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ABSTRACT

An oblate spheromak surrounded by a conducting shell can stably
confine a plasma with non-vanishing pressure. Using the ERATO code
we find that whenever qgyig Y an internal kink develops, while for
daxis < 1 the Mercier criterion limits the B value. This leads to a
B limit which increases with the aspect ratio. For an aspect ratio of
2.4, equilibria with 82740% have been found which are stable to both
low—~n and high-n modes. Without a shell these equilibria are unstable;
the fastest growing mode being a n = 1 tilting motion. A shell at a
distance of the order of 0.2 - 0.4 the minor plasma radius stabilizes

the low—n modes.

* presently at Max-Planck Institut fur Plasmaphysik (IPP),

Garching, Germany




I. INTRODUCTION

First introduced to designate a very specific configuration,
characterized by a spherical plasma in which flows a force-free current
and with no externally-applied toroidal field {1, 2, and 3}, the word
"Spheromak' is now used to describe any toroidal axisymmetric con-
figuration in which the toroidal field vanishes at the plasma sur-
face {4 }. It can be viewed as limit of a Tokamak when either the
toroidal current increases indefinitely or the external toroidal
field vanishes, while keeping the poloidal beta Bp constant. The
potential advantages of this configuration have already been spelled
out in Bussac et al. {4} which also contains additional references.

But there remain many unsolved problems. One of them is to under-
stand the difference in the stability properties between a Tokamak
and a Spheromak, to find out if there is a B8 limit, how high it is

and how it depends on the geometrical and physical parameters.

M. N. Rosenbluth and M. N. Bussac have laid the groundwork by
studying the MHD stability of the genuine spheromak, identifying the
relevant parameters {5 }. The genuine spheromak is defined by the

flux function Y (r,z) :
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U(r,z) = ——— jl(Y—r—-—z-
re+z

(1)




where r,z,0 are cylindrical coordinates centered on the main axis
of the torus, v v 4.493 is the first zero of the spherical
Bessel function ji(x) and a is the radius of the spherical plasma

boundary on which ¢ = 0.

The current density J is obtained from the Grad-Shafranov

equation

J=[XL B.
— a—

It is clearly force-free. The toroidal magnetic field is given

by

g = LW !_Y_‘_\L
T X a r °

Keeping the same expression (2) for the current dEIlSity!; more
general equilibria can be obtained having still the same spherical
topology but different shapes. Such a solution, which has been

studied in some detail by the previous authors {5}, is
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where ¢ is a free parameter. The plasma surface is given by the con-

dition w(rs,zs) = 0, namely

(2)

(3)
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For € = 0 the shape is again a sphere. For ¢ > 0 the plasma is elongated

(prolemak) and for € < 0 it is flattened along the axis r = O (oblimak).

By expanding around € = 0, Rosenbluth andABussac have shown a prole-
mak is unstable to global internal tilting, while an oblimak is stable
to such displacement. They have also shown that the oblimak is un-
stable to free boundary modes for all n > 1, but a shell at a distance
of the order of .15a stabilizes low-n modes. High-n modes are always un-
stable but non-ideal MHD effects or a modification of the current profile
at the plasma surface are thought to take care of these modes, so that

with a shell an oblimak should be stable.

But this is still a B = 0 plasma. The maximum pressure which can
be stably confined by this configuration is limited by the Mercier cri-
terion. The maximum value of B quoted in {5} is less than 1 o/oo.

The reason for such a low value is the low shear of the configuration.
Excluding the plasma current from a central hole, creating a fat torus
with BT = q = 0 at the surface, increases shear and thus the B allowed by
Mercier. Numerical calculations {4} and analytic estimates {5}

have confirmed that the maximum B increases with the size of the hole.

In the limit of a large aspect ratio and a circular cross-section a va-
lue of Bmax "~ 157 is quoted. The stability of low-n modes has only been

studied for the pressureless case, without a hole, using the Taylor




criterion.

In this paper we pursue this same problem of B limitation due
to the onset of ideal MHD instabilities. The objective is to study as
completely as possible, using an ideal MHD stability code for low-n
modes {6}, and the ballooning and Mercier criterion for localized
modes, a wider class of equilibria which includes as special cases
the geometry and profiles treated analytically in {5}, so that
useful .comparisons and verifications can be made. The picture which
emerges from these calculations is simple and should have a wide range

of applicability.

The results can be summarized as follows. The stability of inter-
nal modes of an oblimak is controlled mainly by shear and by the safety
factor on axis q,- For q, < 1, the Mercier criterion is a necessary
and sufficient condition for stability. The higher the shear, the
higher the 8. The higher d, the higher the shear. But for q, 3 1,
an internal n = 1 unstable kink appears. This leads to a unique pre-
scription for B optimization, namely to increase shear as much as
possible while keeping q, around 1. For a given d,s the shear becomes
more uniform as the size of the central hole increases and this leads
to higher stable values of B. These results are obtained with a shell
right on the plasma surface. Without a shell the plasma is always un-
stable. The n = 1 tilting mode is the most dangerous of the low-n
modes with an extremely large growthrate. Higher-n modes are much less

unstable. A shell at a distance of the order of 0.2 to 0.4 the minor




plasma radius stabilizes the low-n modes. High-n modes must still

be uynstable with such a shell, but it is reasonable to ascribe

to the current jump at the plasma surface the residual instabilities.
An adjustment of the current profile at the surface should take care
of all these modes except n = 0 and n = 1, and maybe n = 2. Free
boundary stability appears to be the only real difficulty for the
spheromak configuration, within the framework of ideal MHD, and should

be studied by introducing more general shapes.

The plan of the paper is the following: We first define the
class of equilibria, introducing four free parameters. We then study
in detail the stability of internal modes of a typical oblimak with a
small hole, keeping the shape fixed and varying the force-free current
profile as well as the pressure profile. This leads to the B optimi-
zation procedure which is used to study the dependence of Bmax as
a function of the size of the hole. The transition oblimak-prolemak
is not examined. We then study the stability of free boundary modes,
without any shell, starting first with the same typical oblimak and
then varying the size of the hole. A shell is introduced and its
effect on the low-n modes is briefly studied. It ends with a discus-
sion of some interesting convergence properties of the ERATO code, the

ideal MHD stability code used in all these calculations, which seem

to be specific to spheromak configurations,




II. THE EQUILIBRIUM CONFIGURATION

The equilibrium is specified by giving the 2 source terms
dp/dy and T%% in the Grad-Shafranov equation,

_,2dp _ dr )

A*y = r v v’

and by the shape of the plasma boundary. The current density J can

be written as

J = dP ~ ﬂ
= Tay S PR ™

where §¢ is in the toroidal direction. We see that T contributes only

to the force-free current.

For the current flux T, we choose

2 2 2
T = Cou (1 + av), (8
1 3
where o is a new free parameter which allows a certain degree of control
over the current and ¢q profiles. The flux ¢y is chosen to vanish on

the boundary and be negative inside.




As for the pressure profile, we should like to determine it
implicitly by the constraint that the Mercier criterion be marginal
everywhere. This is inconvenient for the equilibrium code which has
to be run with a high resolution because of the requirements of the

stability code ERATO. We have instead chosen an analytic form
9P _ ¢ -
LCz(\b0 v), 7 (9

where Yo is the value of y on the magnetic axis. This dependence is
the simplest one which can satisfy the Mercier criterion on the magne-
tic axis, while having the same qualitative behavior as the optimal
pressure gradient given by the Mercier criterion. This means the maxi-
mum B which can be stably confined is underestimated, but on the other
hand, the expression (9) leads to an unphysical current discontinuity

at the surface which should be smoothed out, and this will decrease B.

As plasma boundary, we use one of the magnetic surfaces of the

spheromak equilibrium given in Eq. (4), namely

¥ s2 5 4Zsz " rs2 e
) a0
_ 2 2.% . .
where R = (rS + zs) and § is a free parameter which measures the

size of the central hole, or, equivalently, the aspect ratio. In this
way we can study some features of the spheromak without a hole by
extrapolating the results with 6§ # 0 to § = 0. The original sphero-

mak is recovered when § = 0, o = C, = 0.




In the general case, we fix C1 by the condition that the

total toroidal current IT’

T dT
I, =- }];rdz {} %% + ;‘EE}» (11)

be constant and equal to its value when § = o = C2 = 0, namely

IT = 2. There remain only 2 free parameters to specify the pro-

file, a and C2 or, equivalently, q, and B, where the volume averaged

B is defined as

ij r dr dz
B =

' 12
[fﬁi_r dr dz : (12)
2

When o = C2 = 0, the current profile is peaked; increasing «
flattens the current on the magnetic axis and eventually a hollow
current profile develops. This behavior is mirrored in the q pro-
file which peaks as a increases. Keeping a constant, increasing 02
increases B with no effect on the q profile and little effect on the
current until the fraction associated with the pressure gradient becomes a
sizeable fraction of the force-free current. Figures 1 and 2

illustrate the dependence on o for a specific configuration: an oblimak

with ¢ = -.3, § = .2, which will be referred to as "standard case'.
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Note that the quantity € determines the elongation, but that it is
not equal to it, while 6 measures the size of the hole or, equiva-

lently, the aspect ratio. The shape of the plasma cross-section

varies with § (Fig. 3); the maximum value of § is 1.18.

ITI. STARILITY OF INTERNAL MODES OF THE STANDARD CASE

We first assume there is a shell tight on the plasma so that

we only look at internal modes.

The high™n stability is determined by the ballooning criterion.
On the magnetic axis it coincides with the Mercier criterion, but every-
where else it should be more stringent. The ballooning criterion be-
comes difficult to implement whenever the shear is low or the ballooning
weak because the range of integration becomes so large that inaccura-
cies in the equilibrium quantities, as well as in the integration, become
dominant. Near the magnetic axis, for example, it is not possible to
verify directly the agreement between the Mercier and ballooning criteria
with numerical equilibria. In all the spheromak calculations we have
made, the ballooning limit has been found to be less stringent than
Mercier's limit, although the range of integration is the same as that

used in our calculations of B limits in Tokamaks. This means the balloon-
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ing limit is very clos: or maybe even coincides with Mercier's
limit throughout the plasma. This is consistent with the results
obtained in Tokamaks which have B < 1, and with theAfact that, away

|%
from the axis where a difference is expected, the poloidal field do-
minates the toroidal field (q << 1), thus removing the main factor re-
sponsible for the ballooning effects in Tokamaks. The impossibility of
obtaining a ballooning unstable region as wide as the Mercier unstable
region, wherever q' < 0, has also been observed by J. Greene and

M. Chance {8}. It is probably an indication of very localized and

very weakly growing modes.

The Mercier criterion can be written as {7}

1.dq,2 dp dp,2
1GD? T+, E? 5 o, (13)
where
M@ = TC T Y T T T G | (14)
o202 1
M) = T [Gz:a €03%43] ~ ®21%3°

- dg
J -
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and B designates the poloidal field. At low B, the quadratic term
P
in dp/dy is negligible and Ml(w) only depends on the force-free
current distribution TT'. For a = 0, Ml(w) > 0 everywhere and the

condition (13) gives the condition

2
dq (16)
(‘(ﬁ)‘) / Ml(w).

Near the magnetic axis, the right-hand side of Eq. (16) varies li-
nearly as ¢y - wo. As long as qo‘<1, this condition limits dp/dy
everywhere, and the integration of the right-hand side gives a maximum
pressure which can be stably confined. Figure 4 shows the limit

given by Eq. (16) for a typical case. Since dp/dy is largest at the
edge, the pressure profile must be very flat. Our linear parametric
form for p' (9) has the same general behavior around the axis as the

optimal choice. This is the main reason for this choice.

With these profiles, the complete Mercier criterion.(13)
leads to an upper limit on C2 which is a function of o. This is shown
for the standard case in Fig. 5. The limiting C2 is an increasing
function of a. As B increases with both o and C_, the highest stable

2

values are obtained in the upper right—hand corner of the Mercier
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stable region, which means the largest value of a. But as o in-
creases, becomes greater than 1. Increasing a fuch

beyond this point leads, for large §, to numericél problems with the
stability code because of the appearance of a current reversal. But
for the standard case, this is ﬁot the limiting factor on o. It is

the low-n stability which sets a limit on a.

The low-n stability is tested with ERATO. We first look for
unstable modes in the Mercier stable regime, and more particularly
in the large o region. We find that n = 1 becomes unstable when-
ever q increases much above 1. The mode is definitely an intermnal
kink, as can be seen in Fig. 6. It is m = 1 and the maximum shear
displacement occurs on the q = 1 surface. The motion is internal
and the growthrate small. Figure 7 shows the square of the growth-
rate as a function of a, or q,> for various values of C,. The normaliz-

2

ing growthrate w, is given by

A

YA T Bo / opoRm ? a7

where Bo’ o, and Rm are, respectively, the magnetic field, density and
radius at the magnetic axis. The marginal points are definitely
above q, = 1. The influence of the pressure is stabilizing and only

seen in the growthrate, which means the mode is current driven. The
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difference between the marginal point and q, = 1 appears meaning-
ful and not due to lack of resolution, as shown in section 7. In
the same region, below the Mercier limit, no n < 5 unstable mode has
been found with the highest resolution used. Since we do not expect
high-n unstable modes in the ballooning stabie region we conclude

that the only instability which limits a is the internal kink n = 1,

In all Tokamak configurations we have studied, whenever the
Mercier criterion is violated on one of the singular surfaces corres-
ponding to a given n (nq integer), there are rather global unstable
modes with the same n. This means that, for Tokamaks, the violation of
the Mercier criterion is a warning of the existence of a dangerous in-
stability. We expected the same behavior in the spheromak regime. On
the other hand, the difficulties encountered with the ballooning cri-
terion suggested that the Mercier unstable modes are very weakly grow-—
ing. To clarify this problem, we search for low-n unstable modes in

the Mercier unstable region pictured in Fig. 5.

The Mercier unstable regions for each n s 5 are shown in Fig. 8.
They are obtained by verifying the Mercier criterion on each singular
surface q = m/n, where m is an integer which also happens to be the do-

minant poloidal mode number of the most dangerous localized modes.
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For n = 1, there are no singular surfaces within the plasma
as long as qa, <1 and Mercier is satisfied on the q = 1 surface when
a > 1. Up to 02 = 0.01 (largest value tested), no n = 1 unstable

mode has indeed been found in the range q, < 1, while for larger

a, the unstable mode is an internal kink as shown above.

For n>1, we look first for the most unstable mode along the axis
o =0, varying CZ(B)' The results for n=2 are shown in Figs. 9-11. Fig-
ure 9 shows a map of the poloidal component of the displacement vector of

the most unstable mode for decreasing values of C 010, .008, and

2:.

.006 respectively. As C,, respectively B, decreases, so does the

9
growthrate, and the mode becomes more and more localized around the
only singular surface within the plasma at q = 0.5. At the marginal
point it will turn into the marginal continuum mode resonant on the
q = 0.5 surface (A = 0). This mode has all the expected features

of a Mercier mede and never seen with a Tokamak profile (q' > 0):

¢

The potential energy associated with a displacement.§(¢,x)e1n can

be written as

Hi

W = ds ¢ dg &W ds < &W >, (18)
) n n
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where s is a radial variable related to the flux y through

s = /?ﬁ;n:—ﬁj7$;., <6Wn> is the flux averaged potential energy
density. Figure 10 shows <6w2> fcr the same 3 modes. The normali-
zation has been chosen such that Ji ds|<6wn>| be the same. There

is a large cancellation between two positive contributions (stabiliz-
ing) and a deep negative contribution from the singularisurface. As
B decreases, the cancellation becomes more and more complete and the
width of the negative hole becomes narrower. Figure 11 shows the full

width & of the region where <6W,> is negative as a function of 8. The

2
extrapolated value of R at which A =0, B corresponds well with the
Mercier limit. The localization and the cancellation cause numerical

difficulties and explain our incapacity to follow the mode down to the

Mercier limit. But it also implies that, for n = 2, the Mercier limit

is the true limit.

Since q < 0.6, there is also only one singular surface, q = 1/3,
for n = 3. It is located on the outside of the plasma in a region of
high shear and the growthrate is much smaller than for n = 2, For n = 4,
there are 2 singular surfaces, q = 1/2 and q = 1/4, the second one being
very near the plasma surface and Mercier stable up to very high values of
B. The most unstable mode is localized around q = 1/2, with a growthrate
close to the n = 2 mode. In all these cases the potential energy has the
same behavior as for n = 2, which implies a stability limit given precise-
ly by the Mercier criterion. The width of the unstable region around
q = 0.5 is also shown in Fig. 11. The extrapolated limit on B is consistent

with the n = 2 limit. The growthrate is related to the localization
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of the most unstable mode. Modes localized on singular surfaces
which lie in the outer region or close to the axis are slower growing.
The correlation is particularly clear for n even (tested up to n = 6),
in which case the most unstable mode is localized on q = 1/2 and the
growthrate seems independent of n. How high n has to be in order to
have a true ballooning mode extending across many singular surfaces

is still an open question.

All these modes have been obtained at high values of C2, corres-—
ponding to high values of 8. Already for C2 = .006, corresponding to
B = 8.5%, the modes are so localized that we have great numerical
difficulties to obtain them and the growthrates are of the order of

-2 -3

10 - 10 W, . Non—-ideal MHD corrections or nomlinear corrections

will already strongly affect such modes, probably stabilizing them.

Varying o does not change the basic results and the conclusion
of this study is the confirmation that stability of low-n modes is less
restrictive than the overall Mercier criterion, and that, in the Mer-
cier unstable range, the modes are very localized and the growthrates

very small up to substantial values of B (a few percents).
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IV. B OPTIMIZATION

We have established for our standard oblimak that the re-
quirement of stability of internal modes imposes both a limit on C2
given by Mercier and an a given by the appearance of the internal
kink. The highest stable value of B is obtained when C2 and a

assume their limiting values, which for this case gives a Bmax =12 Z.

In order to study the dependence of Bmax on the size of the
hole (aspect ratio), we should have to repeat the same calculation for
various values of §. Because of the prohibitive amount of computing time
needed to obtain precisely the internal kink limit, we have chosen a
more conservative approach by assuming that the internal kink limit

is q, = 1 and calculating only the Mercier limit.

The results of this optimization is shown in Fig. 12. The
dispersion of the points reflects the accuracy of the optimization.
The optimization requires computing a large number of numerical
equilibria and it was stopped at 9, reasonably close to 1 with the
Mercier criterion tested on 40 magnetic surfaces. The largest value
of & considered corresponds to an aspect ratio of 2.34. The increase
of Bmax with 8 is at first puzzling, but looking at the q profile we
see that with larger § the shear becomes better distributed across
the plasma, which leads to a higher stable pressure gradient. It is not

an artifact of the functional dependence of the pressure gradient
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. . . . . . dp .
Eq. fhud
(Eq.(9)), since the integration of the Mercier limit (d¢ max Siven
in Eq. (16) leads to the same dependence. The essential point is
the existence of MHD stable very high B equilibria with already a
small aspect ratio. The extrapolated value of B ax 2F § =0 is
m

of the order of 1.57, an improvement of more than an order of

magnitude over the original spheromak profile.

V. FREE BOUNDARY STABILITY

Without a conducting shell, all the spheromaks studied here
have been found unstable to free boundary modes. The most unstable
mode is a n = 1 tilting, at least for the value of € studied here. This
result confirms and extends the analytic result of Bussac and Rosen-
bluth {5}. Figure 13 shows the growthrate of this tilting mode as
a function of the size of the hole, §, always for the same oblimak
with € = -.3, with no pressure (8 = 0) and no current modification
(0 = 0). It is very fast, of the order of one Alfvén transit time
across the plasma radius,and insensitive to the size of the central
hole. Such a mode is represented in Fig. 14. It is a tilting mo-
tion, although it is more complicated than the rigid tilt-
ing used as trial displacement in the analytical calculations mentioned
above. Increasing the pressure increases the growthrate @alightly.

No profile modification can affect such a fast growing mode.
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There is a n = 2 unstable mode. Its growthrate i%
shown in Fig. 13 for the same set of equilibria. It is slow-
er growing than the n = 1 mode. A typical poloidal plot of such
a mode 1s represented in Fig. 15. It looks also like a tilting,
but since it is n = 2, it tilts in opposite directions at 180°

around the torus, filling the central hole.

A typical radial flux averaged potential energy distribu-
tion <éW>, as defined in Eq. (18), is shown in Fig. 16. For n =1,
all the plasma, except for the immediate vicinity of the surface,
gives a destabilizing contribution, while, for n = 2, it is only
the region between q i 1/2 and the surface which is unstable. No
n = 3 unstable mode has been found in this case (§ = 0.2) with the
highest resolution. But when there is a pressure (but still in the
Mercier stable region) all n become unstable, although the growth-
rate rapidly decreases with n. The average potential energy <&W>
has the same general behavior shown in Fig. 16 for n = 2, the un-
stable region being mainly between the q = 1/n surface and the
plasma surface. This suggests that by shaping the current profile
at the edge so that the current, as well as its slope, vanishes
on the plasma surface, all high-n free-boundary modes will become
stable, There should only remaiﬁ the n = 1 tilting and maybe

the n = 2.
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The absence of an unstable n = 3 mode in the pressureless
case is very surprising since we know {5} that for § = 0 all
n are unstable. It may be that the highest resolution we have used
'is not yet sufficient to bring it out, in which case the growthrate
would be very small and our conclusions unaffected. The other possi-
bility is a stabilizing effect of the shear at the edge due to the

hole.

In all these cases there is an unstable n = 0 mode. All these

calculations have been made with no wire on the axis of the torus.

VI. SHELL STABILIZATION

Among the results obtained by Bussac and Rosenbluth
figure a study of the influence of a conducting shell on free
boundary modes of a spheromak, predicting that a shell at a

short distance from the plasma would stabilize the low-n modes.
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We have introduced a shell surrounding all the plasma
which, for technical reasons, goes through the hole of the plasma.
When the hole is small the shell covers the hole, but inside there
~is still a wire on the axis. This wire has no influence on n 3 1
modes as we have verified by recalculating the case of an infinite
vacuum without a wire on axis. The same test on the n = 0 in-

stability has shown very strong stabilization so that we do not

consider this case.

The results for our standard shape, ¢ = —.3 and § = .2, and
with the highest B stable (BQﬁIZZ) to all internal modes, are shown
in Fig. 17. The square of the growthrate of the most unstable modes
is plotted versus a parameter Rext’ which measures the distance bet-
ween the shell and the plasma surface. The shell is given by the
equation

séiil - pplizia * (Rext -1 a, (19)
where p(6) is the distance from the magnetic axis, 8 the angle around
the magnetic axis, and a half the plasma width in the equatorial plane.
If the shell, as described by Eq. (19), intersects the axis of the
torus for an angle emax’ the section emax <6 < 21 - emax is replaced
by a wire on the axis. We find that stability is achieved, for all
the low—n modes studied, when the shell is at a distance of the order
of .35 a. The same result holds for any 8§, the maximum distance bet-
ween the shell and the plasma varying between .2 and .4 a, the distance

being larger for a smaller hole.
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VII. CONVERGENCE PROPERTIES OF ERA T O

ERATO is not a true finite element code. The variation
of the Lagrangian is done on an enlarged functional space.
This enlarged functional space is expected to lead to a lower
energy state, and thus to a destabilizing effect. The integration
error is of the same order in h2 and could either reinforce or counter-
balance the destabilization. But in all the numerous Tokamak calcula-
tions done with ERATO {9}, it has been observed that the net
effect is destabilizing,and this has turned out to be a strong practi-
cal advantage in studying stability limits. At low resolution, there
is an unstable mode and, to determine if there is stability, the growth-
rate and mode structure are followed as resolution is increased. 1In
this way an upper limit to the growthrate is always obtained and since
we always obtain the mode, we can usually identify the transition to a

stable continuum mode.

With spheromaks we have observed the opposite behavior. At low
resolution, we usually do not find an unstable mode. The first mode is
the slow marginal continuum mode which we know and it is indeed very

2 . . ..
close to w = 0. If the plasma is unstable, as resolution is increased,
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the first mode suddently changes in structure and the convergence plot
shows a sharp break. A typical case is shown in Fig. 18. This is

a definite drawback which ERATO shares with PEST and any other potential
codes which are based on a variational formulation of the energy
principle. In any situation, stability is never certain since more
resolution may bring out a new unstable mode, and, even worse, the
uncertainty cannot be quantified. These difficulties translate into

high costs since many runs have to be made with the highest resolution.

There is a limit on the largest value of n which can be handled
with the code. It is function of the resolution. For high n, we know

that any unstable mode has a ballooning poloidal dependence

EW,x) = EQp,0e "X, (20)

where g is slowly varying in y. The poloidal angle x is related to
the arc length £ along a meridian cross-section of the magnetic sur-
face ¢y by

Td4L
x = —— (21)

2
r B
1 p

As n increases, the fast phase variation in the y direction becomes
impossible to reproduce. The relevant parameter is nq, which gives

the number of periods of the fast oscillation, and it is practically
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limited to nq < 5-10. Because of the low q values typical of
spheromaks, it should be possible to study modes up to n v 5-15,
depending on q,s but the radial resolution needed to represent
correctly the mode near each singular surface becomes the limiting

factor.
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FIGURE CAPTIONS

Fig. 1 :

Fig. 2 :

Fig. 3 :

Fig. 4 :

Fig. 5 :

Fig. 6 :

The toroidal current profile across the mid—-plane

of an oblimak ¢ = -,3, 8§ = .2, as a function of a.

The evolution of the q profile as a function of

a for the same values of the parameters as in

Fig. 1.

The shape of the plasma surface of the oblimak
family € = -.3 as a function of § (shown as a label).

The aspect ratio is infinite for 6§ = 1.18.

The limiting pressure gradient dp/dy which makes the

Mercier criterion marginal everywhere, Eq. (16), s2= (wo-w)/wo.

The Mercier stability diagram. The thick solid line
separates the stable range (below) from the unstable
region (above). 1In the unstable region, the lines labeled
with a value of s E/?E;:@37E;represent the stability limit
given by the Mercier criterion on that particular surface.

The lines B = constant are also shown.

Maps of the poloidal component of the eigenvector of an
unstable mode in 2 meridian planes separated by 900, for

a =2.5, C. = .004.




Figure Captions (cont'd)

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

7 :

8 :

10:

11:

12:

The growthrate of the internal kink as a function

of C2 and qo(a).

The Mercier stability regioms for n =1, 2, 3, 4
and 5. For a given o and n, the stable region lies
below the curve labeled with n. The discontinuity
in the n = 3 curve is due to the appearance of an
additional Mercier unstable singular surface deeper

in the plasma as o increases.

Maps of the poloidal displacement in a meridian plane
of the n = 2 most unstable internal mode for C2 = .01,

.008 and .006.

The radial distribution of the potential energy demsity
for C2 = .01 (B = 14.9%), .008 (B = 11.87%) and .006

(B = 8.8%).

The width of the unstable region A as a function of

B(Cz) forn = 2 and n = 4.

The optimized B as a function of the size of the hole §,

for ¢ = -.3.




Figure Captions (cont'd)

Fig. 13:
Fig. 14:
Fig. 15:
Fig. 16:
Fig. 17:
Fig. 18:

The growthrate of the most unstable free-boundary modes
n=1 and n=2, versus §, for a =0, C2 = 0 (pressureless
spheromak) and C2==.GO4/B = 5.67). There is no shell

around the plasma, nor any wire on the axis.

Map of the poloidal displacement in a meridian plane
of the n = 1 tilting mode for a = C2 = 0.
Map of the poloidal component of the n = 2 free-boundary

unstable mode for the same parameters as in Fig. 14,

Radial distribution of the potential energy density

<8W> for the same n = 1 and n = 2 modes, shown in

Figs 14 and 15.

Shell stabilization of free-boundary modes for o = 1.9,
C2 = .006 (Bv127) close to the optimized B value for this

geometry). There is a wire on the axis of the torus.

Convergence plot for an intermal kink mode with o = 1,

02 = ,002. The square of the growthrate is plotted versus
2 . . .

1/N°. The mesh is made of N radial and 2N azimuthal inter-

vals.
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