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ABSTRACT

A parametric study of the loading resistance @f antennae for
Alfvén wave excitation has been performed using a ﬁumerical code
based on ideal MHD equation. It is found that the resistance ex-
hibits a resonant enhancement if a collective mode is excited.

It is -shown that this feature can be used to optimize the antenna
and rf generator in such a way that an efficient emergy absorption

takes place at the innermost plasma surface.




1. INTRODUCTION

It is widely recognized that supplementary hegting, in addi-
tion to the basic ohmic heating, will be necessary to bring a
tokamak reactor into the ignition regime. One of the many schemes
proposed for this purpose is resonant absorption of Alfvén waves
in a nonuniform plasma {1,2}. It has the basic merit of using low-
frequency rf fields for which high-power sources afe readily

available.

The basic theory for the rate of energy absor@tion using this
scheme has been given by Chen and Hasegawa {3} usiﬁg a simple
slab geometry. They found that the absorption raté is strongly en-
hanced when the nonuniformity of equilibrium is sharp and the driv-
ing frequency is close to the frequency of the Weakly—damped sur-
face eigenmode {4}. To some extent, this feature was also indicated
in the calculations of Tataronis and Grossmann for a cylindrical geo-

metry {5}.

An objective of the present paper is to show ﬁhat a similar
phenomenon takes place in an equilibrium with an aﬁbitrary nonuniformi-
ty. In particular, the energy absorption rate alwgys increases when-
ever the applied frequency approaches the real par# of the frequency
of a collective mode of the plasma response {4}. Essentially, the
collective mode is a remnant of a global mode of tﬁe system, which
disappeared within the Alfvén continuum, and consequently its frequency
became complex. The weakly-damped surface eigenmo&e is just a special
type of collective mode. The fact that the absorpﬁion rate exhibits
a resonant enhancement due to the excitation of a &ollective mode can
be used to optimize the antenna and rf generator iﬁ such a way that

optimum coupling to the plasma is achieved.




In Section 2 the computational model used is Briefly
described, while the results of a parametric study iof the load-
ing resistance and Q-factor for Alfvén wave excitatiion are pre-

sented in Section 3.

2. COMPUTATIONAL MODEL

For the sake of simplicity, the unperturbed plasma is de-
scribed by a cylindrically-symmetric equilibrium wilth the follow-
ing characteristics : Bz =1, jz = jo(l—rz)a and p = 1.01 - r2
in dimensionless units, where the plasma radius is%unity. Here Bz
is the axial component of magnetic field, jz is thd plasma current
density and p is the plasma mass density. The free parameters jo
and a are varied within certain ranges such that zeko plasma pressure
at the plasma boundary results in B-values of a feWQper cent on

the axis.

The Alfvén waves are excited by an ideal antenna consisting of
2m helical current sheets (of vanishingly small thickness) which
are located at the radius T, = 1.2 in the vacuum region between the
plasma column and the perfectly conducting wall of radius 1.5. The

sheets are arranged in such a manner that the resulting current den-

sity is of the form {Je, Jz} =‘{k,-m/rA}r cos(wt)cab(m@+kz)/2, where
@ is the azimuthal angle, 2n/k is the axial wavelength of winding and
w is the frequency of the rf gemerator. The normalization is chosen
such that the total current in each sheet is equal to unity. Toroi-
dal geometry can be simulated by setting k = n/R, where n is the

toroidal mode number and R is the major radius of a torus.




|
The plasma motion is described by linearized ideal MHD

equations which are complemented by a source term tespresenting

the excitation. The equations are solved by means&of the spec—

tral code THALIA {6}. In fact, since we seek a stationary plasma
response the code was slightly modified by including a small arti-
ficial damping in the equations of plasma motion. ‘Once the station-
ary response is found we can compute the loading reésistance and
Q-factor (the ratio of reactance and resistance) by a standard pro-
cedure. At the same time, however, the magnitude of the artifi-
cial damping must be chosen sufficiently small that the results do
not depend on it. The problem treated here is analogous to the

case of a damped harmonic oscillator when acted on‘by a force with

a continuous spectrum {7}. The total energy absorbed by the oscil-
lator does not depend on the attenuation decrement when the attenua-
tion is weak. Thus, we calculate the "true" resonant absorption with-

out specifying a dissipation mechanism.

3. RESULTS AND DISCUSSION

In the first study we investigated the excita&ion of them=1
mode in the equilibrium with jo = 0.6 and o = 2. The frequency
and the axial wavenumber k were varied within a domain defined by
minwA(r) S wg min(wA(l), wmax)’ where wmax W?S chésen such that
O e < mianF(k). Here v, (r) = [k + mBe/r[/pé is Fhe Alfvén continuum,
B@ is the azimuthal component of equilibrium magnetic field and wZF(k)
is the frequency of the second eigenmode of the fast magnetoacoustic
branch. The computed values of the loading resist&nce R (per unit
length of plasma) were then plotted in the wk—plané. The resulting
altitude chart of R(w,k) for k > o is shown in Fié. 1. One can ob-
serve that the resistance peaks along a certain 1iﬁe w = wc(k). We
argue that this line roughly represents the real part of the frequency
of a collective mode. There are two reasons for tﬁis assertion.
Firstly, we repeated the same computations with thé equilibrium plasma

current switched off. 1In this case one can determine approximately the




behaviour of the line w = wc(k) by a semi—quantitdkive analysis.
This behaviour agrees well with that obtained from the computations
and is qualitatively similar to the case with the @urrent included.
Secondly, we can see by means of the spectral cod% that when the
line emerges from the continuum it represents a di&crete (global)
mode - kink. The chart of R for k < o (not shown)i is similar to
that for k > o except for the location of the wc(kb—line which is

shifted towards the plasma boundary.

Fig. 1 can now be used to determine R as a function of k or
w for a fixed resonance surface. To this end, we %imply draw a
line wA(r = const) on the chart (in Fig. 1 the posﬁtion of the
r = .8 surface is indicated by the dashed line) an@ infer the cor-
responding values of R and k. Fig. 2 shows R and khe Q-factor
versus k for three different resonance surfaces: r=.3,r=.5
and r = .8. It is easily seen that for each surfa&e the loading
resistance has a maximum M(r) at a definite value bf k. At the
same time, the corresponding Q-factor is reasonabl& small, which
implies a good coupling. Moreover, the plot indic%tes that for a
given equilibrium and fixed value of m there exist% an optimal re-
sonance surface associated with a maximal resistan&e maxM(r). 1In
order to find the position of this surface we plot@M(r) versus
the radius as shown in Fig. 3. We see that for tﬁe case consi-
dered the optimal surface is located at r = .42.

i

Next, we tried to establish how the optimal rksistance depends
on the characteristics of the plasma equilibrium. §For this purpose,
we repeated the above-described computations with &ifferent values
of the parameters jo and o. The dependence of the%quantity M(r)
upon the value of jo is demonstrated in Fig. 3 for%the case where
o = 2. We notice that for a fixed current profilef the position of

the optimal resonance surface is shifted towards the plasma axis

when the current increases. At the same time the bptimal resistance




is enhanced. Thus, in plasmas with higher PR-values one can expect

an efficient energy absorption at the innermost suﬁfaces. A peak-

ing of the current profile, the total current being fixed, can have

a similar effect. As can be seen from Fig. 4, the optimal resonance
surface is shifted towards the plasma axis when th@ current profile

is steeper. For a very peaked current the energY‘#bsorption seems

to be equally good for all inner surfaces. Also we varied the boundary
value of the plasma density. It turned out that tﬂe absorption is

not very sensitive to this value. A variation witﬂin the range .01 - .1

resulted in a variation of the resistance by a few |per cent.

In the last study we tried to obtain some insﬂght into Canobbio's
heating scheme {8} in which a strong absorption isfpredicted to occur
near the singular surface defined by k = —mBe/r. We investigated the
excitation of the m = -2 mode. In general, we fouﬁd that typical values
of the loading resistance are not very different fﬂom those of the case
with m = 1. However, the position of the optimal #urface is shifted
towards the plasma boundary. For the Canobbio casé¢ we considered two
singular surfaces r = .8 (k = .3) and r = .4 (k = .5). The excitation
frequencies were chosen in such a manner that the ﬁeSulting resonant
surfaces were close to the singular surface. The ﬂesults are shown in
Fig. 5. We see that in both cases the resistance ﬁapidly decreases
with the frequency (resonant surfaces approach the singular one) and
the Q-factor increases. This can be understood iféwe invoke the fore-
going arguments about the collective mode. The apﬂlied frequencies
are very low, and consequently far from the frequency of the collective
mode. Thus, the heating scheme considered does noﬁ seem to be an

optimal one.

In conclusion, we have shown that the structure of the antenna and
the frequency of the rf generator used for Alfvén ﬁave excitation can
be optimized in such a way that an efficient energy absorption takes

place at the innermost plasma surface.
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FIGURE CAPTIONS

Fig. 1

Fig. 2
1i

Fig. 5

Altitude chart of the loading resistance

R(w,k) (divided by 27) for m = 1, jo =,

Loading resistance (solid lines) and Q-f
lines) versus the axial wavenumber k for
resonance surfaces. The parameters used

as in Fig. 1.

Maximal loading resistance versus the po
sonance surface r for three different eq
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o = 2,

Maximal loading resistance versus the po
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same equilibrium current; m = 1.

Loading resistance (solid lines) and Q-f
(dashed lines) versus the frequency in t
of two different singular surfaces. The
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