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ABSTRACT

The problem of linear conversion of a Langmuir wave (L) to a
transverse electromagnetic wave (T) in the presence of a density gradient
has been solved numerically with appropriate boundary conditions.

A reciprocity principle was found, allowing the deduction of solutions

of this problem from those obtained from the conversion TL. We have
applied this model to study the spectrum emitted from an inhomogeneous
plasma, including the effect of the antenna radiation pattern. Experi-
ments have been performed in a large unmagnetized d.c. discharge plasma

(n, v 5 101&m=3, T, = 1.3 eV, gradient scale length L = 100 - 1000 cm). The
share of the spectrum observed with a horn antenna agrees with the theo-
retical one, but the deduced level of L fluctuations is much higher than
the thermal level. This enhancement is due to the presence of primary

energetic (E~ 60 eV) electrons.




I. INTRODUCTION

The linear conversion of an electromagnetic wave into an electro~
static wave and the inverse conversion is of great importance for plas-
ma physics and astrophysics. In a field-free plasma, a density inhomo-
geneity can couple the electromagnetic (T) wave into a Langmuir (L)
wave. The problem of the conversion of a T wave into a L wave (in
. . . 1-8
short the TL conversion) has been discussed by many authors.
The inverse problem, namely the conversion of a Langmuir wave into an

: . . . 1
electromagnetic wave, has been much less considered. Ginzburg, after
his discussion about the TL conversion, mentioned the possible im-
portance of this phenomenon in the solar corona but made no further com—

. 9 . . . .
ments. Tidman has computed the efficiency of the LT coupling in the

WKB approximation. However, due to the WKB approximation, the behavior of_the

waves near the turning point was not treated.

Experimentally, Stenzel et al.10 have studied the linear TL con- s
version in the presence of a density gradient. The linear LT convérsion,'”
has not been investigated. As mentioned previously, it has beeg/,,,,
speculated that this phenomenon could be responsible for ele” |
radiation from the solar corona.’1 In laboratory expgpi*
served radiation near the plasma frequency has P”’/
-

pret. Some authors1 16 have attempted t- /

thermal emission seen at the plasma frequ

to conversion from the L wave into the T wav




The present study deals with both the theoretical and the
experimental aspect of the conversion of an L wave into a T wave in
an inhomogeneous field-free plasma. The theory of this conversion is
presented in Sec. II. In Sec. III we compute the electromagqetic power
emitted from an inhomogeneous plasma, assuming aa equilibrium distribution of
plasmons. 1In Sec. IV, we discuss the experiﬁehtal results obtéined
in our large field-free plasma device. A summary is then presented in

Sec. V.

II. THEORY OF LINEAR CONVERSION

When an electromagnetic wave is obliquely incident on an inhomo-
geneous plasma, it can be absorbed resonantly by linear mode conver-

. 1 .- e p o . . . . ..
sion 1into a plasma wave if its polarization lies in the plane of inci-
dence. As the electrons oscillate with the electric field, one component
of their motion lies along the gradient and causes an electrostatic
charge separation so that the wave cannot remain purely electromagnetic.
If the charge separation occurs at the natural frequency wp’ a Langmuir
wave may appear. This classical problem has been considgred in a new
frame which allows to treat both transverse-Langmuir (TL) and Lang-

muir-transverse (LT) conversions.




A. Formulation of the problem

Let us consider the situation sketched in Fig. 1. In the half-
space at left (X < 0), the density of the plasma is constant. Here
the WKB method may be applied a fortiori so that the two modes, Lang-
muir wave and transverse wave, are well separated. They are simply

described by their dispersion relations :

k; ) w‘—-ﬁi kz ),
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kT= ‘t)‘c'zwr - ky ()9

where kL (kT) is the X-component of the wave vector k of the Lang-
muir wave (transverse wave); c is the velocity of light and B is the ra-

. 2,2
tio of electron thermal to rest mass energy, B = ve/c .

In the half-space at right (X > 0), however, we have to solve
the coupled differential equations for the electric field that eome from

the linearized electron Euler equations combined with Maxwell's equa-

. 2
tions :

3pj_;§x -(s-sp)ik,%(Ey +( wzc—zw; _,k;) E, (3),
| :3p)€(%x Ex-r-l.ky E)’)
%‘szv -(u-z(s)ik,jle“(u;‘w,, ~3Pky)Ey=° (4).




Here ® characterizes the inhomogenity of the background density and

is related to the varying electron plasma frequency wpe by

b&==517- é% (wpi). Even if the gradient is small, the wavelength

is aISZys of the same order as the density gradient scale length near
the turning points, i.e., 3 > k so that the WKB method fails. There
are, in fact, three singular points: namely, the turning point for the
Langmuir wave wge(XL) = w2 - 3B k§c2; the turning point for the trans-
verse wave w;e(XT) = e - kjcz;and the critical point where the two
waves interact m;e(xs) = y2(cf. Fig. 1). The simplest approach is to

solve numerically the Eqs. (3) - (4) with appropriate boundary condi-

tions.

The situation described here can apply to two problems. In the
first case, we send a transverse wave of p-polarization from X = -y
it is reflected at XT while a part of its energy reaches XO and comes
back via a Langmuir wave (TL problem). In the second problem the roles
played by the transverse and the Langmuir wave are exchanged (LT pro-
blem), 1In either case, the problem has three waves: one ingoing wave
of either transverse or Langmuir type and two outgoing waves, one of
each type. The transition from one problem to the other is carried
out by a simple change in the boundary conditions associated with the
pair of differential equations (3) - (4). The functions EX(X), EY(X)
are continuous at X = 0, since there is only one medium. By means of

Maxwell's and Euler's equations it may easily be shown that their

derivatives must also be continuous. The boundary conditions for the




TL and LT problems will be discussed separately.

Let us first consider the TL problem. In the half-space at

left, EY is given by the decomposition ‘:

Ey = exp(ihn) + Ry expleikyx) + T exp(-ik) | xeo ©

By application of div E = 0 for the transverse part and curl E =0

for the longitudinal part we get

E:X= %1 [RT O(P(-ik1x) - QXP(Ler)J‘% T, exP("‘ka) , X <o (&)

T Y

Simple algebra gives the coefficients of reflection RT and’ trans-

mission TL as functions of the fields evaluated at X = 0.

k. R '
R = g [ o) %‘ E, (0) + k_k% 1] ™,
T, = f’kT [Sxf(a)-[(o)-zkv] ).
L kv‘htkT R, V0 o &y




Anticipating Sec. II B where the differential problem will be trans-
formed into its weak variational form, we will seek boundary condi-
tions for the derivatives. We therefore differentiate Eq. (5) and

evaluate the resulting expression by means of Eqs. (7) and (8). The

transcription of the expression for X = 0+ is then trivial,

%XEY (0+) = kyz fbhn. kr [ Ex (0,) k)’ kT (kL" kr)

- E (o) k(K v k) enk, (& s k:)] ©).

Repeating the same procedure for Eq. (6) we obtain

i

.al_xax(o.) = ot [E, () kR, (k- )

-E (o) ko(k'vky ) - 2ky (R + &, )J (10.

Let us now consider the LT problem. The three waves are given by

b= exp(erx)+ Roexp(-hx) + T, exp(-ikyx) , xeo 0D




The same procedure is applied to this new starting point to give:

Ey= 2 [exp(ikn) - R, axp(-thn)]

y
t k_z TT exp (-{ka) , X<o (12),

- kY kT ky - F ku. kv
R, = m[ P Ey(o-) E, (0.) % - 7?;] 13,

' _ _ky Ry k. . o, R (14),
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3g
It is worth noting that the boundary conditions for the two problems
Thus, in spite of

are the same except for the last term in Eq. (16).

their symmetry, the two problems are distinct.




The process of resonant absorption has been studied by many
authorsl_8 either for a cold plasma or for a warm one. In the latter
case, the situation is similar to our TL problem except for the
finite density in the half-space at left. The approach
used here, in our opinion, has the following advantage. We do not
have to artificially damp the Langmuir wave generated in order to prevent it
from propagating towards the boundary. Also, a simple rescaling
allows us to formally eliminate the role of the finite density at

the left from the equations, so that the classical situation may be

recovered as a particular case.

W

c X,

Let us introduce the dimensionless variables x = ko X =
g(x) = ;lz-wg(x), in Egs. (3) and (4). Defining k c/o = sino,,

where 00 is the angle that the transverse wave would make with respect

to the gradient in the vacuum, we obtain just the standard equations,

X

3 %xﬁx -(3p)isinb A £, 4 (1o g - sie,) E

=3(3$C-(-d- E *L'S-.ngo EY)

dxe ¥

]d‘szY - (- 3(3)c's-'n b, .“]l;Ex t(1- g -3 s.}..zoo) Ey=o

dn with n the background density.

where @ = ’
X

=R
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Their solutions are associated historically with the parameter

_ 2/3
9= (kOLC)

sinzeo, where ko is the vacuum wave number and Lc is
the characteristic length of the profile in the vicinity of the
critical density. For a linear profile this parameter allows us to

summarize the results with respect to the absorption A(q) in only one

graph (Fig. 2).

The vacuum case may be recovered from the TL problem by a re-
scaling of the q-parameter so that our results can be compared with the

classical studies. The natural parameters for the TL problem are :

i)  the angle of the transverse wave with respect to the gradient

in the homogeneous part of the space
2 t o2
.1 .t
Sin B = ._.._kl’___ = IZ\, ¢ Sin 6

k;f k: - U‘il_ %o) = (I—%:) )

where ¢} - wlr(o wt

ii) the characteristic length of the profile measured with respect

to the density of the homogeneous part

L:H(X:o) ixn((hx,) = Lc ‘}
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The parameter q may then be rewritten as

2 2
(9L L) ¢n _--wL~(y__) an,
9= (L3 ) sn0(1-g) = (“l) sind (L -
where on stands for the electron plasma frequency at x = 0.

Since A(q) is a peaked function (Fig. 2), we see that, for a
given linear profile and for a given angle, there exists an optimal

frequency with regard to absorption and thus with regard to con-

version into plasma waves.

Let us consider the energy flux of the waves. The equation

for the transfer of energy associated with a wave packet is

$ 6+ div(Ty g =o e

Here €1 is the energy density of the wave packet and v = L0

dk
the group velocity. The Poynting flux g = 3, €
‘ g
may be calculated simply once the mode (transverse or Langmuir) is

specified. Its X-component is
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t 11t
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X

for the transverse mode, and

for the Langmuir mode.

By evaluating the different fluxes that pass through the plane

X = 0, we may define absorption coefficients

T rT

L
A= =S o RS

L rl

L ol 1
£ = S T Ak
S, R,
T ol Y] (2
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(21) ,

(22) |

(23)

(24).
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Here the superscripts i, r, o, refer to incident, reflected and

outgoing respectively.

B. Numerical procedure

The v;lue of the total electric field in each point is the
superposition of the three waves involved. Those are specified by
the bouﬁdary conditions Eqs. (9) and (10) (or (15) and (16)) at X = 0"
together with conditions of evanescence at X = § >> Xo. Thus, the
stationary problem described by the differential equations (3) and
(4) has the character of a boundary value problem. A convenient |
way to treat this type of problem is to use the Ritz-Galerkin
method together with a finite element scheme.17 The boundary con-
ditions are then: introduced when integrating by parts the terms with
second derivatives. Let us normalize the density by the critical
density n(x) = n(XO) g(x), and the space by the wave vector of a
transverse wave in the homogeneous part (X < 0) X = (kY2 + ETZ)—% X

Equations (3) and (4) then read

3(3E l-3{3)LSnn9E + [ -t _A.‘n’e] E,

I =40

=3($bC(E,+L/s(n9 Ey) (25),
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E, -(-3p)esmbE +[ =% _ 3 an0]Ey=0 oo,
Y ( (3) X | - %(O) (3 Y
where the dot denotes the derivative with respect to x and ¥ is
redefined as £ =N/R.  For the boundary conditions at left one

obtains from (9) and (10) - (15) and (16)

EX(O) = L [ E‘/ (kx' kr) kl. Sin 0 - E‘X kT/sP

kl-kT + S"nle
-zs.'ne/sp] + T (27),

Ey(O)-: kLkT "+ s [Ex(él—kr)krs-'né—Eyk”Lz}L] (28).

Here [' is the extra term which distinguishes the LT and the TL pro-

blem :

M- (3(ss-'n9/z)", {or LT, and M=o for TL

At right one has simply

"
° .

E, (€)

(29),

d
<

E, (€) ' | - @),
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The differential problem, Eqs. (25) - (30),was put into its
weak variational form after splitting the complex equation into
real equations and solved by means of a computer for the case of

a finite functional space generated by the usual roof functions.

C. Interpretation of the results

The four emission and absorption coefficients, Egs. (21), (22), (23),
and (24), were computed for different cases by varying the density pro-
file, the incident angle, the temperature and the frequency. In view of the
considerations made earlier, the coefficient A; was known inde-
pendently for a linear profile2 so that the operation of the code
could be tested. Surprisingly, the emission coefficient eg turned
out to be different from A;, although the medium was not dissipative.

This fact is due to the work done on the oscillating electrons by the
external force that maintains the density gradient. This extra work
may be calculated analytically within the WKB-approximation, as we
shall see later, via the damping-like effect which influences the pro-
pagation of a Langmuir wave in an inhomogeneous plasma. Although these
features were useful to consistently interpret the numerical results

of the TL problem, the most powerful result was found to be a reci-

procity principle . This exact and general principle allowed us to

confine ourselves to the study of one of the two problems only.
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1. Principles of reciprocity and of local conversion

We propose now to demonstrate the following reciprocity

principle :

T L

AL = AT = A (31)
T L 2

e €r = A (32)

proof: by definition of the four emission and absorption coefficients,
Egs. (21) - (24), the statements (31) and (32) are equivalent to the

following relations between the coefficients of the wave :

’RL,=IRTI )

T = -1k

Let us now consider the following cycle, starting
with a Langmuir wave of amplitude unity and phase zero
(Fig. 3). After passing through the convertor, we obtain a Lang-
muilr wave IRLleXP(irL) and a transverse wave fTT]exp(itT). Both waves are
reflected by a mirror and propagate again through the converter.

On return, we must recover a Langmuir wave of amplitude unity and no
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transverse wave since the system is non dissipative

L= R exp(-cr) IRl exp(n) 4 T exp(-ib) T, lexp(ct,)

0 = [Rlexp(-vr ) [T,lexp(it,) + I Tl exp(-it,)[Ry] exp (ir;)

From the latter relation follows IRL[ |RT[, rotr, =2t -,

T T
2

R

and from the former follows |TT| ITLI 1 - |R
Thus by virtue of the previous equivalences the reciprocity

principle is proved.

For conversion, our computation showed that only the vicinity
of the critical point Xo is of importance. Thus the effect of
density profile may be accounted for, in many cases, by a tangential
approximation of the slope near Xo' Due to this fact, the curve
A(q) (cf. Fig. 2) takes a character quasi universal. It allows us
to give the absorption for the TL problem as well as for the LT problem
in view of the reciprocity principle. Moreover, the emission co-

efficients may themselves be derived from it as we shall see..
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2. Effect of the external force

We have already mentioned the difference existing between the
emission and the corresponding absorption coefficient. The energy
absorbed from one type of waves differs from the energy emitted

into the other type even in a non-dissipative medium. Now, since

ETEL"
LT

A2 by the reciprocity principle, the sign of the difference
changes between the LT and the TL problem. The external force gives
some energy to the wave in the case of the LT problem and extracts

it from the wave in the TL problem. Within the WKB approximation

this feature may be interpreted in a consistent manner with the change
in the direction of propagation of the Langmui; wave that distinguishes

one problem from the other. Then the external force that is hidden in

theX-term in Eq. (3) would act on the Langmuir wave exclusively.

On the other hand .the flux of energy associated with the propaga-

tion of a Langmuir wave in a density gradient is not conserved, Eq. (20).

L v bt (0) %
_ 3BC Ryt R, 00

}
( 4!
Wwhere E:) < < R, (x) N{x)
W - W)
p

is the lowest order term of the WKB solution of Eqs. (3) and (4).

Hence the Langmuir flux scales like
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By using this property, we may derive straightforwardly a formula
for the emission coefficient that agrees well with the numerical

‘calculations

L L o -
¢ =7A 3 o) — AL g (o) | (33),

where X is the critical point, X the turning point for Langmuir

waves, and)ec =X = xo).

Thus, all our numerical results conéerning the absorption and
emission of high-frequency waves due to a density gradient may be
approximately recovered by means of a unique curve A(q), Fig. (2).
As long as the temperature is not too high (under 50 keV) the role
of the parameter B may be ignored with respect to the four ab-

L

. . s . . T L
sorption and emission coefficients AL’ A and €.

T fL T
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ITII. ELECTROMAGNETIC RADIATION FROM AN INHOMOGENEOUS PLASMA

Even in a stable plasma there exists a finite level of plasma
waves. Those are normal modes of the system and represent degrees
of freedom which are excited in thermal equilibrium. Plasma waves
are emitted by particles as they move about in the plasma, and they
are absorbed again by the plasma, for example, via collisions or via
Landau damping. The balance between emission and absorption leads to
a thermal level of field fluctuations. It may be imagined that some
of the Langmuir waves present are converted into electromagnetic ra-
diation if there is a demsity gradient. In this. section, _
we shall try to develop this idea in crder to obtain the séecﬁrum of
the radiation emitted in the wpe range by a gradient of density in a

plasma.

Let us assume that a population of plasmons coexists with the
plasma particles. The population is assumed to be in an equilibrium
characterized by an effective temperature Teff’ which may be different
from the electron temperatue Te. This assumption is essential for in~

troducing the statistic of the number of plasmons.
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Let us consider plasmons with a given frequency w and direction
(OL, ¢) where OL is the pitch-angle and ¢ the azimuthal angle with re-

sepct to the gradient. The number of states is equal to

SNKL = 1 ki 5k¢. Sin 0L50L 54) per cm? (34).

(e1)?

Here kL is related to w by the local relation

Vs
kL (x) =(3(3;*).,1 . [ 1 - 3(::)] (35).

Thus the number of states varies along the ray, which seems cumber-
some at first sight. However, it turns out that the corresponding elemen-

tary Poynting flux

§S, = Teﬁ" Uy - §N, (36)

is conserved along the ray due to the behavior of the group velocity vg.

The conservation of the Poynting flux along the ray suggests a model
(Fig." 4) where the statistic of the plasmons is calculated in the homoge-
neous part (X < 0) even if the plasmons that are really converted do not
originate from there. Simply stated the rays establish a virtual link
between the plasmons which appear in the statistics and those which are
converted. Thus, there is a unique relation between the frequency and
the solid angle appearing in the spectrum of eqission, and the degrees

of freedom invoked in the statistics.
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By applying the LT conversion on the Poynting flux

-~ W

65]( = cf{ (‘T.)l 3U k

7]

5h5ﬁ9‘3&8¢)

we find

§s,

T 20 € &6k sinp, 66 88,

(xm)?

or, expressed in frequency

53:: Te” A (9) (,_ }o)% dwsinf_ JGT 54’

(2m)3

where A is evaluated for the values of q corresponding to the angle

and frequency chosen. Then, an intensity may be defined

T (0) = et Alg=(4) s (g7 ] 56

(e7)? be ¢t

This formula looks similar to the Rayleigh-Jeans law even though

the plasma is optically thin. It should be emphasized that the
statistical part of the formula refers to plasmons; for them the
plasma is opaque and a the;mal level may be reached. However, the
linear conversion constitutes a tunnel between the plasmon domain and
the photon domain; thus a radiation intensity of the order of the
black body radiation may be emitted by a transparent plasma with a

density gradient for some angles and frequencies.

(37)

(38).
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Iv. EXPERIMENTAL RESULTS

The experiment on linear conversion was performed in a large d.c.

1 . . . .
discharge Argon plasma. 8 The chamber is shown in Fig. 5. The diameter
of the cylindrical plasma is 180 cm and the length is 320 cm. These

dimensions are much larger than the vacuum wavelength for the 2 GHz

band. Tungsten filaments are distributed around the walls in

~ four separate groups. Each group of filaments can be heated and
biased separately, and, since the mean free path of an ionizing
electron is approximately 100 cm, a density gradient can be main-
tained by controlling the discharge current from each group. A micro-
wave horn antenna is immersed in the plasma at one end of the machine
for observing the radiation. Moveable Langmuir probes can measure

the plasma electron temperature and density both axially and radially.
These probes are always withdrawn from the plasma when the radiation
is measured. A typical axial density profile is shown in Fig. 6. The
density varies from 2.0 - 1010/cm3 to 5.3 ° 1010/cm3. The electron
temperature is constant at 1.4 eV and the ion temperature is typical
of this weakly ionized plasma at approximately 0.2 eV. The radial
density profile is shown in Fig. 6. The density is seen to be con-

stant within 10% out to a radius of 70 cm.

A block diagram of the experiment is shown in Fig. 7. The pre-
selector is a narrow band tunable filter which tracks the frequency
of the spectrum analyzer and eliminates intermodulation signals generat-
ed in the amplifier. The noise level of the system for a 300 kHz bandwidth

-14 . . .
was 10 Watts at 1.8 GHz. The frequency response of the amplifier




fell considerably above 2.1 GHz and the microwave horn had a cut-
off below 1.5 GHz. Thus the spectrum of the radiation emitted by
the plasma can be compared with the spectrum predicted by the linear

conversion theory presented in Section III.

The axial density profile was measured automatically by a
microproceésor connected to a Langmuir probe. The microprocessor
controlled the position of the probe and measured its current versus
voltage characteristic. It then reduced the data and printed out
the density, electron temperature, plasma potential and position
every 5 cm along the axis of the chamber. This was done every time
the density profile was changed (by varying the emission currentsj
and a new emission spectrum was recorded. The emission spectrum was
always measured in presence §f primary ionizing electrons. Measure~
ments in an afterglow plasma will be discussed in connection wi;h the
role of primary electron: in such configuration, the electromagnetic

level is equal to the bremsstrahlung level.

In our experimental device, microwave reflection on the wall, though

inevitable, does not affect the measurements. This observation is support-
. . . 19 . . .

ed by the following. In a previous experiment, ~ where an incident micro-
wave beam was launched onto a density gradient, the characteristic Airy
pattern was observed. Would the wall reflection be important, this
pattern would be destroyed. Secondly, the machine is in no sense a
high Q cavity. Around four hundred stainless steel filaments supports

F o9
* '
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(10 cm long) protrude inside the plasma, giving rise to a structure

similar to the "microwave absorber forest" described recently by

d'Angelo et a1.20

The linear conversion model presented in Section III did not
take into account the radiation pattern of the receiving antenna. In
order to calculate the power received by the microwave horn one must
multiply the intensity given by Eq. (38), by an antenna gain function

and integrate over all solid angles

42 I,(6) 6(s,4)

The antenna gain function is only approximately known. It can
21
be calculated Dby assuming that it is the pattern given by a rectangu-

lar waveguide in the TE01 mode. This is a commonly-used good approxima-
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tion and the antenna pattern in the E plane for a wavelength of
15 cm is shown in Fig. 8. However, the antenna pattern must be
modified to take into account diffraction of the wave in the pre-

sence of the plasma density gradient.

Consider an electromagnetic wave which leaves the antenna at
an angle, 0, with a frequency, w, corresponding to an wp at a parti-
cular layer in the plasma. This is shown schematically in Fig. 9.
There is a possibility that this wave will never reach the critical
layer since the plasma has a finite radius. The maximum angle, O,
which allows the ray to remain inside the~chamber and still reach
its critical layer must be calculated for each frequency and density
profile and then inserted as a limit in the integral over the antenna
function. The cutoff angle calculated for the density profile shown
in Fig. 6 is shown in Fig. 10. To be consistent with the use of the
far field gain expression of the antenna, an additional cutoff angle,

@, = 60°, was imposed. This angle is arbitrarily defined as

Radius of the plasma
Largest size of the antenna

ac = Arc -tan

which yields in our case Arc tan (.6/.3) or approximately 60°. Further-

more, Fig. 8 shows that the antenna gain is small for o greater than

o] . . . .
40 so that uncertainties in o will not affect the result.
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The power spectrum calculated from Eq. (39) for the horn an-
tenna used in the experiments and for the density profile shown in
Fig. 6 is shown in Fig. 11. The plasmon spectrum was assumed to be
thermal, e.i., W, = Te. The vertical scale is in dB with respect

k
to one milliwatt (-100 dBm = 10—10 mW). The power spectrum measured

in the experiment is shown in Fig. 12. The shapes of the two srectra
are similar, but the received power in the experiment is approximately
three order of magnitude higher than the power emitted by the thermal

plasmon spectrum.

For the moment, one can ignore the three orders of magnitude
difference and investigate the functional dependence of the spectrum
on the density profile. A series of experiments was performed in
which the density of the plasma at the antenna was kept constant at

10, 3 . . .
2.0 107" /em™. The axial location of the peak density was also
kept fixed. The only variable was the peak density. This density

profile can be modelled by the equation

N(x) = N, + An sin(IX) (40)

i

where n is the density at the antenna, An is the difference between

n and the peak density and L is the location of the maximum density

measyred from the antenna.
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The results.qf this series of experiments are shown in Fig. 13,
The maximum of the power spectrum is plotted vs An. The dots are
the experimental points with experimental error bars attached and
the solid line is the result calculated from our model. The theoreti-
cal curve has been scaled up 30 dB in this case. As expected, when
the density profile was flattened, the radiation decreased. When the
profile was very flat (An N 0.2 - 1010), only a weak radiation
(-105 dBm) with no peak was seen. This was attributed to brems-—
strahlung and is discussed later. The functional character-
istics of the model agree very well with the experiment over a range

of more than two orders of magnitude in power.

Another set of experiments was performed in which n and An
were kept constant and L was varied. The results of this series is
shown in Fig. 14. The maximum of the power spectrum was plotted as
a function of L. Again the solid line is calculated from the model
(rescaled 30 dB) and the circles are the experimental values. The
peak power is only a weak function of L according to the model and

this is seen experimentally.

The presence of a radial density gradient does not affect these re-

sults. Conversion of either Langmuir wave or other types of waves (upper

hybrid for example) would yield an EM wave propagating towards the wall,

and would not be received by the horn. On the other hand, the power emit-

ted from the plasma is greatly reduced when the axial gradient is dimi-

nished (Fig. 12 and 14). The radial demsity gradient, however, is not
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affected by the variation of the axial density gradient: if the radia-
tion is due to the radial density gradient, then its level would not be

affected when the axial density gradient is changed, which is not the case.

Thus the radiation obeys the laws of our model of linear con-
version. We have, however, had to assume an enhanced level of plas-
mons. Let us, as an alternative, consider bremsstrahlung as a possible

source of the radiation.

. . . 22
The emission from an optically thin plasma is given

by
3

: T 6
_ heh ¢ e ( m
&w agpted o m? wk, T
T 3A

x {n [1.336 (lm ) “?”g_ﬁ] 1),
e .

m W

The units are MKS. This emission
jw has units of watts meter—3 steradian-1 (radian sec_l)—l. It can
be used as a source term in Eq. (39) and a received power spectrum
for a plasma with the density profile shown in Figy 6 can be cal-
culated. This Bremsstrahlung radiation is shown in Fig. 15. 1Its
level is lower than that predicted by the linear conversion of a ther-
mal plasmon spectrum and thus cannot be the source of the enhanced ra-
diation. For a non-Maxwellian plasma, however, the Bremsstrahlung it-
self can be enhanced. A recent review article by Papadopoulos and

. . . . ., 23
Freund discusses this point in more detail.””
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For a two temperature plasma, the distribution function

is given by

g 2
f(U) = (m')sA \/es [ CXP (' zu\f"e‘z‘)
F1-8) 5 exp (- 2 ] “

E

where Ve is the high temperature thermal velocity, Vo is the low
temperature thermal velocity, and § is the percentage of the low

temperature plasma.

There is an enhanced emission by the factor

T = Vg / Ve | (43)

n Ve
¢ [ Ve (1-4) ]

For the experimental plasma the ionizing electrons have an
energy of 60 Volts and a concentration such that 1-§ N 10-4. Thus
F = 5.3. Even a high temperature component density of 10—'3 gives
only an enhanced factor of 6.7. This is cleariy too 'small to ex--
plain the observed enhancement factor of 1000. Furthermore, if the
. observed fadiatioq were due to bremsstrahlung, the level would not
drop by 30 dB as a constant density profile was approachgd. Thus

the enhanced plasmon level remains as the probable source of the

radiation.
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The ionizing electrons come off the filaments which are uniformly
distributed around the walls of the chamber. The corresponding beams
with a radial velocity component overstep the large density gradient near
the boundaries of the plasma (cf. Fig. 6). They do not relaxe quasili-
nearly because of the lack of synchronisation between the waves and the
beam particles (Ref. 24, p. 18), but penetrate into the nearly constant
density region (r < 60 cm) with a velocity spread Av ?\,'l.ve around the ve-

. 60 \ % . ‘s
locity v -=(T£%)2ve = 6 v, There, these beams cause an instability that en-

b

hances the plasma level. However, since they are multidirectional and
come from different sources distributed around, they may interact with
each other through the waves excited. Their dynamics of relaxation is
thus far from being a trivial problem and beyond the scope of this paper
if any. Therefore, we resort to a rough estimation of the relaxation
length and the energy density of the plasmons from simple considerations.
A typical group of filaments has a 10 A discharge spread over an area

A = 27"RL, where R = 90 cm and L = 75 cm. Thus the density of ionizing
electrons is n, = I/(AeVb). Since these electrons constitute many beams,

~

the average density per beam may be estimated as Eb = ni/Zw. For v, = 6 Vo
one obtains £, = 7.3 10° and, for n, =3 10%cm™> and T = 1.4 eV, plasma
waves grow with a rate X A wp( Eb/no) (vb/Av)2:= 1.8 107rad/sec >> v, =

106 rad/sec, where v is the collision frequency. The beam is not relaxed
rover a length shorter than\l% = 0.2(n0/£b) (vZ/wpvblA.& 70 cm (Ref. 24, p. 10)
so that the plasmon level is enhanced everywhere till the center of the

plasma. Since the plasmon energy density produced by a beam is (Ref. 24; p. 10

4 2 . .
wb = Eb mvb/15 V,»> We may estimate the total energy density as a sum
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.over all beams, namely W = 2r W_, which leads to an enhancement factor

b

on the thermal level Wt = T/6n%ag of

h

F= "\\fdl" ~ n3)L; s (—y-“—)l' “s)
th

For the values of the parameters indicated one obtains F = 3700 that
is approximately the factor of 1000 needed. However, this factor is
overestimated since it does not take into account possible losses,
starting with the ionizing collisions the mean-~free path of which N 100 em
is not far from the relaxation length 1% ~ 70 cm. A further point we
have to assume is that, due to the multidirectionality of the beams, plas-
ma waves with all sorts of ; are excited so that F is the enhancement
factor above the thermal level for each degree of freedom. This strong
assumption is at least not contradictory with the experimental fact that |
the noise power is constant along a radius for r < 60 cm.

Also, we have considered the possibility of an enhanced plasmon
level due to spontaneous processes (Eérenkov and longitudinal brems-

strahlung) associated with a non maxwellian distribution of electrons.

However, we found the enhancement to be negligible; typicallyF = 1-5..

Experimentally the influence of the ionizing electrons was in-
vestigated by switching off the voltage on the filaments and working
in the afterglow plasma. The switch-off time is approximately 10 usec.

The density of the plasma changes on the time scale of milliseconds.
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It was seen that the radiation level fell to approximately -105 {Bm, in

a time of 10 usec, . long before the density profile changed (Fig. 16). Thus
the source-of the enhanced radiation is experimentally demonstrated to

be the primary electrons.

It is difficult to directly measure the plasmons themselves
locally by means of probes at these frequencies. A probe cannot easi-
ly distinguish between an-electrostatic wave and an electromagnetic

wave and, furthermore, the coupling constant for each of these is un-

known and varies considerably with frequency above several hundred

MHz. The probe itself can also disturb the plasma.

V. CONCLUSION

We have studied theoretically and numerically- the linear con-
version of a Langmuir wave into a transverse wave in a field-free in-
.. . . . T T
homogeneous plasma. The emission and absorption coefficients (EL and AL)
due to the LT conversion can be deduced from the emission and absorp-
. . . L L . .
tion coefficients (eT and AT) due to the TL conversion. This general

principle has been proved both theoretically and numerically. The

-
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emission of electromagnetic waves from a stable inhomogeneous

plasma hés then been computed. In the calculations, an equilibrium
state for the plasmons has been assumed. In order to be able to
compare it with the experimental result, we also introduced the

gain function of the antenna used in the experiments. Aside from

a discrepancy inthe absolute amplitude, main features predicted by
the theory, such as dependency of the emitted power upon the density
gradient characteristics, were verified experimentally. The discre-
pancy in the absolute amplitude was due to the ionizing electron

beam which excited a non-thermal level of plasmons.
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Figure 1

Figure 2

Figure 3

Figure 4

Figure 3

FIGURE CAPTIONS

Model of plasma density profile. For X <0, a
constant density is assumed. We also represent
schematically the propagation of a transverse wave

X  are

(~ and of a Langmuir wave (smne), XT’ L

respectively the reflection points of the transverse,

Langmuir wave. X is the critical point.

Variation of A = A(q).

Cycle used to demonstrate the reciprocity principle.

Sketch of the model used in the computation of the electro-

magnetic emission from an inhomogeneous plasma.

The experimental device. The size of the plasma volume

is 3m length and 2m diameter. A pyramidal horn is used

to detect the electromagnetic wave. Longitudinal and ra-
dial probes controlled by a microprocessor allow to measure

the density profile.




Figure captions (cont'd)

Figure 6

Figure 7

Figure 8

Figure .9

Figure 10

Figure 11

Figure 12

Figure 13

Typical axial and radial density profile.

Block diagram of the microwave detection system.

Normalized antenna gain as a function of the angle.

Schematic -representation of the ray of an electro-

magnetic wave as it propagates down the gradient.

A ray which will reach the horn at an angle greater
than © would be generated outside the plasma radius

and therefore would not exist.

Variation of the cutoff angle.

Computed frequency spectrum of the transverse wave emitted
by the plasma. The density gradient is shown in figure 7.
Measured frequency spectrum of the transverse wave emitted
by the plasma. The density gradient is shown in figure 7.
Note that the level is higher by 30 db compared to the

computed one (Fig. 12).

Variation of the maximum level of the frequency spectrum
with the density gradient amplitude An. Dots (®) are ex-
perimental points. The square (M) is the level measured

for a flat profile. The solved curve is the rescaled theo-




Figure captions (cont'd)

Figure 14

Figure 14

Figure 15

Figure 16

(cont'd)
retical values computed assuming a profile

. . 10 -3
n(X) = n + An sinnX/L with n = 2 107" cm

and L = 120 cm.

Variation of the maximum level of the frequency
spectrum with the gradient scale length L. The
solid curve is the rescaled theoretical prediction.
The density profile is n(X) = n + An sinnX/L where

n =3° 1010 cm._3 et An =1.5 ° 1010cm-3.

Computed Bremsstrahlung spectrum for ap inhomogeneous
plasma. Both the density profile of Fig. 7 and the
antenna gain function were included in the calculation.
Time evolution of the emitted electromagnetic wave and
the plasma density. The arrow indicates the time - -

where the primary electrons are switched off. Note the

rapid decay of the electromagnetic wave, while in the same

time the demsity remains constant.
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