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ABSTRACT

Analytical and numerical demonstrations of the existence of
discrete Alfvén modes are presented. Possible implications

for a low frequency heating of Tokamaks are discussed.



1. INTRODUCTION

Recent experimental (de Chambrier et al., 1981) and numerical
(Ross et al., 1981) results concerning the antenna loading for the
Alfvén wave heating of Tokamak plasmas show the evidence of resonant
peaks at frequencies just below the lower edge of the Alfvén conti-
nuum, A similar peak has been noticed in the calculations of MHD
spectrum by Pochelon et al. (1975). The objective of this paper is to
provide a simple interpretation of these phenomena by means of the
ideal MHD theory. In particular, we shall show that the resonant peaks
can be related to the excitation of a new type of waves which we pro-
pose to call "discrete Alfvén waves". Also we discuss a possibility to
use these modes for a "Discrete Alfvén Resonance Heating" (DARH)

scheme of Tokamak plasmas.

The plan of the paper is now outlined. In Section 2 the Hain-Liist
equation is used as a basic equation for the ideal MHD model in cylin-
drical geometry, together with a short discussion of the continuous
spectrum. In Section 3 we show, for a low-B plasma, the existence of
discrete Alfvén modes by means of a WKB approach and through numerical
calculations performed using our one-dimensional stability code THALIA
(Appert et al., 1975). In Section 4 we present analytical calculations
which predict that, under some circumstances, the lower edge of the
Alfvén continuum is an accumulation point of the discrete Alfvén
modes. Section 5 deals with the effects of toricity. Finally, in Sec-
tion 6 we put forward some ideas about using these modes for a low

frequency heating of tokamaks.



2.  BASIC EQUATIONS AND CONTINUOUS SPECTRUM

A circular cross-section Tokamak with the large aspect ratio Ra
can be considered as a straight cylindrical plasma column with the
usual correspondance k = n/Rabetween the longitudinal (z-direction)
wavenumber k and the toroidal wavenumber n. Denoting by m the azimu-
thal (6-direction) wavenumber, the linear displacement vector

& = (&, Egy &,) can be Fourier-analysed in time, 6 and z:

_{(f,"} 9/2) = 15(4") Qx,a[i(wt+ M9+/£2)]/ (1)

where r is the remaining independent radial variable. In the ideal MHD
model, the eigenfrequency w and the eigenmode &(r) are obtained by

solving the Hain-Liist equation (Hain and List, 1958)

where



The quantities B = (0, Bg, B,), p, p and Yy are the equilibrium
magnetic field, the equilibrium pressure, the mass density and the
specific heat ratio, respectively. The plasma is surrounded by a va-

cuum region which is limited by a concentric wall.

For given n (or k) and m, the MHD spectrum contains two continua

(Appert et al., 1974) defined by D = 0. The slow wave continuum is gi-

ven by

s S’(XP"‘BZ) (3)
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and the Alfvén continuum by

2
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The frequency range of the Alfvén continuum is
. 2 2 2
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It is well known that besides these continua there are discrete
modes. In particular, all unstable modes are discrete. Also discrete

.

are the fast modes with an accumulation point at w = =

An example of the extension of the Alfvén continuum as a function

of n is shown in Fig. 1. The curves corresponding to the Alfvén fre-



quencies at the axis (wAZ(O)) and the plasma surface (mA2(1)) are
drawn as solid lines. The dotted lines represent the lower limit of
the Alfvén continuum corresponding to the local Alfvén frequency some-

where inside the plasma. At this point we have
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whereas at r = 0 and n = ng
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5. DISCRETE ALFVEN MODES

The recent experimental results obtained on the TCA Tokamak at
Lausanne (de Chambrier et al., 1981) and the numerical results
obtained by Ross et al. (1981) suggest the existence of one or more
weakly-damped eigenmodes at frequencies Just below the lower edge of
the Alfvén continuum. At the first glance, this is a surprising
finding. However, a simple inspection of the equation (2) may already
shed some light on the phenomenon. Indeed, on performing a WKB-type of
analysis of this equation one finds a seemingly-new type of waves

whose dispersion relation reads

w = (*%q - ) (8)
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and kp is the radial wavenumber. These waves may be called the dis-
crete Alfvén waves. They can easily be found by our one-dimensional
spectral code THALIA (Appert et al., 1975) which, in principle, solves
equation (2). In order not to be bothered by the slow wave continuum
we compress it to w = 0 by setting y = 0, which is a good approxima-
tion for low-B plasmas. The eigenmodes then satisfy £ « B = 0 with a

motion purely perpendicular to the magnetic field. As to the current

and density profiles we choose
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which represent a good parametrization of ohmically-heated Tokamaks.

(10)

The exponents Kj and ko are free parameters. In nowadays Tokamaks

the current seems to be more peaked than the density with Kj larger

than Kpe The constant j, is determined such that the safety factor
at the axis gy = B,r/RBg = 1. The density at the axis p, ap-

pears only in the normalizing Alfvén frequency wy (units are chosen



such that ug = 1 and the plasma radius = 1)

2
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The parameter A defines a pedestal of the density. If it equals zero,
the Alfvén continuum extends to =. The quantity no can now easily be
calculated

K.

m. =m ! -
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We choose, as the standard case, the following values of the parame-

ters
KJ. = 4, Kp = 1,
B, = 1, A = .05, (13)
m = 1, pO = 1,

which yields n, = 3.2105.

In Fig. 2 we show the discrete Alfvén modes in the stable re-
gion. The distance Aw? of these modes from the lower edge of the
Alfvén continuum is plotted as a function of n. Only the modes with
Aw? > 10-5 are given. At n = n, (marked by II) we find 13 discrete
modes. The number of the discrete Alfvén modes decreases for n < Ne
(region I) and for n > ng (region III). For high n (n > 7) all dis-

crete modes seem to disappear. For negative n numbers, the



uppermost kink-like mode becomes unstable and the other discrete modes

disappear.

The high density of the discrete modes at n = Ne is demonstra-
ted in Fig. 3. At this point 19 discrete Alfvén modes have been found
when using 100 radial intervals and accumulating the mesh at the
axis. Additional 81 Alfvén modes lie in the continuous part of this
class of eigenmodes. The distance Aw? is plotted versus the radial
mode number 2. For £ > 10 we find a 1/8" dependence of Aw?. In the re-
gions I and III the relative distance between the modes with different
radial mode numbers is much larger. The spacing increases when the

distance from the point n = ne increases.

The eigenmodes corresponding to three different values of n are
displayed in Fig. 4. For n = 2 we find four discrete eigemmodes in the
region I (Fig. 4a). The character of these modes show a localization
around the radial position r = r. at which dwp?/dr = 0. In Fig. 4b
the first six discrete eigermodes are shown for n = ne (II). These
modes are localized more and more at the axis. Even stronger localiza-
tion at the axis is seen when plotting, in Fig. 4c, the four discrete

eigenmodes found for n = 4 (region III).

We now turn to study these phenomena analytically.



4. ANALYTICAL INVESTIGATION OF THE DISCRETE ALFVEN MODES

The three regions defined above are treated separately. They are

characterized by

. 24 2.\l _
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Let us investigate each region:

(a) Region I

In this region the analytical treatment is very similar to the
Suydam (1958) or Newcomb (1960) theory. The existence of discrete
modes with eigenvalues w? below the lower edge of the continuum is re-
lated to the behaviour of the solutions of the Hain-Liist equation
around w? = Min(wy2(r)). In particular, the edge of the continuum is
an accumulation point of a discrete spectrum if the singular solution
has an oscillatory singularity at r = .. To treat this case we have

to expand w? - mAZ around Min(mAz(r)):
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Setting vy = 0 we find  the following reduced Hain-Liist equation

which is valid around r = rg:

X é*u * 2Xf4" * %I(/’Z);'V =0, (1>

where

aI = 7 26/(‘“):)” . (16)

Assuming £, ~ x® one obtains a characteristic polynomial which in-
dicates that oscillatory solutions are present if
4
C}, -
dT 4 > 0. (17)

For our standard case (see Eq. 13) we find
4
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This shows that there is an accumulation point in the region
-.12 < n < n, (see Fig. 2). The density of the modes in the vicinity
of the accumulation point can be estimated by means of the same type
of calculations as that used by Pao (1974) for the Suydam modes. It

yields

(19)
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This behaviour is in accordance with the numerical results shown in
Fig. 2. At n = -.12, g1 - 1/4 = 0 and the distance between the modes
close to the accumulation point goes to zero. Numerically, we only
find two discrete modes. With increasing n, g1 - 1/4 increases and
becomes infinite at n = n., which leads to a different asymptotic

behaviour. Numerically, the number of discrete modes also increases

with increasing n.

(b) Essential singularity (II)

At the point n = ng, the first three derivatives of wA2 are

equal to zero. A is then expanded around r = O:
2 2 1 2\
A/S’-’- W" = Wy g-ﬁ(wA) 4"4. (20)

The reduced Hain-Liist equation then reads

O A ﬁl + g (r=0) £,

where

(21)
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By virtue of a WKB analysis we can estimate the eigenvalues close to

the accumulation point:

AW’ ~ ((4) IV?I2I //Z . (23)
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We find the same 1/£q-dependence as in Fig. 3.

(c) Region III

In this region A is again expanded around r = O

i
Alg = wie wy =-4(wi)r* =

The reduced Hain-Liist equation then becomes

s Sef s G fo=o, g,

where
- 3_m2 _ 20 (26)
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Setting £ ~ r® one finds a characteristic polynomial which indicates

that oscillatory solutions exist if

%III -4 > 0, (27)

In our standard case this criterion is satisfied in the region
Ne € n < 7.28. The density of the modes in the vicinity of the accu-
mulation point can again be estimated by means of Pao's theory giving,

similarly to region I (see Eq. 19),
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Again this behaviour is in accordance with the numerical results shown
in Fig. 2. At n = 7.28, qi17 -4 = O and the distance between modes
close to the accumulation point tends to zero. Numerically, we cannot
resolve a density of the modes which is too high and we only see the
first discrete mode around n = 7. With decreasing n, gryy -4 increa-
ses and becomes infinite at n = Ncs which leads again to the asymp-
totic behaviour discussed earlier (essential singularity). Numerical-

ly, more and more discrete modes are found when we approach n = ng.

5.  DISCRETE ALFVEN MODES IN TOROIDAL GEOMETRY

The question now arises whether the toricity does not change too
much the one-dimensional results. Unfortunately, it is not possible to
run simply the two-dimensional code ERATO, to detect discrete modes
and draw a conclusion as we did in the one-dimensional case. The rea-
son is that all the m's are now coupled through the toricity and, as a
consequence, the continuous Alfvén spectrum extends from w2 = 0 to
w? = =, What we can do is to excite the plasma from outside with an

antenna and look at the antenna load when varying the applied frequen-

cy. Appearing peaks would indicate the existence of discrete Alfvén

modes.

It is our intention to prove that the toroidal effects must be
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considered for an interpretation of the TCA results (de Chambrier et
al., 1981). For this purpose we apply both a cylindrical (Balet et
al., 1981) and a toroidal model (Appert et al., 1981) to the equilib-
rium described by equation (13) and to the TCA parameters used by de
Chambrier et al. (1981). In the toroidal version, the TCA antenna is
best modelled by a bihelical antenna (n = 2, m = *+ 1). In the cylin-
drical version, the antenna load is obtained as a sum of the loads of
the two antennae with single helicity. In both cases an artificial
damping v with the value 0.003 w has been used. This value is an esti-
mate of the electron Landau damping of the discrete Alfvén waves for

the TCA parameters.

The results obtained with the cylindrical model are shown in
Fig. 5. The line-averaged density n, used in Fig. 5, is directly pro-
portional to the previously used dimensionless frequency squared. We
find a peak at 7 = 2 x 10!3 em-3 which is situated just beneath the
threshold (f}) of the (n = 2, m = 1) Alfvén continuum. With the value
of v chosen no other peaks (satellites) with the (n = 2, m = 1)-heli-
city appear. For higher 7, corresponding to higher wz, the antenna
load increases rapidly due to the resonant absorption. No further peak

appears. This fact is in disagreement with the experiment (de Chamb-

rier et al., 1981),

The results obtained with the toroidal model are shown in fig. 6.
As in the one-dimensional results (Fig. 5) a peak around 7 < Ny can be
seen. We find that this peak corresponds to a global Alfvén mode with

a dominant m = 1 behaviour. With increasing N, R seems to increase
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less rapidly than in the one-dimensional case. However, numerical un-
certainty due to poor radial resolution prevents us from drawing a
clear curve R (R) as in the one-dimensional case. Around 7 < Ny, which
corresponds to the (n = 2, m = 2) Alfvén threshold, a second peak ap-
pears. The corresponding mode is global and dominantly m = 2. We
therefore conclude that we see the discrete n = 2, m = 2 Alfvén mode
which appears due to the toroidal coupling. Qualitatively, the toroi-

dal calculation is in better agreement with the experimental results.

6. IS "DARH" PQSSIBLE ?

The resonance phenomena described above could lead to a new heat-
ing scheme which we propose to call DARH (Discrete Alfvén Resonance
Heating). The efficiency of such a heating scheme is strongly depen-

dent on the answer we can give to a number of questions.

First, we have to know how far the discrete Alfvén wave frequency
is from the continuum. The relative distance sz/wA2 = 1—w2/mA2 of
the discrete Alfvén wave frequency from the lower edge of the conti-
nuum is shown in Fig. 7 as a function of the toroidal wavenumber n. We
consider the first (uppermost) and the second modes of Fig. 2. One can

see that for high n numbers (n > 4) the relative distance

puw’/up® < 1% for the first mode (£ = 1) and rw?/wp? < 1 °/00 for
the second one (2 = 2). The smaller is the n number, the larger is the
relative distance of the first mode, reaching sz/wA2 = 12% for

n =1 and 55 for n = 0. The second mode develops a local minimum
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which disappears when the wall approaches the plasma surface. The re-
lative distance sz/wA2 = 2 for n = 0. This means that, from the

practical point of view, only low-n discrete Alfvén modes can be con-

sidered for a DARH heating scheme.

Another important point is the coupling to the antenna which is
strongly related to the radial displacement Er of the mode at the
plasma surface. In Fig. 8 we display the behaviour of Er(r) of the
uppermost mode of Fig. 2 for different n numbers. We can see that this
mode behaves as a global kink-like mode for n = 0 (it becomes the un-
stable kink for n < D) and becomes more and more internal with in-
creasing n. The arrows, which are marked for n = 0,1,2 and 3, show the
radial positions in the plasma where the curve wAZ(r) has its mini-
mum, i.e. where the higher radial modes concentrate (see Fig. 4). The
displacement at the plasma surface, which is a measure of the coupling
to the antenna, increases as n decreases. For n = 0 it reaches 70% of

the maximal displacement.

One of the serious problems of rf heating is that often the ener-
gy is deposited close to the plasma surface. Preliminary calculations
for DARH using n > 1 show that a large fraction of the power is depo-
sited near to the plasma surface. The situation seems to be similar to
that encountered with the usual Alfvén wave heating scheme where the
toroidal coupling leads to a certain surface heating (Appert et al.,
1981). It therefore appears that DARH using an n > 1 antenna is not
advantageous as compared to the resonant absorption. On the other
hand, in the case n = D DARH has attracting features. The low frequen-

cy involved does not appear in any Alfvén continuum. Therefore, there
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is no possibility for a coupling to the plasma surface. Since only the
cases n > 1 can be treated with the actual version of our toroidal
heating code, we cannot unfortunately corroborate this assertion by a
numerical calculation. Another advantageous feature of DARH is the
simplicity of an n = 0 antenna structure. In the resonant absorption
scheme the n = 0 antenna is not well coupled to the plasma since the

global mode is far from the continuum.

If DARH with the n = 0 antenna is to be considered, a frequency
tracking is certainly necessary. We know that the n = 0 modes are
strongly affected by the plasma elongation and by the position of the
conducting wall. Small modifications of the plasma surface can change

the resonant frequency of the discrete n = 0 mode appreciably.
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FIGURE CAPTIONS

Fig. 2 :

Continuous spectrum (hatched region) versus n for a given
m. The curves wp?(0) and wa?(1) represent the Alfvén
frequencies at the axis and at the plasma surface, respecti-
vely. The dashed curve is the lower edge of the continuum
corresponding to a local Alfvén frequency somewhere inside
the plasma (region I). At n = np (II1), an essential singu~
larity appears at the plasma axis. In region III the lower

edge of the Alfvén continuum is determined by wpZ(0).

Spectrum of the discrete Alfvén modes for the standard
case. The distance Aw? from the lower edge of the Alfvén
continuum is plotted versus the toroidal wavenumber n. For
negative n's the uppermost kink-like mode turns unstable, In
the whole range -.12 < n < 7.28 there is an accumula-
tion point at Aw? = 0. The highest density of the discrete

modes occurs at n = ng.

Distance Aw? at n = Nc versus the radial mode number

2. For £ > 10, Aw® ~ 1/2" as predicted by the WKB analysis.

Radial displacement £, as a function of radius for diffe-
rent radial mode numbers. In 4a, the lowest 4 modes are
plotted for n = 2 (region I); in 4b, the lowest 6 modes at
the essential singularity point (II) and in 4ec, the lowest 4

modes at n = 4 (region III) are shown. The arrow in 4a shows

the position at which dez/dr = 0.
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Figure captions (cont'd)

Fig. 5 :

Fig. 6 :

Fig. 7 :

Fig. 8 :

Antenna load R versus line-averaged density as obtained with
the cylindrical model evaluated for a deuterium plasma em-
bedded in a 1.2T toroidal field and acted upon with a fre-
quency of 2.67 MHz. The load seen by the whole antenna
structure is given by 8R. The threshold density ﬁl corres-
ponds to the minimum n for which the Alfvén resonance with

the helicity (n = 2, m = 1) is situated in the plasma.

Antenna load R versus line-averaged density as obtained with
the toroidal model. The equilibrium and the excitation fre-
quency are the same as for Fig. 5. The threshold densities
ni and N correspond to the onset of the continua (n = 2,

m=1) and (n = 2, m = 2), respectively.

Relative diétance sz/wA2 from the lower edge of the

Alfvén continuum for the first two radial modes versus n.

Radial structures of &, of the first discrete Alfvén mode

for different values of n. The arrows show the radial posi-

tions where the curve wAz(r) has its minimum.
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