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ABSTRACT

The ponderomotive force experienced by an ion in a left circular-
ly polarized wave changes sign as the frequency increases from below
to above the ion cyclotron frequency. If the wave frequency is chosen
to lie between the ion cyclotron frequencies of two different isotopes
then the ponderomotive force tends to separate the two species in space.
As a result the index of refraction is modified. Self-consistent so-
lutions of the non-linear wave equation taking into account both effects
are obtained analytically and numerically. The ratio of the densities
of the two ions is proportional to Q/XY’[W\ Et(‘.") /q’ ¥(-v) « 3:— ‘&T‘
where EQ@) is the amplitude of the wave, 35, the magnetic field and 7}

the temperature of the ions while WA= 2 W W /(“‘o + lM,_) ’

°‘-=(““." W)/ (W v y) ool ¥ = (-5 )/(Sll~'n‘l),



1. INTRODUCTION

A method for isotope separation using the ioncyclotron reso-
. . . 1
nance in a magnetized plasma has been described by J.M. Dawson et al.

>~ we have proposed a different method which uses

In previous reports
the ponderomotive force produced by a left circularly polarized wave.
In the present paper we present a complete analysis of the equations
in one dimension describing the electromagnetic field and the density
variations which it produces. 1In a few cases these equations are also
numerically integrated. We use the natural system of units throughout

the analysis; however, experimentally important quantities are also

. . . . 4
given in the international MKSA system .

2. THE NONLINEAR WAVE EQUATION

Consider a magnetized plasma consisting of several species of
particles with masses Mﬁv.and charges q'~. In such a plasma a plane
left circularly polarized wave exerts on each type of particle a

ponderomotive force

o ar[Ee]

T:o' =T '3.2 w - (L
where E@)is the amplitude of the wave and SLG_‘: P Ba / WO“ the
cyclotron frequency of species G~ . If the frequency & is chosen to

lie between two cydélotron frequencies, St < W < 511 the pondero-—

motive force acts in opposite directions on the species 1 and 2. It



should be possible to use this effect to separate isotopes, or more

generally, ions of different charge to mass ratio.

The ponderomotive force (1) is usually obtained by means of a
quasilinear approximation as the time average taken over the period

of the oscillation. However, if the electric field has the form
E(%){mwb, - w wb O} (2)

the force E; is simply the Lorentz force which is constant in time,

as we shall now show.

The fluid equation of motion for each species has the form

. I - - (W)U
U + Soxou ~V—“\_._ -\—%u_s%@ 'SF ,L%S)-

where B is the oscillating magnetic field associated with the wave.
If the electric field has the form (2) this equation of motion allows

a solution with L(l‘ O and splits exactly into two parts

(_/._‘_\_""@.-ng = %EL
and
- 1 -
‘?,;\(E“*BLYE’)“V\ ,.p =0

Eq. (3) is linear because the term ((_I_(_E)(_é vanishes. Integration

of (3), using (2) yields

(3)

(4)



U = & E(z){%‘uwb, me(‘, 0} (5)
L () )

From Maxwell's equations one finds

L e { ceo Wb, -senwt, o }

The crossproduct Y *’Ii is constant in time and can be expressed

in the form

2 L
q.v-“glx'B =‘§la% w\d’

where, for each species
- T
RS
d) Qe L E(%.)]
¢ 2.“"0. w(w~51¢_3

The electric field.E;can be deriven from an electrostatic potential

Equation (4), therefore, takes the form

a

%(%—u * d)r)* " 'aa—%PT - °

on—

Assuming for each species the pressure r:c_-= { M¢~ , we find
-

for the densities the Boltzman distributions

T

N = n _exp (qru\‘cb‘r)/'rr] ‘ (6)



We now return to Eq. ( 5 ) to obtain the susceptibility6 of the

left circularly polarized wave

T

X - -7 e
L = Jflb_(Cd —~JR,U.) (7)

where &)‘:‘. = ct: V‘c. /W‘.- . The conventional expression of ’X,_

seems to contain a pole at W=0, whose residue, however, vanishes

as a consequence of charge neutrality. 1In (7), this spurious pole

has been eliminated.

We note that in the present case the susceptibility is exactly
linear, so that there is no condition on the amplitude of the wave.
This susceptibility does not depend on the wave vector since S['g==0-
Kinetic effects play no role either since the phase velocity of the
wave will turn out to be much larger than the thermal particle veloci-

ties.

Thus we obtain the exact wave equation

P ™

i

€ W -
°F c.?’(} - r- E =o @
2" - 510(@-_57_0_)

in which Ldpris a function of . Indeed, according to (6), we have

T _ g Ve T T
“ee M MPL(Q"“K*({)’)/ ‘”]

.

The electrostatic potential U satisfies Poisson's equation

IU _ _ T q.n
321 qr  2d . (9)



3. CHARGE NEUTRALITY

A system of non-linear wave equations of the same type as (8)
and (9) and also involving the ponderative force has been pre-
viously discussed and solved by one of the authors.7 It was shown
that the direct integration of the system of equations (8), (10)
leads to numerical difficulties since it contains two vastly different
characteristic lengths, namely the Debye length and the wave length.
But it was also demonstrated that the small ratio of these lengths
assures near perfect charge neutrality. It is therefore possible to

replace ( Q) by the condition
Z Qe = ©
i
and use it to eliminate the potential U from the equations (6).
Consider now a plasma composed of only two species of ioms,

having the same temperature: G e !,2, e | T, ‘Tz = r, = T¢ )‘M. >wm,

In this case the elimination of U yields

t, - ¢| d)L ]

P X T T T T
V‘I = “w "‘eo (10)

Y & x|
Y_h,o e T 4w, e ™ | 7T
? S | b }
n = V\u, h.‘-*?' MP( T TetTd an
T to d>



Charge neutrality is now guaranteed no matter what values are
chosen for H‘o) Wto , and W_, . The formulas (10) and (11)
are used to express the plasma frequencies &Jprwhich are then sub-

stituted into Eq. (8). This is then the second order non-linear

wave equation which we have to solve for E@).

We now proceed to reduce (8) to a nondimensional form. We

introduce the quantities

M= 2Mm m, /(""‘;“'““z) ,

o

i

(W‘-W‘-L)/(W\"’ “‘\1) )

ﬁ;z Nio /meo > t= 1,2 )
and
8’> ( Q)-ASII,)//(inw'~ 51\_) .
Obviously 0 < €< | and o< ¥ <t . The electric field

amplitude and the distance along the % -axis will be measured, re-

spectively in units of E and of 2 , which are given by

(
.\
LT,
2 = ) 'Bo ! (12)

v



&' i 2
L = — (13)

l+d - 24 ¥ eﬁ-“co

With these conventions the densities can be written in the form

1{:’ , 4Nt (14)

where
5! exp (- h
VW, = D P ooxp Q-0 , (15)
- g*
V.=~ D fa P | oy : (16)
and
D= [p, oxr (- 7o )+ oo (2 EE an
= |p. oy 4 (1-¢) f‘z P o i
The wave equation (8) assumes the form
1"
E+(?_’\44 *144)5=o 15
2(Y¥-1) 2Y



where

N
< B,
7 = (19)
M WY,
2
In equation (18) the term corresponding to w‘.,_, /Cn.)“_ (C.J + w“)
in (7) has been neglected. Its contribution is less than W {
times the remaining terms.
4. ANALYTICAL INTEGRATION OF THE DIFFERENTIAL EQUATION
The differential Eq. (18) has the following first integral
* I 1
() - F(EY) =K (20)

where K is a constan= 2nd
. {

e e L
)20 [, 855 L T ) -

2 ) ) T
.F(E ) has two zeros one of wvhich 1is E=o0. Moreover

dF | _ o
| T

€=0
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where

\?-.-_.L BB
o

Depending on whether l? Z ?o the second zero of F appears for

s . g .
positive or negative values of €

T = o
2> % ) F (&) ° E. > (21)

7<?° ?(“E:) = O E°>O. (22)

T
The function FCE ) is shown schematically in Fig. 1.

5. BOUNDARY CONDITIONS

We choose the boundary condition at 2 =0 such that the natural

concentration of the two species WN,, Vko is maintained at 2 =0 and

that the solution proceeds with increasing * towards enriched mixtures.
As a physicial realization of this boundary condition, we imagine a

grid in the plane ¥*=0 which is transparent to the plasma but not to

the wave. For ¥<0 we assume a large recervoir of plasma composed

of the isotopes in their natural proportions. It is necessary, here,

to distinguish two cases, depending on whether the minority ions are

lighter or heavier than the majority.
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In case A the minority isotope is the lighter one W, , > hzo

4
We Choose Eoto ; EO '-"‘0 y P."'Fz:‘ CXK&‘- P‘/P.‘: h‘O/“zo.

+
Thus K’(E;), and the first integral (20, becomes
* 1 2
(E)" = (€))" + F(E€7).
The solution can be written implicitly as an integral

JE

>
X = g—————-—*”"‘"—'m
O

JE < e

These solutions are always periodic and E(?) is symmetric about the
z—axis. According to (14), (15) and (16) the ratio of the density of the two

species 1is given at any point by

E"L
n, V.o 4% (V%) .

Thus the maximum of enrichment coincides with the maximum of the
electric field amplitude. The segregation of the isotopes occurs
over a quarter wavelength of the standing wave.

’
The amplitude Ehu_ is determined by the choice of Eo through

2

the equation

()" + F(EL) =0
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This maximum occurs by definition when ? equals a quarter wave-

length.

If |2< ¥, then this maximum is always larger than Ea, defined
!/
by (21). This value is attained asymptotically as EL tends to zero.
If the maxi E  tends to zero with E' E can be
\2 7,?0 e maximum & . - P
evaluated approximately in two limits. For
~h -~ !
= e, .
‘2 >> ?o ) Eshuny ? e
In this case the plasma density 1is so low that the wave propagates

nearly as in free space. For

_ v
[ (E.)
<< E =~ Y¥(147¢ 2 &“ +
h <<y, ) [ ( ) | P 2B, (147) .
At the point at which this maximum is attained the density n, will

be much larger than W, which means that here the minority ions have
become the majority. This seems too good to be true. It might well

be that the wave becomes unstable at large amplitudes. If an instability
does limit the field to values below some E* then it would no longer be
possible to establish the field over a full quarter length. Rather the
field would resemble a cut-off wave penetrating from the plane of excita-

tion into the plasma.
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In case B the minority isotope is the heavier one, W, < V&ﬁ .

_t .
We choose EO#O) l:o=0 and replace P‘ and P"' respectively

by
T
o -
i Ll P ! (23)
P oxp -_ ._.E_.;_—__..
+ 4x ! (24)

= | = . A .
where P‘q»”,_k and P‘ /Y)I qu [Vilo s a consequence, Eq. (20)

can be written in the form
1 -
(E.r)‘L - 7:(5 _ tot)

whose integral is

£ | F(E-ED

For E;<'E; defined by (22), these solutions are periodic and symmetric
about the z-axis. For Eiﬁ=E‘ the solution is aperiodic and bell-shaped,

while for E>E_ it is again periodic but does not change sign and

The ratio of the densities of the two isotopes is still given by

(14), (15) and (16) but with P‘ and PL replaced by (23) and (24)
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E.-E
V.l} = Z‘—‘l /% [ 2
", “, Ll % (1-¥) . (25)

the maximum attainable ratio therefore is

kS
ATy M [P —
Ny oo w(r-%) , (26)

6. NUMERICAL INTEGRATION

Numerical solutions have been obtained by direct integration of
Eq. (18) using the method of Runge-Kutta. Four typical cases are shown
on Fig. 2, 3, 4 and 5. 1In the cases Al and A2 the values of & and P&

. . 235 238 .
apply to the Uranium isotopes U and U , while the cases Bl and
. 20 22 . .

B2 represent the Neon isotopes Ne and Ne . The dimensionless
parameters chosen for these solutions are listed in tabel I, where Q

is the maximum concentration of the minority element in percent.

To obtain an idea of the actual physical values of the fields and
the wavelengths we have to compute the units of field and of distance
as given by (12) and (13). In the international system of units, MKSA,

they become
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()

3(411} ‘[l
<g=( ) B, ,

Z ** I o
- ot ~ }
1+ 4 ~24% Mo € R,
while
x
To’ B,
mn,,
S o S BV
As an example we choose B°= 0.1 Tesla, -r; = lo K ) ™ 10 ; 07

. . . 22 20 235 23
and we consider the two lsotopes mixtures Ne , Ne and U 3 , U 8.

Thus we obtain the values listed in table II.

7. CONCLUSIONS

We have demonstrated the existence of large amplitude non-
linear solutions of the wave equation for a three fluid plasma. It
represents a stationary left circularly polarized wave which creates
spatially periodic variations of the relative concentration of the two

ion species given by

" P9 E:L
wn
case A: = = -t .Mt’ [ o Y
“l “|° b Y("“) o 30 &'ro

or
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‘. .
case B: ? = & A [ M(e"*e‘“‘") .
a e ag(-Y) & B AT,

Collisions, which we have neglected, tend to broaden the resonances.
Tt will be important to keep the collision frequency, due to all
effects, small compared to the separation of the two isotope re-

sonances.

Vuee_ << o SL

’ If one wishes to enhance the separation

This is possible
by chosing &J very near to £, , or S that is X<ct or 1-¥<<y
then the condition on the collisiongbecomes more stringent

Ve << Mc\‘,g \fd.ﬂ., 0-—3)-&31%

Finally, any device for isotope separation based on the pondermomotive
force must be large compared to the Larmor radius of the ions which
is
3
AR,




Within the framework of the ideal three fluid theory the so-
lutions obtained are exact to any amplitude. This does not mean
that they represent physically realisable configurations since they
may be unstable. This will have to be investigated. Furthermore,
the solutions which we present are plane waves which do not fit into
any finite device. It is therefore not yet evident how ome should
use the ponderomotive force in a practical method for isotope separa-

tion.

Nevertheless, these idealized solutions show the existence of
the effect of separation which is large and therefore promising. It
should be possible to find configurations in a finite volume which
have the same property of segregating isotopes in space. This will

be the subject of a forthcoming report.
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FIGURE CAPTIONS
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TABLE I
X = Uranium Neon
A 6.35 107> 4.76 107°
(3‘ .9928 0.0882
0.0027 0.9118

R
? 0.9856 -0.8236

[}

Case Al Case A2

Case Bl Case B2

max

DN
Q (%)

0 1

.14 1.43
.75 3.77
.3 5.41

0 0

1 2.5

1.80 0.78
20.8 91.1
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TABLE TII
B, =0.1 Tesla, T. = 107k, =107 0,
eo
X = 0,5 Uranium Neon
A 6.35 10° 4.76 1072
P 0.9928 0.0882
H
P,_ 0.0072 0.9118
? 0.246 -0.206
(4]
m 3.96 10 2 ke 3.50 10 2°kg
E 14.9 V/m 137 V/m
o(C 8.84 m 7.20 m
? 1.42 10°° 1.205 10°%
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