February 1980 LRP 163/80

NUMERICAL TREATMENT OF THE QUASI-

LINEAR FAKE DIFFUSION

K. Appert and J. Vaclavik



Numerical Treatment of the Quasilinear Fake Diffusion

K. Appert and J. Vaclavik

Centre de Recherches en Physique des Plasmas
Association Euratom - Confédération Suisse
Ecole Polytechnique Fédérale de Lausanne

CH-1007 Lausanne / Switzerland

ABSTRACT

A formulation of the quasilinear equations is proposed which
allows for the nonresonant interaction of particles with damped
waves without leading to a "negative diffusion problem'.

In an application to current-driven ion-acoustic turbulence

the proposed equations are shown to be amenable to a numerical

treatment.
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1. INTRODUCTION

Ten years ago Vahala and Montgomery1 have pointed out that the
standard quasilinear theory of weakly turbulent plasmas may lead to
an ill-posed problem whenever initially unstable waves become damped
in the later evolution of a turbulent system. The basic equation of
quasilinear theory is a diffusion equation for the particle distribu-
tion function f(v,t), in velocity space whose coefficient D(v,t), is

not positive everywhere whenever damped waves are involved.

In subsequent publications2’3, however, it became clear that
the problem may be well posed, when the resonant and the nonresonant
wave-particle interactions are treated separately. This separation
has been achieved in two slightly different ways. On the one hand
Kaufman’ seperates the particle distribution function into two distribu-
tion functions, fo and f2, which are defined everywhere in velocity space.
The evolution of fO is proportional to the turbulent energy and is

governed by a diffusion equation with a positive coefficient D,, stemming

R’

from the resonant interaction. f2 in turn can be expressed directly in

terms of the turbulent energy and is in size proportional to it. On the
. 3 . .

other hand, Davidson separates the velocity space into a resonant and

a nonresonant region and shows that a negative diffusion coefficient DNR’

may only arise in the nonresonant region, where local features of the

distribution function go beyond the approximations made in the derivation

L. . 2,3 .
of the quasilinear equations. Both methods ’~ permit to demonstrate



conservation of particles, momentum and energy. However, as they stand
they do not permit an exchange of resonant and nonresonant particles in
course of time, a piece of physics which has been shown to be important
for the creation of high energy ions in the problem of ion-acoustic
4,5 . ' . .
turbulence. Davidson's method does permit this exchange under the
condition that the distribution function is approximated by an evolving
. . 6 . .
global function (e.g. a Maxwellian). The price to pay is a poor
description of the evolving distribution function in the resonant
. 5 . , ‘o . .
region. We therefore seek a formulation of the quasilinear equation which
has both the right conservation properties and no negative diffusion
problem, and which permits exchange of particles between the resonant
and the nonresonant regions without spoiling the detailed response of

the distribution function.

2. BASIC IDEA

The formulation we would like to put forward is neither sophisticat-
ed nor really original but convenient for numerical calculations. The
basic idea is in fact older than the dispute about the fake diffusion.
Kadomtsev7 mentions in his book the possibility of replacing f(v,t) in
the nonresonant diffusion term by f(v,t=o0) arguing that this replacement
results in a change of higher order than to which the equation itself

has been derived. 1In his formulation no negative diffusion problem
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arises because the nonresonant term is a simple source term and yet

all quantities are conserved and particle exchange is permitted.
However, the difference between f(v,t) and f(v,t=0) in the nonresonant
region is only small in a closed system. Whenever the system is driven
by an external force such as an electric field, this difference may be-
come substantial. 1In the ion—acoustic problem for instance, temperature
. 4,5

increases of one order may be observed. In such cases one may use

the following formulation of the quasilinear equation :

o 3 YR e
% % hTwtw b @)

where fM is a shifted Maxwellian with the same drift velocity and

temperature as f:

fd%- (fz) fM(L/‘, £) = Jﬂ&(ﬁ;) F(y £) 2

Hence the nonresonant term in Eq.(l) depends nonlinearly on integral
quantities defined by f and acts as a source term to the diffusion
equation. Eq.(l) possesses all the properties we have asked for, in
particular energy and momentum are conserved if the wave dispersion is
consistently evaluated with the function fM(Y’t)' Eq.(l) is only
correct under the restriction (3w/dt)/w << y where w and v denote the

waves' frequencies and growth rates respectively. In general, the
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quasilinear equation comprises on the right hand side terms pro-

7,8

portional to dw/d%t and 3f/3t. Obviously, Eq.(l) is only tract-

able by numerical means due to its integro-differential character.

3. APPLICATION TO ION-ACOUSTIC TURBULENCE

We describe now an application of the quasilinear equations in
the form of Eqs.(l) and (2) to the problem of ion-acoustic turbulence.
We shall compare the results with the ones obtained with what we call
the "inconsistent method'". The latter consists in treating the non-

resonant interaction as a diffusion process, fM = f in Eq.(1l), as long

as QNR is positive definite, in the opposite case the nonresonant inter-
action is simply neglected. This method is inconsistent in so far as
the total energy is not conserved when QNR is not positive definite. For

positive definite D however, both methods should yield roughly the same

NR’
result, because they are equivalent within the accuracy to which the

quasilinear equations are derived.

The plasma under consideration is assumed to be collisionless,
uniform and nonmagnetized. The electrons are hot (Te >> Ti) and drift

with a comstant velocity Yy < V4&, relative to a cold ion background
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which results in the generation of ion-acoustic turbulence in the

system. Since the problem exhibits axial symmetry with respect to the
current axis we confine ourselves, for convenience, to a two-dimensional
model. Even so the structure of the resonant interaction terms is rather
formidable. As for the electrons one can show that the nonresonant inter-
action is negligible compared to the resonant interaction as long as

vd2 << Te/me. In order to make the ion nonresonant interaction term
amenable to a numerical procedure we take the motion of ions as one-
dimensional. However, in their resonant terms, where 2-D behaviour is
important, we replace the 1-D §-function by the function obtained °

by averaging the 2-D §-function over the angles assuming that the iomn
distribution is isotropic. With this stipulation, the quasilinear:equa-
tions describing the problem can be given in the form
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i . . . . .
where f and £ are the electron and ion distribution functions,

respectively, Ik is the spectral distribution of the fluctuating electro-

static field, E is the electric field associated with the current, and
u= me/mi is the electron-to-ion mass ratio. Equations (1)-(4) are in
dimensionless units; the units of time, space, distribution function,
electric field, temperature and spectral distribution are, respectively,
-1 L

2
2
w o, AD, men/Teo, (47mn Teo) R Teo and 4mn TeoA

. Heren and T are the
pe D eo

electron density and initial temperature, respectively, and AD is the
Debye length. FEquations (1)-(4) are solved numerically using the

.. 9 . e . .
finite—element method”. The initial conditions are

fObs0) = ex,o{--zf-[(vx-va)*ﬂ;‘]} ’

Jii

W, ! o3
fteee) (27 7, )™ or (-3 )

I (t=0) = const.

It turnms out that the numerical procedure is not stable in the
nonresonant region where the changes of fi are merely due to the source

term. A slight change of Eq.(4), however, removes the difficulty: We
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replace the nonresonant term by

2 Me D 24
v (DNR“ 6ID“R\)5'£“ T 9 ‘lpmzl ‘3‘%:

where ¢ is a small positive number, typically 0.05 to O0.1. The term
proportional to GEDNRI provides us with a small positive diffusion
in the nonresonant region which is big enough to make the procedure
stable. The new equation is equivalent to Eq.(4) within the accuracy

of the general quasilinear equation.

In Fig. 1 we show the temporal evolution of the total electro-
static wave energy W, for the initial conditions vy = 0.12, Tio = 0.02,
W/n Teo =4 x 10_10 and ¢ = 1/1836. Both methods used yield the same
overall behaviour. As long as the wave energy is increasing both
methods are consistent. During this phase the relative difference
between the two energies is of the order of 10%. This difference pro-
vides one with a feeling of how correct either onme of the methods is.
The effect of the inconsistency is, at least in the problem at hand,
of the same order as the above-mentioned difference. This effect
should be most pronounced at the quasi-saturation time where damped and
growing waves are equally important. At later times no further deviation
is observed, because the nonresonant interaction becomes negligible

compared to the resonant interaction.



In the framework of turbulence calculations a difference of
107 is immaterial, because experimental uncertainties are usually
much greater. Seen from this standpoint therefore, the two methods
are equally good; In general we would nevertheless opt for the
consistent treatment of the nonresonant interaction, because it
does not essentially increase the numerical effort over the one
needed for the inconsistent treatment. Moreover, it could well be that
in a problem other than the ion-acoustic one the inconsistency would

affect the final result more pronouncedly.

4. CONCLUSION

We have proposed a formulation of the quasilinear equations which
permits us to treat the nonresonant interaction of particles with
damped waves in a consistent manner. In a numerical application to
ion-acoustic turbulences we have shown how this formulation can be used.
We have certainly not enriched the theory of weak turbulence from a
formal point of view, but we have shown in a pragmatic manner how this

theory can be used when damped waves are in the game.

../10



- 10 -

ACKNOWLEDGEMENTS

We are indebted to Dr. A. D. Cheetham, who carefully

read and criticized the manuscript.

This work was partly supported by the Swiss National Science

Foundation.

/11



_11_

REFERENCES

G. Vahala and D. Montgomery, J. Plasma Phys. 4, 677 (1970)

A.N. Kaufman , J. Plasma Phys. 8, 1 (1972)

R.C. Davidson, Methods in Nonlinear Plasma Theory, (Academic,

New York, 1972)

C.T. Dum, R. Chodura, and D. Biskamp, Phys. Rev. Lett. 32,

1231 (1974)

K. Appert, R. Bingham, J. Vaclavik, and E.S. Weibel in 9th European

Conference on Controlled Fusion and Plasma Physics (Culham Lab., 1979) BP9

M.Z. Caponi and R.C. Davidson, Phys. Rev. Lett. 31, 86 (1973)

B.B. Kadomtsev, Plasma Turbulence, (Academic, New York, 1965)

W. Horton, Jr. and Duk-In Choi, Physics Reports 49, 273 (1979)

K. Appert, T.M. Tran, and J. Vaclavik, Comput. Phys. Commun.

12, 135 (1976)

/12



- 12 -

FIGURE CAPTION

Fig. 1 Temporal evolution of the electrostatic wave energy W,
according to our method (————) and according to

the inconsistent method (-———=-—- ).
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