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ABSTRACT

The discretisation of non-compact operators leading to continuous
spectra and resonant absorption is discussed from a physical point of
view. Relations between discrete "continua" and validity limits in
evolution codes are revealed. In particular, it is demonstrated that
spectral pollution might be an unpleasant problem in multidimensional
evolution codes. Several open questions concerning present-day compu-

tational models are put forward.



1. INTRODUCTION

Operators with continuous spectra are quite common in plasma phy-
sics. Three well-known examples are the Vlasov—operator,l’2 the ope-
rator describing the interaction of laser light with cold nonuniform

plasm.:-ls'6 7-9

and the ideal MHD-operator. These continua arise from
singularities of the operator and are associated with singular eigen-
functions which have a meaning in the distributional sense.’ There is
a close connection between the singularities and what is usually cal-
led "collisionless" dissipation, Landau-damping or resonant absorp-

tion.

"The existence of singular eigenfunctions is a sure indication
that some physics is left out. In the real world almost nothing is ei-
ther zero or infinite. Such a result can only come from a bad esti-
mate" as J. Greene formulates it. We can, in fact, remove the singu-
larities from all the three examples mentioned by introducing colli-
sions (dissipation). Alternatively, finite temperature effects (dis-
persion) remove the singularity in the last two cases.’ 1" The price
to pay is a substantial complication of the mathematical model; usual-

ly a differential equation of higher order is obtained.

One might opt for the simplest analytical model, and therefore be
willing to cope with singularities and to treat them numerically in an
appropriate way. The motivation could also be more subtle. Realising
that for meaningful physical parameters the dissipative effects in the
complete model are often too small to smear out the singularity over
many grid-points, one would like to devise methods which do not depend

on smoothing at all or work with a minimum of it.

In this paper we present the technical aspects of finite element
approximations to the ideal MHD-operator in the context of eigenvalue
problems (MHD stability), and initial and boundary value problems
(Alfvén wave heating). We are lucky that the circumstances allowed or

even pushed us to investigate the properties of the same operator in



different contexts. The resulting knowledge is evidently highly spe-
cialised and its details are therefore not of direct use for most of
the readers. We are, however, convinced that a case study like this
can best demonstrate the numerical problems associated with the pre-
sence of continuous spectra. We also feel that it could and should
stimulate a critical discussion of "ad hoc" numerical methods extensi-

vely used by the community for a variety of physical problems.

The plan of the paper is as follows. In chapter 2 the basic phy-
sics of our stability and wave studies is presented. We explain in
simple terms the origin of continuous spectra and their connection
with resonant absorption. In chapter 3 the numerical results are de-
scribed. First we present polluted and unpolluted discrete "conti-
nua". We then investigate the question whether a discrete "continuum"
may approximate the physics inherent to a real continuum. We find cer-
tain validity bounds. In the concluding chapter 4 we formulate some

questions, connected with the existence of continua, to which we do
not know the answers.

2. THE PHYSICS

2.1 MHD-wave excitation

We consider the excitation of small amplitude waves in a perfect-
ly conducting cylindrical plasma. Specifically, we imagine the plasma
to be surrounded by a vacuum region, an infinitely-thin current-carry-
ing antenna, a second vacuum region and finally by a perfectly con-

ducting shell. We are interested in the power emitted by the antenna.

Making use of the cylindrical symmetry of both the geometry and
the equilibrium, one can look for plasma displacements E?r, 6, z, t)
of the form E?r,t) exp(im8 + ikz). Here r, 6 and z are the cylindrical
coordinates, and m and k are the poloidal and the longitudinal wave-

numbers, respectively. The equation of motion for the plasma displace-



ment has the form
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It describes the plasma response to the exciting antenna which acts on
the plasma through appropriate boundary conditions.! The force F is

the usual ideal MHD-operator in the cylindrical geometry and pg(r)
is the mass density.

We introduce a discretised form of Eq. (1) already at this point
because it allows us to present some parts of the physics in a very
short way. To be definite, imagine that Eq. (1) is discretised by
means of finite elements defined on a spatial grid consisting of N in-

tervals. The equation may then be written as

2
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where xj are the "3N" nodal points of ET and sj(t) are the compo-
nents of the pump vector imposed by the antenna. The notation "3N"
means approximately 3N, the precise number of the nodal points depend-
ing on the discretisation method used. There is a sum over double in-

dices.

Without going through the detailed theoryll we can guess the form

of the power emitted by the antenna by constructing an energy conser-
vation law from Eq. (2):

d 1 [dx p dx; _ ax;
# 2 [4{ Biy Z8t XAy XJ] = JF

TF S, = F' (3)

=3
Here we have made use of the symmetry of the matrices A and ?ﬁlz The

first term in the bracket represents the kinetic plasma energy and the




second term the plasma and a part of the vacuum potential energy;
hence the right-hand side of the equation represents more or less the

power emitted by the antenna.

2.2 Continuous spectra

The continuum-engendering character of F can best be seen in an

alternative form of Eq. (1). If we assume a time dependence exp(-iwt)

Eq. (1) may be written’ as

d -
DA (r6) = Crk - eGP
) . (@)
DZ;-— ? = C3 §r - C1p

N

where P is the total perturbed pressure which can be expressed in
terms of £. For reasonable equilibrium quantities pg(r), py(r) and
g;(r) = (0, Bggy Bzg) (density, pressure and magnetic field),
the coefficients D, C;, C, and C3 are analytic functions of r > 0. The
coefficient D has the structure

D= (wt-af) (e -aim) (5)

where

@ = (FB, + kB, /0, , (6)

and



wf = &%fd‘/%/(ff:,*r_B:z). (7)

Here y is the adiabaticity index.

Let us, for a moment, interpret Eq. (4) as an eigenvalue problem
for the frequency w (MHD stability). Also, let us assume that we find
an eigenfrequency satisfying D = 0 somewhere within the plasma. From
the form of Eq. (4) it is then straightforward to see that the asso-

ciated eigenfunction must be singular at this place.

Each frequency w satisfying D = 0 somewhere within the plasma is,
in fact, an eigenvalue8 and belongs either to the Alfvén continuum if

w = wp(r) or to the slow wave continuum if ® = wg(r).

The physical reason for, say, the Alfvén continuum is easy to un-
derstand. Equation (6) is the dispersion relation in the WKB sense for
the shear Alfvén wave in a diffuse cylindrical plasma. The phase velo-
city depends on the position r. A possible "eigenmotion" at the fre-
quency w is therefore a wave which is confined to a narrow region
around the so-called resonant surface rqgy, where w = wA(rs). Con-
versely, for each rg within the plasma, a wave must exist whose fre-
quency is given by w = wp(rg). The shear Alfvén waves have there-

fore a continuous spectrum.

2.3 Resonant absorption

Imagine now that such a system is to be excited with a given pump
frequency Wy within the range of the continuum, starting at the time
t = 0. Initially, a broad band of frequencies is excited; but as time
progresses the bandwidth tends to zero and yet infinitely many modes
in the continuum remain in resonance with the pump and grow in ampli-
tude. The system therefore, "absorbs" energy at a constant rate by in-
creasing the energy content of an ever diminishing thin layer around

the resonant surface at rg. Obviously, this is an unphysical behav-

iour which we could describe as a resonant accumulation of energy. The



inclusion of any physical dissipation mechanism, however small, will
prevent the system from evolving so far. It will attain a stationary
state where the dissipation in the neighbourhood of the resonant sur-

face just balances the energy inflow from the pump.

The important point now is that the absorbed energy depends on
neither the specific dissipation mechanism nor its quantitative va-
lue. This is one of the characteristic features of resonant absorp-
tion.

3. THE NUMERICS

3.1 The discrete "continuum"

The continuum character of the Alfvén and slow wave spectra is
lost when the Eqs. (1) or (4) are discretised in space. If we use
Eq. (2), discrete "continua" are obtained. The question is now under
which conditions the numerical system is able to describe the plasma
response, for instance in the Alfvén range of frequency, correctly. In

other words we could ask: How continuous is a discrete "continuum"?

We are able to give a quantitative answer to this question in the
case of an unpolluted spectrum in the next two subsections. The prob-
lems concerning polluted spectra have not yet been studied in detail
neither by physicists nor by mathematicians. In the third subsection

we will present certain qualitative aspects of polluted spectra.

In this paper we do not discuss the origin of pollution and me-
thods to avoid it; we just note that certain methods lead to a pollu-
tion and others do not. Details on polluting and non-polluting methods
applied to the MHD-problem, Eq. (1) in cylindrical geometry, can be

found in the references 12 - 15.



In the context of this paper it is sufficient to note the typical
effect of the pollution in an example, Fig. 1. The spectra have been
obtained for a currentless plasma cylinder, having a density pgo(r) =
(1 - 0.9r%/a%) po(0), which is imbedded in a constant magnetic field
Bzo. The frequencies w are given in dimensionless units Cp(r=0)/a,
where Cp(r=0) is the Alfvén velocity on the axis and a is the
plasma radius. The gas pressure is zero, the conducting wall is at

1.5a and the wavenumbers are m=1 and k=0.5/a.

The exact analytical spectrum is shown on the leftmost axis. For
graphical reasons a logarithmic scale for w-wp(r=0) has been used.
The Alfvén continuum extends up to w - wa(0) = wp(1) - wp(0) =
2.5Y/2 _ .25Y/2 - 1,08 and is followed by the lowest fast magneto-
sonic modes F), Fp, and F3. The next axis shows the Alfvén frequen-
cies, Eq. (6), evaluated at the location of the 21 equidistant spatial
grid points rj, used for the discretisation of the problem. The two
axes on the right show numerical spectra. The unpolluted spectrum was
obtained by means of the method described in Ref. 12. The polluted

spectrum results from the most natural finite element approximation.lq

Most strikingly, the pollution may push the "continuum" frequen-
cies beyond the physical boundary w - wp(0) = 1.08. It may even push
them above the fast modes; see e.g. the polluting Alfvén mode Axp. At
about half of the Alfvén modes only fall into the frequency band of
the physical continuum. The frequencies near to wp(0) are badly re-
presented: the lowest mode A, appears with a frequency corresponding
to roughly wp(rg) which is near to the unpolluted Ag.

In contrast to this, in the unpolluted case the frequencies in
the "continuum" lie near the frequencies at the spatial grid points
wA(ri). Therefore, the density of the spatial grid at some place r
can directly be related to the density in frequency at w = wy(r). If
at some place r the width of the grid is Ar then the distance Aw bet-

ween the adjacent frequencies of the "continuum" is

Y/
AW = ——a-)'i Ar (8)
ar



3.2 Resonant accumulation of energy

We can investigate the properties of a "continuum" by exciting
the discretised system, Eq. (2), with a sinusoidal signal s;(t) «
sinwpt, and using a pump frequency Wp lying in the range of the
Alfvén continuum, Eq. (6). A convenient quantity to evidence the res-
ponse of the system is the power, Eq. (3), flowing from the antenna
into the plasma. In the case of resonant accumulation, its value aver-
aged over an oscillation period, P, should be independent of
time.1®: 17 In other words, the mean energy E contained in the plasma

should grow linearly with time as pt.

The numerical results obtained with an equidistant mesh
consisting of 80 intervals and a pollution-free method are presented
in Fig. 2. The runs shown concern a typical tokamak equilibrium given
by Bzg = Bzo(0), 1/r d/dr rBgy = jz = .6(1-r%/a?)? By,(0)/a
and pg = (1 - .99 r?/a?) po(0). The antenna and conducting shell
radii are 1.2a and 1.5a, respectively. The helical antenna currents
are characterised by m=1, k=.6/a and I=aB;,/uy, where I is the to-
tal current of a given polarity.ll The average power per unit length
of the machine p is measured in units of aCa(0)Bzo(0)/ug. The
unit of time is a/Cp(0). The energy per unit length E is measured,
therefore, in azBZo/“0° Two pump frequencies have been chosen. The
first frequency Wpl lies between two eigenfrequencies of the dis-
crete "continuum", the second one Wp2s ©ON the other hand, is equal
to an eigenfrequency. We find that the energy grows linearly with time
as long as t < 2 7/Aw where Aw is the difference between adjacent
eigenvalues in the region of the pump frequency. If t > 2 u/Aw the
energy content in the system starts to decrease again when pumped with

wp1 whereas it starts to grow quicker than linearly when pumped with
the eigenfrequency Wp2.

The interpretation of this result is straightforward. At finite
times t the system does not see a pump having precisely the frequency
Wp but a pump having a width Awp around wp of the order of 2 =/t
(uncertainty relation). In other words, at time t we act upon a system

of harmonic oscillators (our discrete "continuum") by a force with a
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continuous spectrum.18 As long as t < 2 w/Aw at least two oscillators
are in resonance. From Fig. 2 we conclude, therefore, that two modes

(oscillators) are sufficient to approximate a continuous spectrum.

For times t > 2 w/Aw the spectrum appears as discrete. The result
E « t% is obtained when a single undamped oscillator is excited at its
resonant frequency, its amplitude growing like t sinwpzt. If, on the
other hand, none of the undamped oscillators is in resonance with the
pump the average energy transfer has to be zero for t + =: the energy
swings forth and back at certain beat frequencies between the antenna

and the system, consistent with the curve wpy in Fig. 2.

3.3 Resonant absorption

There is another way to show that the excitation of two modes be-
longing to the discrete "continuum" is sufficient to make it look con-
tinuous. The idea is to change the resonant accumulation into a reso-
nant absorption by introducing a small artifical damping term into
Eq. (2). We may then look for stationary states behaving as
exp(iwpt). The problem is considerably simplified and consists of

the solution of the linear system
2 - = A.. x. .
(rap + 2wy ) Bixg = A X5 + S (9)

for xe € . In this case the time averaged power is given by
Imwpxisi/z.ll Here v denotes the small (v < wp) artificial
damping rate. Note that xj and s; have not the same meaning as in
Eq. (2). Here they are amplitudes of a harmonic time dependence

exp(iwpt) which has been separated out in Eq. (9).

The numerical problem we study now resembles to a system of cou-
pled oscillators with different real eigenfrequencies but a common

damping coefficient v. Imagine now that such a system is to be excited
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with a given pump frequency wp such that wj < wp <€ Wjy), where

wj and wj,) denote two adjacent eigenfrequenies of the system.

Let us first discuss the case where v € wj,] - wj = dw. If
wp is chosen near enough to the eigenfrequency wj, i.e.
wp - wj € v, the oscillator which has wj; is resonantly excited
and the dissipated energy is proportional to 1/v. If, on the other
hand, wp lies in between w; and wj,), say wp = (wj+wi1)/2,
none of the oscillators is in resonance and a negligible amount of
energy proportional to v is dissipated. These two situations have ob-
viously nothing to do with the excitation of a continuous spectrum, in
contrary, the eigenfrequencies of the system behave as real discrete

eigenfrequencies.

The story is quite different in the opposite limit where v » aw.
In this case the resonancies at adjacent eigenfrequencies overlap and
many oscillators respond simultanecusly to the pump: a "continuum" is
excited and "resonant absorption" takes place. In certain limits of v

the amount of dissipated energy is independent of v.

This behaviour is evidenced in Fig. 3. The calculations concern
the same equilibrium as used for Fig. 2. The radial mesh and the pump
frequencies are also the same as in Fig. 2. We find that the absorbed
power is more or less independent of v for v > vyj, = Aw, demon-

strating once again that two modes make up a continuum.

3.4 Pollution is bad; but is it dangerous ?

In Fig. 1 we have remarked that one half of the 20 available Alf-
vén frequencies have been pushed from the range of the physical conti-

nuum. This is one possible manifestation of the spectral pollution.

There are two consequencies to this. First of all, the density in
frequency space of the "continuum" modes is certainly smaller in the

polluted than in the unpolluted case. We therefore expect V1im to be

greater accordingly. That this is indeed true is demonstrated in
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Fig. 3, where the run with Wp2 has been repeated using the same
standard finite elements as in Fig. 1. In the example presented Viim

is 3 times greater than in the unpolluted case. This means that for a
given accuracy the pollution-free method needs merely 1/3 of the spa-

tial grid points required by the polluting method.

The second and quite frightening consequence of the pollution is
the existence of spurious modes (Apg in Fig. 1) among real physical
modes (F1, F2 etc.). These spurious modes do not disappear when the
number of grid points is increased; on the contrary, new such modes
may be created at increasingly-higher 1"1‘equencies.1L+ The question is

how the system responds when excited on such frequencies.

The answer concerning the spectrum in Fig. 1 is depicted in
Fig. 4. We show the average power p delivered by an antenna of the ra-
dius 1.2a, obtained with two different damping coefficients v = 0.15
and 0.015. Here single modes are excited; hence the absorption is pro-
portional to 1/v at resonance. We find that the mode Aop is not as
easily accessible as the fast modes but responds quite distinctly in

the weakly-damped case.

We conclude that pollution is bad; but is it, in general, in any
numerical and physical context dangerous? It is certainly not! Conver-
gence studies will always reveal the nature, physical or numerical, of
a given motion. Physical modes are approximately invariant when the
grid size is changed in contrast to spurious modes which move in fre-
quency.l£+ Also we have found that modes in the neighbourhood of Fg,
for instance, are less accessible as the number of grid points is in-
creased. They become increasingly more titillant.2! Note also that the
mode Ajg, which is near to F) in Fig. 1, does not show up in Fig. 4.

To make it apparent an even lower damping coefficient would have to be

chosen,
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4.  OPEN QUESTIONS

In multidimensional codes, where often only very limited conver-
gence studies are thought to be justifiable, the polluting spurious
modes could sometimes play nasty roles. The coarser the grids are the
easier it is to excite them and the more they look physical. It is,
however, an open question how this kind of numerical defect would
manifest itself in the context of a code including all kinds of addi-

tional physics such as dissipation, dispersion or nonlinearities.

From the studies with a resistive compressional MHD-stability
code we know!? that resistivities of the order of those observed in
tokamaks are by far too small to make the numerical problem of pollu-
tion disappear. On the other hand, we know from the studies into

20

EM-wave-plasma-interaction that the dispersion may replace the pro-

blem of pollution by a simple and manifest resolution preblem.

What do the eigenfunctions associated with polluting eigenvalues
represent? Are they needed to approximate a reasonable physics? It
seems to us that the truncated system of eigenfunctions, not including
the polluting (titillantZI) ones, should be approximately complete in
some sense. This is an open question for which the mathematicians

should find an answer.

There is another open question concerning evolution codes con-
nected with the discreteness of continua. We have demonstrated in
Fig. 2 that the discreteness in frequency leads to limits in time when
the code results are valid. Obviously, the discreteness in frequency
may be smeared out by physical damping mechanisms, and the time limits
may therefore disappear. We have, however, just remarked® that toka-
mak resistivities, for instance, are very small. Tremendously fine
grids would, in fact, be needed to make the time limits disappear. Are
the codes which are used for the modeling of present day machines free
of such time limits? Have ever strange recurrencies been observed? A

well-documented example of such a recurrence is presented in Ref. 22.
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The catalogue of questions put forward by us is the product of a
certain professional deformation which one could call the "MHD-stabi-

lity syndrome". In spite of this our questions might be pertinent.
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FIGURE CAPTIONS

From the right to the left are shown typical polluted and
unpolluted spectra wj, together with the Alfvén frequen-
cies wp at the spatial gridpoints rj, in comparison with
the exact analytic spectrum. Alfvén modes (A) are shown with

circles, fast magnetosonic modes (F) with crosses.

Energy per unit length E versus time. The insert shows where

the pump frequencies wp1 and wpy lie in the "continuous"
spectrum.

Power per unit length p versus the artificial damping rate
v. The pump frequencies wp1 and wp2 are the same as in
Fig. 2. The '"polluted" result has been obtained with

standard finite elements.

Power per unit length § versus the pump frequency w for two
different artificial damping rates: v = 0.15 («———o ) and
v = 0.015 (). Apq shows the response of a spurious
Alfvén mode. Without a convergence study it is not easy to
distinguish it from the response at the frequencies of real

fast magnetosonic modes (F;, Fy, F3).
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