSSMANN and TATARONIS (1973) and
HASEGAWA and CHEN (1974) showed that the existence of a continuous
spectrum leads to the damping of a cutoff electromagnetic wave through
the phase mixing. The basic theory for the rate of energy absorption
using this mechanism has been given by CHEN and HASEGAWA (1974) using
a simple slab-geometry. They found that the absorption rate is
strongly enhanced when the nonuniformity of equilibrium is sharp and
the driving frequency is close to the frequency of the weakly-damped
surface mode (SEDLACEK, 1971). One of the objectives of the present
paper is to show that a similar phenomenon takes place in an
equilibrium with an arbitrary nonuniformity. In this case the surface

mode becomes strongly damped, and consequently it may be called

quasi-mode.

The other mechanism proposed is the excitétion and subsequent
absorption of magnetosonic cavity modes. The reflection coefficient
for an incident magnetosonic wave has been calculated. These calcula-
tions have been performed assuming a slab geometry, uniform magnetic

field and linear density profile (KARNEY et al., 1979; STIX, 1980).



Some other calculations (OTT et al., 1978) have been specialized to

the m = 0 case, where m is the poloidal wave number.

In this paper we try to provide a unified picture of the
Alfvén wave heating scheme from an ideal MHD viewpoint. We test
numerically the two mechanisms proposed and point out their typical
features, their relative advantages or disadvantages. Moreover, a
systematic study of a cylindrically symmetric equilibrium permits us
to establish where and how much energy will be deposited and what are

the important parameters of Alfvén waves heating.

The paper is structured as follows. In Section 2 we present the
basic equations of the ideal MHD theory and our numerical treatment.
This section also includes the calculations of antennae, boundary
conditions and power absorbed. In Section 3 we describe the Alfvén
continuum and the physical process of resonant absorption. In Section
4 we mention some numerical details and explain the limits of our
computational model. Sections 5 and 6 deal with physical results
concerning the energy deposition versus equilibria, geometric
parameters, antennae used and pump frequencies. Finally, we draw the

main conclusions in Section 7.

2. BASIC EQUATIONS

2.1 Ideal MHD equations

Mathematically, the problem reduces to an investigation of small
oscillations about an equilibrium state which are excited by an

external source. If the oscillation amplitudes are small, the



linearized equation of motion can be used. Let p, 3,_5 and j represent
small deviations of density, pressure, magnetic field and current
density form the equilibrium values pg, pg, Boy Jjo. The linearized

equations of magnetohydrodynamics can then be written in the form :
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We assume an ideally conducting plasma, which implies the Ohm's

law:
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and with (3) yields :
B
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In this set of equations u is the plasma velocity and y is the adia-
baticity index. It is frequently not convenient to use the velocity u;
one rather treats the plasma displacement from an equilibrium position
£, defined by u = 3g/3t.

Eqs.(2) and (5) can then be integrated with respect to time, and 5,_§

and j can be expressed explicitly in terms of E:
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Substitution of these expressions in Eq. (1) results in a second order

differential equation for & :
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which is symbolized by:

6§ = FLED,

where F is the ideal MHD restoring force.

2.2 Numerical treatment

We shall study a cylindrically symmetric equilibrium with an
arbitrary non¥uniformity and assume £ = £ (r) exp[i(-wt + m6 + kz)].
The one-dimensional spectral code THALIA (APPERT et al., 1975) can

then be used to solve the eigenvalue problem corresponding to Eq. (7):
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where B and A represent the mass and potential energy matrices,

respectively.

There are two different ways to calculate numerically the
"absorbed" power in the framework of ideal MHD. The first one is to
solve Eq. (7), subject to the appropriate boundary conditions, as an

initial value problem. The evolution code then solves the following

system :

§ = Af v s salwt), (9)
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The second way of doing it is to add an artificial damping term v
to Eq. (8) and asking for the stationary state behaving as

exp(—iwpt). The equation to be solved then becomes :
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In both cases, s represents a source term which models a current
in an antenna situated in the vacuum between the plasma and an outer
shell. We have modeled two types of antennae: a helical antenna and

the antenna used on TCA (CHEETHAM et al., 1980).

2.3 Antennae

Let us consider a plasma of radius rp surrounded by antennae of
vanishingly small thickness at radius ry and a perfectly conducting

outer shell at radius rg (cf. Fig.1).
We assume an antenna current density jy = Jg8(r-rg) with Jg

behaving as exp[i(m6 + kz - %g)]. The normalization is always chosen

such that the total current per '"wire" 1 = 2Jy/k is equal to

rpBoz-

a) Helical antenna

This antenna (cf. Fig. 2) assumes Jp = 0; from Vv ¢« §j = 0 we

then have :

éiz"f; Yo = ',ﬁ' jeg(”"‘l) .




b) TCA antenna

’This antenna (cf.Fig. 3), used on the TCA tokamak, assumes

Jz = 0; Ve j=0 then implies

‘ 0 < hsr<hn
/J’f={_%t_je A vy

So we introduce the following generalized antenna formulation:
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which reduces to the particular cases of the helical antenna (s = 0)

or the TCA antenna (s = 1).

2.4 Boundary conditions and power absorbed

£q. 7 must be supplemented by boundary conditions. For this

purpose we introduce the vector potential A and look after differen-

tial equations describing A, and B, in vacuum. Using Vv + B =20 and

V x B = u,j, it appears that B, is the solution of the following

differential equation:
m?.
DB, =S 75 3o Hr-n), (12)

where the Bessel operator D is:
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and the function H is defined by:

H(x) 1 if x>0

H(x)

0 ifx<0 o

In the same way ¥ Xx A=Band Ve A-=0imply a differential equation

for Ag:

DAy =0 (13)
Then we have the following boundary conditions:
a) At r = rg the tangential component of the electric field E¢

must vanish)which implies:

2B,
Az=0 TS

b) At r = r, the current defined by Eg. (11) and the assumption of

no surface charge ([Er]iil = 0) imply the following condi-
tions:
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Here the subscripts II and III refer to Fig. 1 and specify both sides

of the antenna.

c) At r = Tp the continuity of the tangential component of the elec-

tric field Ey together with the continuity of the total pressure

yield:
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where F(r) = k B,(r) + —?— Bg (r)
We can now express the absorbed power Fy seen by the antenna:
¥ s %
__s‘d%a.g -.-A,wF'fTLS'/‘)'.A 4 dv

Yo
Here L is the length of the cylinder.

Using the Maxwell's equations, we obtain:

.
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We have now to express the magnetic field B,. To solve the dif-
ferential equation (12) for B,, we define three fundamental func-

tions H,K and G:

a) H and K are solutions of the homogeneous case:

D +H=0andD + K =0 with the boundary conditions
K(rs) = ’ K'(I‘S) =0
H(rg) = 0, H'(ry) = 1

b) G is a particular solution of the inhomogeneous case

2
D « G = sy, — Jp with G(rg) = 1, G'(rg) = 0 as boundary
0 2 6 s s
r

conditions.
The field B, is now given by:

B, = oK + G if rg <r< Tg

0
N
|

= yK + 8H if Ip <r<ry4



The boundary conditions for the magnetic field B, give us the

expression for the coefficient a, v, and 6. The absorbed power is then
given by:

p
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The subscripts a and p on the fundamentals signify the positions rg
and Ip where they are evaluated.

We will present results in terms of E = Rep/L representing the
time-average resistive power per unit length and in terms of the

"coupling factor" Q defined by: Q = Imp/Rep .
3. CONTINUOUS SPECTRUM AND RESONANT ABSORPTION

3.1 Equilibrium and the Alfvén continuum

For the sake of simplicity, the unperturbed plasma is described
by an equilibrium with the following characteristics: B = 1, j; =
Jo (1—r2)°‘, P = 1.01 - (1.01 - py) r8 in dimensionless units
where the plasma radius is unity (these units will be used also in the

presentation of all results).
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The free parameters jg, o, pg and § are varied within certain range

such that zero plasma pressure at the plasma boundary results in

B-values of a few per cent on the axis.

The azimuthal and longitudinal wave numbers m and k of the plasma
motion are inmput values given, physically, by the antenna structure.
Toroidal geometry can be simulated by expressing the longitudinal wave

number k in terms of the toroidal wave number n and the major radius

R: k = n/R.

The Alfvén continuum is then determined by:
2 z z 1/ 2
fo Wy = (A+mBglr) = B, (m+an)/@)

where q is the security factor q = r/RBy.

Then, for every frequency in this range, there exists an "eigenmode"
satisfaying Eq. (7). These eigenmodes have the character of
distributions in space. They are not square integrable, but their
superposition yields integrable, physically meaningful functions. We
can compare the class of the Alfvén modes with an ensemble of

infinitely many oscillators, continuously distributed in space and

frequency.

3.2 Resonant process

Now let us choose the pump frequency wp within this continuum.
A typical evolution of resonant absorption is shown on Fig. 4 by the
spatial profile of the poloidal displacement Eg at three subsequent

times. The increasing concentration of enerqy around the resonant
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layer rg = .5 is evident. In the lower part of the picture the

absorbed power is plotted versus time. The arrows indicate the times
at which £g is shown. Most strikingly, after two pump periods
2w/wp the value of p is already in the vicinity of the asymptotic
value p = .021. Note that in the evolution code § is not determined by

Eq. (14) but by:

€
P ge {4 lwrge

In Fig. 5 the spatial wave forms of Retg are shown as produced with
the stationary version of the code. Three different values of the
artificial damping coefficient v have been used. The calculated
absorbed powers agree within 10 % with each other and with that
obtained by means of the evolution code. All the oscillations far from

the resonant surface are damped in this case.

Let us now consider a particular equilibrium without any current
and with a monotonic density profile: constant if r < re and then
falling down linearly to 10 % of its value on the axis (cf. Fig. 6).
Such an equilibrium yields a simple Alfvén continuum (which allows
only one resonant surface for a given frequency). We impose an initial
displacement of the plasma column and then let it oscillate freely.
We then make a Fourier analysis of the radial displacement Er at a
given radius r: £; (r,t)=) A(r,w)e-iot, Fig. 7 shows the ampli-
tudes of A(r,w) versus w for three different radii r = .7, .76 and .9,
for a longitudinal wave number k = 2 and an azimuthal wave number m =
1. For each radius r, a maximum of the amplitudes appears; this

maximum M(r) occurs around wg = 2.27 t .03 in all cases. This is an
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indication of a global motion of the plasma column. We have tried to
identify it as a global mode by means of the spectral code THALIA but
unsuccessfully: the only way to point it out is to study its
consequences. This mode, which may be called collective, can be
understood as a remnant of the lowest-frequency fast mode which has
disappeared in the continuum and which may reappear as a real
eigenmode in either unstable situation (kink) or in equilibria with
discontinuities (surface eigenmode). In the same way, the Fourier
analysis at higher frequencies points out global motions corresponding
to the second, third, etc. fast waves. Furthermore, we notice in Fig.
7 that the maximum of amplitudes M(r) depends on the radius r where
the radial displacement £r 1s Fourier-analysed; this maximum
increases when wp(r) approachs wg : the closer the local Alfvén
frequency is to the frequency of the collective mode, the higher is
the maximum M(r). This resonant behaviour with a collective mode is
confirmed if we plot the absorbed power p obtained with the stationary
version of the code versus the pump frequency w for the same
equilibrium (cf. Fig. 8). Indeed, the maximum of P occurs around wy

= 2.29 and indicates the presence of the collective mode.

4. LIMITS TO THE COMPUTATIONAL MODEL

The discretization in space imposes a discretization in
frequency. The continuum is then approximated by a discrete spectrum
in which the frequencies are related to the local Alfvén frequencies
on the radial mesh. The validity conditions then require that the code
should be unaware of the discreteness of the continuum as long as at

least two frequencies are resonant with the pump.
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Then, if Aw is the w-mesh spacing at the resonant surface, it
appears that the evolution code is valid up to a time tmax = 2m/Aw
and the stationary code is valid if the artificial damping v > Auw.
These limits are evident on the next figures where the absorbed power
P is plotted versus time (Fig. 9) or versus the artificial damping v
(Fig. 10) for the same equilibrium parameters. Two pump frequencies
have been chosen differing by Aw/2. The frequency wp1 Wwas equal to
an eigenfrequency in the "continuum", the frequency wp2 ON the other
hand lay between two eigenfrequencies: this explains the different
behaviour of the curves beyond the validity limits. However, for v >
Aw or t < tpay = 27/Aw the system does not feel distinct eigenvalues
and produces the same value of p for the two frequencies. For the
stationary code, however, the magnitude of the artificial damping v
must be chosen sufficiently small that the results do not depend on
it. The problem treated here is analogous to the case of a damped
harmonic oscillator when acted on by a force with a continuous
spectrum. The total energy absorbed by the oscillator does not depend
on the attenuation decrement when the attenuation is weak. Thus, we
calculated the "true" resonant absorption without specifying a
dissipation mechanism. In conclusion, for the evolution and stationary
codes, we need a good spectral and spatial representation of the
continuum. The stationary version is much less time consuming than the

evolution one but cannot give us the time behaviour of the

displacement £.

5. SURFACE QUASI-MODE (KINK-LIKE MODE) COUPLING

In section 3.2, the resonant behaviour of the absorbed power due

to the presence of a surface mode (the lowest-frequency strongly-
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damped fast mode) was pointed out. The stationary code permits us to
study this phenomenon systematically by computing the altitude chart
of the absorbed power p in the wk-plane. Such a chart is shown in
Fig. 11 for the m = 1 excitation and the equilibrium given by jo = .6,
@ = 2 and § = 2; the antenna used is the helical one. We can notice
that the power peaks along a certain line w = w(k) which roughly
represents the real part of the frequency of the quasi-mode. It is
easily seen that for each surface the power has a maximum M(r) at
definite values of k and w. Moreover, the plot indicates that for a
given equilibrium and fixed values of m, r, and rg there exists an
optimal resonant surface associated with a maximal power max M(r).
This optimal resonant surface can depend on the plasma equilibrium
(current j,, density Q) or on the antenna structure (azimuthal wave-
number m, type of antenna) or geometric factors (position of shell and

antennas). By varying these parameters, we try to optimize the Alfvén

wave heating.

5.1 Yariation of current

The dependence of the maximum of power at a given resonant
surface upon the value of jo is shown in Fig. 12 for the case where o
= 2, § = 2. We notice that for a fixed current profile, the position
of the optimal resonant surface is shifted towards the plasma axis
when the current increases. At the same time the optimal power is
enhanced. Thus, in plasmas with higher B-values we can expect an
efficient energy absorption at the innermost surfaces. A peaking of
the current profile, the total current being fixed, can have a simi-
lar effect. As can be seen from Fig. 13, the optimal resonant surface

is shifted towards the plasma axis when the current profile is
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steeper. For a very peaked current the energy absorption seems to be

equally good for all inner surfaces,

5.2 Variation of density

We first varied the boundary value of the plasma density pg,. It
turned out that the absorption is not very sensitive to this value. A
variation within the range .01 to .1 resulted in a variation of the
power by a few per cent. If the density profile is flatter, the
optimal resonance surface is shifted towards the plasma surface (up to
r = .63 if 6§ = 10); the power is higher but the resonance with the
surface quasi-mode is narrower and always occurs near the minimum of

wp for a given longitudinal wave number k.

5.3 Variation of positions of shell and antennae

By keeping the position of the antenna fixed at rgy = 1.2(which
is our standard case), we observed an increase of the power, before it
saturates, when we increase the position of the outer shell rg; the
Q factor decreases in the same way. This can be seen in Fig. 14 where
the resistive absorbed power p and the coupling factor Q are plotted
versus rg. If we keep the position of the outer shell fixed at T'g
= 2 (in all other calculations it was fixed at 1.5) and move the
antennae outwards, we observed a decrease of 5 while the Q factor is
increasing as demonstrated in Fig. 15. In both cases, the optimal
point in the wk plane is shifted toward lower ® and k. In any case,
the resonant behaviour looks the same and the optimal resonant surface

remains between .4 and .5.
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5.4 Comparison of antennae

The dependence of the maximum of power at a given resonant
surface upon the type of antenna used is shown in Fig. 16 for the case
m = 1. It appears that the optima of the absorbed power agree within
20 % with each other. In the case of a higher m, however, their ratio
increases strongly as shown in Fig. 17; the respective optimal
resonant surfaces are shifted towards the plasma boundary and are
already around .8 for m = 2. We have still to point out that, in
the wk-plane, the optimum point occurs for lower w and k when we use
the helical antenna. In conclusion, we notice that a good energy
absorption by the inner surfaces occurs only in the case m = 1; in

this case the results obtained for both antennae are comparable.

5.5 Very-low frequency heating

The Alfvén continuous spectrum can comprise a marginal point
where F = (kB, + mBg/r) = 0 and it is then possible to have two
resonant layers for low pump frequencies. Such a situation is shown in
the lower part of Fig. 18 where the local Alfvén frequency is plotted
versus radius. In the upper part we show the coupling parameter
W/gr2 computed by the evolution code, where W is the fractional
power deposited at the resonant layers and £, (1) the radial
displacement at the edge of the plasma. This factor is calculated
separately for the two radial intervals 0 < r < .8 and .8 <r < 1. The
results for four different pump frequencies show that the presence of
an outer resonant layer does not preclude the inner layer from being

heated. Nevertheless, for low frequencies near the marginal point, the
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coupling seems bad. This last result is confirmed by the stationary
code when we plot, in a logarithmic scale, the power versus the pump
frequency (Fig. 19). Furthermore, for low pump frequency w, the
absorbed power decreases as w’ as predicted by CANOBBIO (1981). Thus,
it does not seem possible to heat the plasma efficiently with very low
frequencies. This can be understood if we invoke the foregoing
arguments about the collective mode. The applied frequencies are very

low, and consequently far from the frequency of the collective mode.

6. MAGNETOSONIC CAVITY MODE COUPLING

Another possibility to couple a global motion to the Alfvén
continuum is to excite the second or higher fast magnetosonic waves.
In Fig. 20 we present, in a logarithmic scale, the absorbed power p
versus the pump frequency w for two different resonant surfaces rg =
.7 and rg = .5. In this figure, we see different resonant behaviour
of the energy deposition: a broad resonance if we couple to the
surface quasi-mode, a narrow one if we couple to the second fast
magnetosonic wave. The latter result is in qualitative agreement with
the previous treatments (OTT et al., 1978; KARNEY et al., 1979; STIX,
1980) . Moreover, the more is the resonant surFéce shifted towards the
plasma axis, the greater is the difference between the two coupling
schemes. If we look at the amount of energy deposited, the two schemes
are equally good for rg = .7 but differ already by a factor 10° for
rg = .5. It appears that for the inner surfaces the optimal case
occurs when we couple to the surface quasi-mode. We have made the same
study with different density and current profiles and for the coupling
to the other fast waves (3rd, 4th, etc.); we have obtained the same

qualitative results.
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7. CONCLUSION

We have shown that the structure of the antenna and the frequency
of the rf generator used for the Alfvén wave excitation can be
optimized in such a way that an efficient energy deposition takes
place at the innermost plasma surface if we couple to the surface
quasi-mode. Also we have shown how this energy deposition depends on
density and current profiles as well as on the position of the shell
and antenna. We have pointed out that the optimal case occurs for the
m = 1 excitation; in this case, the results are comparable for both
antennae considered. Futhermore, we can conclude that the heating
scheme based on the coupling to a strongly-damped surface quasi-mode
in the Alfvén continuum looks much more efficient, concerning the
position of the resonant surfaces, than the other scheme based on the
magnetosonic cavity mode coupling; it is easier to heat the center of
the plasma with the first scheme. Nevertheless, a complete description
of the Alfvén wave heating would also demand the inclusion of kinetic

effects and nonlinearities.
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FIGURE CAPTIONS

Schematic diagram of the plasma-antenna-shell confiquration.

Schematic diagram of the helical antenna.

Schematic diagram of the TCA antenna.

Time evolution of poloidal displacement and absorbed power.

Stationary response of poloidal displacement and absorbed

power for different artificial damping rates versus radius.

Density profile used to demonstrate a plasma global motion.

Fourier amplitudes of the radial displacement at three diffe-

rent radii.

Collective mode resonance of the absorbed power.

Absorbed power versus time.

Absorbed power versus artificial damping rate.

Altitude chart of the absorbed power for m = 1, Jo = 6, a = 2

and 6§ = 2.

Fig. 12 Maximal absorbed power versus the position of resonant surface

for different equilibrium currents of the same profile. The

parameters used are: m = 1, a = 2 and § = 2.




- 21 =

Fig. 13 Maximal absorbed power versus the position of resonant surface
for different profiles of the same equilibrium current. The

=1 and a = 2.

parameters used are: m

Fig. 14 Absorbed power and the coupling factor versus the position of

the shell.

Fig. 15 Absorbed power and the coupling factor versus the position of

the antenna.

the position of resonant

Fig. 16 Maximal absorbed power versus

surface for two different antennae; m = 1.

Fig. 17 Ratio of maximal absorbed power and the position of the

optimal resonant surface for two different antennae versus m.

Fig. 18 The coupling parameter W/Er2 and the Alfvén frequency wp
versus radius in the case of two resonant surfaces. The
6, 0=2and § = 2,

parameters used are: m

= .3 (A) and

Fig. 19 Absorbed power versus the pump frequency for k

k .5 (0). The other parameters used are: m = -2, jo = .6,

2 and § = 2.

o

Fig. 20 Absorbed power versus the pump frequency for two different
resonant surfaces. The parameters used are: m = 1, jo = .6,

a=2and § = 2,
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