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ABSTRACT

The heating of toroidal plasmas by resonant absorption of
Alfvén waves is considered in the framework of ideal MHD. We show
that the overall picture of Alfvén wave heating in a fat torus does
not fundamentally differ from that in a cylinder. The toroidal plas-
ma may efficiently be heated internally when a collective mode is
excited. The main toroidal effects are a shift of the resonant sur-
face towards the plasma centre and an increased reactive power which

shows up as enhanced motion near the plasma edge.




1. INTRODUCTION

Several years ago resonant absorption of Alfvén waves in non-

L

uniform plasmas was proposed as a supplementary heating scheme

for magnetically-confined fusion devices. Up to now the idea has been
tested experimentally on pinch- and stellarator-like devices 3,455 and
it seems that energy may easily be deposited in the plasma by this
method. It remains to be seen6 whether this method is applicable to

tokamaks as well.

The basic ideal MHD theory for the rate of energy absorption
using the Alfvén wave heating scheme has been given by Chen and Hase-
gawa7 using a simple slab geometry. They found that the absorption
rate is strongly enhanced when the nonuniformity of the plasma equilib-
rium is sharp and the driving frequency is close to the frequency of
the weakly-damped surface mode. Recently, we have shown8 that a sim-
ilar phenomenon takes place in a cylindrically-symmetric equilibrium
with an arbitrary nonuniformity. On the other hand it has frequently
been conjectured that it might be impossible to heat the interior of
toroidal plasmas with Alfvén waves. The concern was that the pump
might more easily couple to resonant surfaces near the plasma edge
than to those in the interior of the plasma. The question is whether
or not the toroidicity may substantially modify the results obtained
with the cylindrical models. In the present paper we investigate Alfvén
wave heating of toroidal axisymmetric plasmas to answer this question.
We use an ideal MHD model for our investigation which allows us to com-

pute the plasma loading resistance and reactance.

The paper is structured as follows. 1In ch. 2 we present the equilib-
rium and the antenna structure used in our numerical model. Ch. 3 con-
tains a short review of the physics relating to Alfvén wave heating.

In ch. 4 we mention some numerical details and explain the limits of
our computational model. 1In ch. 5 and ch. 6 we present the physical re-
sults concerning mode structures and energy absorption. Finally, we

draw the main conclusion in ch. 7.




2. COMPUTATIONAL MODEL

For the sake of clarity, the unperturbed plasma is described
by a simple one-parameter class of Solovev's equilibrium.g’10 The
free parameter is R/a, the aspect ratio, where R and a denote the
major and the mean minor radius of the torus respectively. The char-
acteristic features of the chosen class of equilibria are the safety
factor, q, = 1 on the axis, the toroidal magnetic field and current

profiles of the form B, = 1/d and jT « d and nearly circular plasma

T
cross—-sections, d being the radial coordinate measured from the main
axis of the torus. For an infinite aspect ratio jT is constant with-
in the plasma. Note that the toroidal field BT is a vacuum field.

In table 1 the safety factor on the plasma surface, g and the mean

total B are given for some values of the inverse aspect ratio, a/R.

Table 1 a/r q, B {7}
0.1 1.04 1.0
0.2 1,18 3.7
0.25 1.31 5.4
0.275 1.40 6.4
0.3 1.52 7.2
0.333 1.74 8.4

The mass density has a parabolic profile falling to 10% of the centre

value at the plasma edge.

The Alfvén waves are excited by an ideal infinitely thin antenna
which is located in the vacuum region between the plasma torus and a
perfectly conducting shell. The cross-sections of the antenna and the

shell form concentric circles around the magnetic axis of the plasma.




Their radii are o) = 1.6 a and oy = 2 a respectively. The spatial
dependence of the surface current density flowing in the antenna is

given by

]
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together with the condition div J = 0. Here m and n denote the po- '
loidal and toroidal mode numbers of the antenna structure, © and ¢
are the poloidal and toroidal angles, BTo/u0 is the intensity of the
toroidal field on the magnetic axis and IS and I are dimensionless

IA = 1 or IS =1, IA = 0.

. S
currents. These are taken to be either I

The first combination corresponds to an (m,n) — helical antenna
structure with a total current per "wire" of aBTo/uo. The latter de-
scribes the superposition of an (m,n)~, and a (-m,n) - helical antenna
with a current per 'wire" of a BTO/Zuo. As for the currents all other
quantities in this paper are given in dimensionless units. The units
of length and time are a and R/cAO respectively, the Alfvén velocity
(cAO) is evaluated on the magnetic axis and the absorbed power per

. . . 2
unit length of the machine scales with a B .
g mac p sca o To/uo
The plasma motion is described by the standard ideal MHD

equations

IR

pf = E(i) (2)

supplemented by the appropriate boundary conditions. Modified ver-
sions of the Lausanne stability codes THALTA (1D)11 and ERATO (2D)12

have been used for their solution.




3. CONTINUOUS SPECTRUM AND RESONANT ABSORPTION

For the interpretation of our numerical results it is important
to have a thorough understanding of the basic physics underlying
Alfvén wave heating. We therefore review briefly the most important

points.

The Fourier transform of eq.(2) is a linear eigenvalue problem

~wotpf = F(§). (3)

There are 3 classes of eigensolutions to this equation: the fast and
slow magnetoacoustic waves and the Alfvén waves. In nonuniform plas-
mas the Alfvén waves and the slow waves exhibit continuous spectra;
there exists an eigenmode satisfying eq.(3) for every frequency in a
certain range. These eigenmodes have the character of distributions
in space. They are not square integrable, but their superposition

yields integrable, physically meaningful functions.

To be specific let us consider Alfvén waves in a cylindrically-
symmetric equilibrium. Eq.(3) may then be Fourier transformed with
respect to 0 (poloidal angle) and z. We therefore look for eigenmodes
of the form exp[}(m@ + kz)}. We will find that to any frequency w which
meets the local Alfvén frequency (Bem/r + sz)//Eﬁo, on some point Tos
within the plasma, there exists an eigenmode which is singular at ro.
The class of the Alfvén modes constitutes an ensemble of infinitely

many oscillators, continuously distributed in space and frequency.

Imagine now that such a system is to be excited with a given pump
frequency wp within the range of the continuum, starting at time t = O.
Initially a broad band of frequencies is excited, but as time progresses
the bandwidth tends towards zero and yet infinitely many modes remain in
resonance with the pump and grow in amplitude. The system therefore,

"absorbs" emergy at a constant rate by increasing the energy content




of an ever diminishing thin layer around the resonant surface at

r,. Obviously, this is an unphysical answer. The inclusion of

any physical dissipation mechanism, however small, will prevent

the system from evolving so far. It will attain a stationary

state where the dissipation in the neighbourhood of the resonant
surface just balances the energy inflow from the pump. The important
point now is that the absorbed energy depends on neither the spe-
cific dissipation mechanism nor its quantitative value. An ana-
logues case is that of a damped harmonic oscillator being acted upon

by a force with a continuous spectrum.

There are two different ways to calculate numerically the
""absorbed" power in the framework of ideal MHD. The first is to
solve eq.(2) subject to the appropriate boundary conditions as an
initial value problem. The spatially discretized problem then

takes the form

.
.

oo
Ix

= ;ﬁ'ff + S au A?,t' : (4)

where x is the discretized displacement, and A, B and S are the
kinetic and the potential energy matrices an&_tﬂg pump vector. The
second way of doing it is to add an artificial damping term to
eq.(2) and asking for the stationary state behaving as exp(iwpt).

The equation to be solved then becomes,
(-t + 2epap) Brx = A-x + S (%)

which is a linear algebraic equation for x. This approach demands
much less computer time than the one using eq.(4). It provides
one however, with less physical insight into resonant absorption

than the former.




For these reasons both approaches, eq.(4) and eq.(5), have
been made in a 1D cylindrical model, but only eq.(5) has been used
in 2D. TIllustrative results from the 1D codes are given in Figs. 1
and 2. In Fig. 1 an evolutionary run is documented by the spatial
profile of the poloidal displacement E@’ at three subsequent times.
The increasing concentration of energy around the resonant layer at
r = 0.5 is evident. In the lower part of the picture the absorbed
power, defined as the time average of the total power delivered by the
antenna, is plotted versus time. The arrows indicate the times at
which ge is shown. Most strikingly, after two pump periodes 2w/wp,
the value of p is already in the vicinity of the asymptotic value
p = .021. The very low frequency transient at times wpt/Zw < 30
is a slow magnetoacoustic wave excited when switching on the pump.
In Fig. 2 the spatial wave forms of Re go are shown as produced
with the stationary version of the code. Three different values
of the artificial damping coefficient v, have been used. The calcu-
lated absorbed powers agree within 10% with each other and with that
obtained with the evolution code. All the oscillations far from the

resonant surface are damped in this case.

There remains one important piece of physics to be mentioned:
the collective plasma oscillations with frequencies in the continuum.
Analoguous to the Vlasov operator in velocity space whose Fourier
picture yields a continuous spectrum associated with the distributional
Van Kampen eigenmodes and whose Laplace picture yields the weakly-
damped collective oscillations of Landau, the ideal MHD operator in
configuration space has its distributional eigenmodes and its damped
collective oscillations. In the case of interest here the collective
mode is a remnant of the first fast wave which has disappeared in the
continuum. It may reappear as a real eigenmode in the Fourier picture
in either unstable situations (kink) or in equilibria with disconti-

nuities (surface eigenmode).




4. LIMITS TO THE COMPUTATIONAL MODEL

The discretization in space imposes a fundamental restric-—
tion on the time to which the evolution code may be run and also
a lower bound Vs On the artificial damping rate v, which is
used in the stationary code. The discretization in space results
in a discretization in frequency. Numerically the continuum is
approximated by a discrete spectrum in which the frequencies are

related to the local Alfvén frequencies on the radial mesh.

Therefore, to each mesh width there corresponds a frequency
spacing Aw. A minimum constraint on t or v ., may be obtained
max min
by requiring that the code should be unaware of the discreteness
of the continuum as long as at least two frequencies are resonant

with the pump. Hence

t 4 Ay, = arfow,
(6)

where Aw has to be evaluated at the resonant surface.

To illustrate this we present in Fig. 3 the absorbed power
versus a wide range of artificial damping rate v, as determined
with the 2D code. The equilibrium used had an inverse aspect ratio
of a/R = 0.275, and in the following we will refer to this value
as the TCA—value.6 The excitation was m =+ 1, n=2. Two pump
frequencies have been chosen differing by Aw/2. The frequency
wp = 3.58 was equal to an eigenfrequency in the "continuum", the

frequency wp = 3.61 on the other hand lay in between two eigen—




frequencies. From Fig. 3 it can be seen that quite accurately

for v Voin C Aw = 0.06 the system does not feel distinct eigen-—
values anymore and produces the same value of p for the two fre-
quencies. Also p depends only very weakly on the value of v:»vmin:
less than 207 variation of p when v varies over an order of magni-

tude.

It is important to mention here that all our results are affect-
ed by some uncertainty related to the choice of v. This becomes even
clearer when inspecting the two-~dimensional mode structures of the
resonant Alfvén waves. In Fig. 4 we show the mode structures as ob-
tained with v = 0.03 ‘and v = 0.3 in the runs made for Fig. 3,
mp = 3.58. The plots represent the real part of the displacement
£ = (gs, £x) on the gridpoints of the nonorthogonal coordinate system
s, as used in ERATO.12 The coordinate s labels the surfaces of con-
stant poloidal flux, and x is the natural measure for the poloidal
angle in a toroidal equilibrium. In the case of an infinite aspect
ratio s and x become r and © respectively. The main axis of the torus
lies to the left of the cross-sections shown in Fig. 4. The innermost
excited surface is the m = 1 resonant surface followed by them = -1
surface. Near the plasma edge higher m modes are excited by toroidal
effects. These modes are barely to be seen in Fig. 4a but show up
very clearly in Fig. 4b. The difference comes from the fact that the

modes near the plasma edge have greater Aw then the modes m = 1 and

m = -1. Fig. 3 shows that v = 0.03 is an absolute minimum for the
modes m = + 1. This value is définitely too small forithe other

modes to give a physically meaningful contribution to the overall ab-
sorbed power. They are appropriately treated with v = 0.3 (Fig. 4b).
Here, we should pay attention to the fact that the absorbed power
barely changes for v>0.03 in Fig. 3. This is the first indication
for our final finding that the modes near the plasma edge are badly
coupled to the pump. They do, however, contribute to the reactive
energy in the plasma as can be seen from the substantial displacements

near the plasma edge.
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For the choice of v we now have to make some form of compro-—
mise. On the one hand we would like to have the artificial damp—-
ing coefficient v much smaller than the pump frequency such that
the physical results are not affected. On the other hand higher
surfaces could be missed if v is not of the order of the pump fre-
quency. This situation is met especially in equilibria with small
mass density near the edge. In general these uncertainties may be
assessed by varying the nonequidistant radial mesh and the value
of v. 1In this paper up to 80 radial and 30 azimuthal intervals
have been used to discretize the upper half poloidal plane. The
values of v as well as the meshes have been varied in order to pro-

duce error bars on p (see e.g. Fig. 10).

5. MODE STRUCTURES

We now study the influence of toroidicity on the mode structures
in detail. 1In a torus the toroidal field BT varies to lowest approxi-
mation according to 1/ (1 + a/R cos X) on a magnetic surface. This
cosine-dependence causes a linear coupling of cos(my) — modes to modes
with cos(mtl)yx. This coupling is evidenced in Fig. 5. The mode
structure resulting from an (m=1, n=2) - excitation of the TCA~equilib-
rium has been Fourier-analyzed along x. In Fig. 5 the radial dependence
of the 5 dominant Fourier amplitudes of the poloidal displacement gg,n’
are shown in the vicinity of the m = 1 resonant surface. The ratioX
between neighbouring amplitudes is roughly given by a/R. In Fig. 6
the maximum amplitudes at the resonant surface are plotted versus a/R.
They are normalized by Ei’z. The dashed lines indicate that the compo-
nents m # 1 vanish for infinite aspect ratio. We conclude that the
pure m = 1 angular dependence at the resonant surface m = 1 of a straight
cylinder becomes a combination of different m-numbers in the case of a
torus. Due to this fact an m = 1 pump may also excite modes at sur—

faces m # 1. This phenomenon is documented in the two following

pictures.
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In Fig. 7 we show the local Alfvén frequencies for the case

of a straight cylinder corresponding to the TCA-equilibrium and

a? = (n+m/3)% /o (7

The correspondence between 1D and 2D quantities is given by

r=s, k= n/R, 9= PB;./(RBO)‘ (8)

?

We have chosen the case n = 5 for two reasons. Firstly, more sur-
faces m # 1 appear than in the previously discussed case n = 2}
and secondly, the case mn = 5 is particularly interesting with re-
spect to power absorption as will be shown later. The arrows in-
dicate where the surfaces o for different m should lie given the

pump frequency, wp = 6.73.

In Fig. 8 we show some details of the mode structure for this
excitation. In order to make the relation to Fig. 7 evident, we
have copied the arrows from Fig. 7 to Fig. 8 using the correspon-—
dence, eq.(8), s = r. Only the dominant Fourier components are
plotted versus s together with the m = 1 component. The complete
picture would contain lower peaks of other m-numbers underneath
every peak as has been shown in Fig. 5. There are two striking
features in this mode structure. First of all there is a syste-
matic shift of the 2D resonant surfaces S towards the plasma
centre as compared to their 1D location r_. The appearance of
m = -5 and m = -6 surfaces near the plasma edge is also due to this
toroidal shift. Secondly, the surfaces m = 0 through -3 are not
dominated by their intrinsic angular dependence but by a wave
number decreased by one, i.e. m = -1 through -4. The intrinsic
dependence manifests itself in the increasing height of the wings
situated to the right of the respective maxima as one goes from

m=-1 tom= -4,
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6. ENERGY ABSORPTION

Judging from the mode structures in Fig. 8, one tends to be-
lieve that toroidal effects play a dominant role in Alfvén wave
heating. This is, however, not always the case as far as the ab-
sorbed power is concerned. 1In Fig. 9 we show results which seem
at first sight to be paradoxical. They demonstrate that under cer-
tain conditions the 1D and the 2D models agree better with increasing
inverse aspect ratio a/R. We show the absorbed power per unit length
of the machine p, and the Q-value, i.e. the ratio of the reactive
power to the absorbed power for an excitation m = 1 and n = 2. The
pump frequency is chosen such that the resonant surface lies at
r, = 0.5 in the 1D model. The dominant physics of this picture, in-
creasing p for increasing a/R, can be understood from the earlier

2,7,8

1D studies of Alfvén wave heating. As we have chosenn = k R = 2

in this rum, the relevant 1D wave number -a k varies with a/R.
In the 1D studies efficient absorption in the interior of the plasma
has only be found when a k and wp were near to the resonance

condition for a collective mode. The parameters in Fig. 9 are such

that we approach the resonance with a collective mode when increasing

a/R. The error bars on the absorbed power indicate the fact thét
it is difficult to achieve good convergence with respect to v
when the absorbed power is low. Within these error bars we do
not detect any toroidal effect on the absorbed power. The re-
active power on the other hand, is affected by the toroidicity.
Astonishingly, this effect is greater for greater aspect ratio.
For a/R = 0.1 the difference between 1D and 2D is due to the re-
maining toroidal shift which is of the order of 10%. TFor

a/R = 0.3 the effect of the toroidal shift which is 20% here,

is masked by the resonance with the collective mode.
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In Fig. 10 we show the resonance with the collective mode ex-
plicitly by varying the wave number n for the TCA~equilibrium with
an m = 1 antenna and a pump frequency chosen such that the 1D re-
sonant surface lies on r = 0.5. 1In spite of the fact that the cor-
responding 2D resonant surface s_> is shifted towards the plasma
centre, the 1D and the 2D models produce practically the same re-
sults. This is one of the rare cases where toroidicity has a bene-
ficial effect: Compared with a cylindrical plasma it is easier
to heat the inner region of a toroidal plasma. On the other hand
the tendency seen in Fig. 9 of a higher Q-value in the toroidal
case is confirmed here. However, its numerical value at resonance
Q = 6, is acceptable from the experimental point of view, where the

requirement is that Q should be less than 10.

From Fig. 3, 9 and 10 we draw the conclusion that if a collective
mode favours a certain surface, practically all the energy may be
absorbed at that surface. Yet the results shown in the last picture,
Fig. 11, question to a certain extent this firm conclusion. We
show the absorbed power versus the pump frequency for TCA excited with
m=1, n =2, The artifical damping coefficient was on the low side,
i.e. v N Aw , where Aw was evaluated at the resonant surface m = 1.
The location of the resonant surfaces r (1D) and s, (2D) are indicat-
ed for each run. We see that the agreement between 1D and 2D is per-
fect for surfaces lying well inside the plasma. For an excitation
near to the plasma edge, however, the 2D model predicts absorbed
powers which exceed the corresponding 1D values by a factor 4. With
the present version of our 2D code we are unable to predict in these
cases where the energy is absorbed. In the present version the power
is evaluated by calculating i Ef at the antenna. We shall be able
to give a definite answer, once a local evaluation of the energy flux

within the plasma is implemented in ERATO.
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7. CONCLUSIONS

We have shown that toroidal plasmas with circular cross-
section may be heated right inside by choosing an antenna structure
and a pump frequency such‘that a collective mode is excited. For
Solovev equilibria of aspect ratios as small as 3 we do not find
any toroidal effects on the absorbed power when the resonant sur-
face is placed inside half the plasma radius. We have demonstrated
the suitability of a 1D model in this case. Even with toroidicity
the power is absorbed in the interior of the plasma contrary to cer-
tain pessimistic conjectures which have been made in the past. On
the other hand we found that toroidicity considerably shifts the
location of the resonant surfaces towards the plasma centre and also
that it increases the reactive energy contained in the plasma. The
resulting Q-value is acceptable from the experimental point of view.
The increased reactive energy may be explained by the excitation of
modes with high m~numbers near the plasma edge which could have a
deleterious effect on the plasma transport properties in this region.
On the Wisconsin stellarator4 enhanced transport has in fact been
observed and ascribed to the formation of magnetic islands in some
resonant regions. It might be that similar phenomena will happen in
Tokamaks.6 Unfortunately, it is impossible to anticipate an answer
on the basis of our ideal MHD model because the amplitudés of the
excited fields are entirely determined by the artificial damping
rate used in the model. The inclusion of real resistivity will im~
prove this situation to some extent. A complete description of
Alfvén wave heating would also demand the inclusion of kinetic

effects.14
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FIGURE CAPTIONS

Fig.

Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1

3

4a
4b

10

11

Time evolution of poloidal displacement and absorbed

power.

Stationary response of poloidal displacement and absorbed

power for different artificial damping rates versus radius.
Absorbed power versus artificial damping rate.

Stationary response of plasma displacement in poloidal plane

for v = 0.03 and v = 0.3.
Fourier amplitudes near resonant surface for a/R = 0.275.

Fourier amplitudes at resonant surface versus inverse

aspect ratio.

Local Alfvén frequencies versus radius in 1D model for

n =25,

Dominant Fourier amplitudes versus radial coordinate s in

2D model.

Absorbed power and Q-value versus inverse aspect ratio
according to 1D and 2D models. Resonance with collective

mode is approached for high a/R.

Absorbed power and Q-value versus toroidal wave number for

a/R = 0.275 according to 1D and 2D models.

Absorbed power versus pump frequency. Location of resonant

surfaces is indicated by‘rS (1D) and s. (2D).
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