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Abstract

In magnetohydrodynamic spectral codes, the change in the
vacuum potential energy contained between the plasma sur-
face and the conducting shell must be expressed in terms

of the deformation of the plasma surface. For the case of
a toroidal axisymmetric configuration a numerical scheme
based on a Green's function formulation of the vacuum
problem is presented. The results of test runs demonstrate
that the method works well when the shell is arbitrarily

close to the plasma surface.



1. Introduction

In the numerical computation of the ideal MHD spectrum of toroidal axi-
symmetric plasma configurations, the contribution of the vacuum potential
energy in terms of the displacement at the plasma surface can be computed,
either by a direct solution of a Laplace equation in the vacuum region {1}
or by a Green's function technique which requires only a solution of coupled
integral equations on the boundaries {2}. This last technique looks very
attractive but its implementation has presented difficulties whenever the
distance between the plasma and the boundary is of the order of or smaller

than the discretization length on the surfaces.

The object of this paper is to describe a method which works equally well
for any distance between the plasma and the shell. As the shell is progressi-
vely brought closer to the plasma, we have verified that the contribution of
the vacuum becomes infinite as it should, leading to the correct rigid bounda-
ry condition in the limit of the shell tight against the plasma. This method

has been implemented in the ERATO {3} and PEST stability codes {4},

2. The Vacuum Potential Energy

We consider an axisymmetric toroidal plasma surrounded by a vacuum region,

itself limited by an infinitely conducting shell (Fig. 1). The vacuum potential

energy 6WV is given by
W= %LdT(cSBZ), (1)

where &B is the perturbed magnetic field, which satisfies the equation
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with the boundary conditions

v+ 6B =0 on the shell(s) (3)

v - 6B known on the plasma in terms of the normal

displacement. The normal vector v always points towards the vacuum region.
Introducing the scalar potential ¢, such that

§B = V¢ , (4)

the potential energy can be reexpressed as an integral over the plasma

surface (p) only

sW = g};dswg%) (5)

where ¢ satisfies the equatiom

bs = 0 (6)

0 (7

and d¢/dv
on the shell.

The problem is then to evaluate §W in terms of d¢/dv on the plasma surface.
This is done by solving equ. (6) for ¢(§) with the boundary condition (7)

and substituting into equ. (5).

3. Transformation into an Integral Equation

The scalar potential ®(x), solution of equ. 6, can be written as

1 3G(x,x") 3d(x")
$(x) =57 5 [¢>(§') o~ G(x,x") =57 ds'

P
(8)
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with

G(i,?_{_') = —l—_—_ 3 (9)

where x' is the integration variable and x is a point in the vacuum region.

By letting successively the value of x in equ. (8) approach a point xp on

the plasma surface and xg on the shell, we obtain a system of 2 integral
equations for@P(zp) and @S(Es) in terms of the known %%Ip on the plasma sur-
face {5}. The integrals are discontinuous functions of x as x approaches the
boundary. To avoid these singularities we add and subtract integrals which

have the same discontinuities:

(4o 6Gx"D) 0 if x on the shell
)p ov' -2m if x on the plasma
(10)
jds' 3G(x,x") _ [-27 if x on the shell
s ov' -4m if x on the plasma
This leads to the integral equations for ¢p and ¢g:
1 3G (xp,x'
2, (x) = 204 (xs) = EH%%I;) - ¢p<§p>] (xp>x'p) 4
av!
1 3G (x,,x"
B E?)pks(fé) - P (xs) ] (Ep x's) ds' (11)
3 SL P —————
v’
1 vy 99 (xp)
_ = *p '
27ch(§p’§p) s dS
P 3"
1 3G (xg,%p)
0 = EJ [:bp(fl')) - ¢p(§p)} =s’~p ds'
p av'
1 3G(x_,x%.
-5 ) [sa) - 06 ()] ) e (12)
S 8\)'
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The integrals containing %%-are now all regular. 1In the limit where the
shell is tight against the plasma surface ¢s(§) = ¢p(§) all the terms of

eq. 11 and 12 vanish except the source term leading to

3dp (%)
P (13)
v
which states that the normal displacement of the plasma surface vanishes.
This represents the correct boundary condition. This means that we have
found a method which fulfills this limit automatically.
4, Fourier Decomposition
Let us introduce the polar coordinate system p, 9, ¥ (fig 1) in which:
s _1lde _dr
av 2 do 3r do 3z
2 2
wiae/ “las
ds =2 r dy ds (14)
r =R + p cos ©
z = p sin 8
2 2 . 2 %
lx-x'| = [(r-r') + (z-2') + 4rr'sin '7"/2]Z
3
The source term v and the potentials op and ¢, can be Fourier analyzed in ‘.
Considering only one component we write
3%p _ 1 N(8_) einf
b4
v iprp P
(15)

tp,s(0:8,) = b, (9)eind,
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where the integer n is the usual toroidal wave number. This treatment is
strictly valid for n # o only. For n = o other terms {6} have to be added
which do not change the essential features of the problem. ‘These additional
terms do not contribute in the case, important for the applications, when the
equilibrium has the up - down symmetry.

Introducing the notations

27 ein&f
e = [ e dy (16)
v ARSI ST
and
n dz' 3Guv,#) der [*Cuv!
v, ot = -
v z Cov' © ds' sr! /z' de’ 3z r' (17)
27 L o
o ! C) -
) ;o Gﬂ "‘k (0 Y o~ v _y‘ G ,«:» ( }
22wy = 2¢ (0) = 7’,/‘ e {3 Lo Vet T pp P (18)
p s “" o 1
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A - ' ’ L e)
s , | N BRI BT SRSV S AP I
R T (G By 5;'/ dorr 2l Mg Vs ps’ s )
2- PP "
(8]
2z ( ]
i r ’ ¢ N Ay '.V' CO () -
0= EHV/A dorr DGy 0 T YD By ol (19)
¢ 21
2m , F o a ]
; ] ] ' n ~ " (3)
! f n : v oo ] U youV ot () v .V G 9 |
- o G__v N(u ) %hjr duory ; Yol
27 B SS s
J
The solution of equations (18) and (19) will have the form
95(8) =~( G(8,8") N(8') d8'. (20)
p

Substituting into equation (5) will then give us &W in terms of the source N (9):

O

W o= %f-dede' (8, 8') N(8') N(8) (21)
p

We now tackle the problem of finding a numerical algorithm to solve eqs.

(i8) and (19).



5. Singularities of the Green'sg Function

Defining the modified elliptic integral K  to be

w/2
n cos (2na) da
-« : (22)
Kp (M ( l)vg [cos2 a + n sin? a]%
where 2
(r&-ru) + (z"l-zu)2 (23)
n = - 5 3
(ry +r )%+ (2} -zy)
the integral (16) becomes
n 4K, (n)
Guv' = (24)
2 ' 21%
[(r\', +ry)c o+ (zv—zu) ]2 .
The integral K has a logarithmic singularity at n = 0:
in
Ka(n) = = =57+ ceeneennen . (25)
This singularity is removed in all the terms, except in the source term
1 z n
- ' '
SUV,(G) = 5= de GUV, N(8") (26)
6]
which can be rewritten as
S =S + S
uv’ reg anal
where . o . X , ,
= — d ' at = 1 -nt
Steg zﬂé‘ 6 {GUV,N(e ) + o st o+ (8-8") ]N(e)}
s IICH I ORI RPN 27)
anal T 2°r L '
2
2 !
A Gl
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S is now a regular integral which can be integrated numerically, while

reg
Sangl contains the singularity and will be integrated analytically.
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6. Discretisation of the Integral Equations

We divide the vacuum region in N8 non—equidistant intervals such that 61 =0
and GN8+1 = 27. In order to solve the system of coupled equations (18,19), we ex
pand N(8), ¢p(6) and ¢s (8) in terms of finite elements fi+" plecewise constant

%
over the interval (8.,8. )
1 1+]
N
N(8) = Z a ?*f.
=0 1+%
X i+l
8) = T f. 2
0 (6) =2 BT (28)
1=0
X i+k
i=0 : i
integrate over § and end up with a set of coupled matrix equations
2b - 2c=Ab-Ba-Cc
- - - (29)
0 a - [

n
o
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The matrix elements are

3, 8. 27
. 1 i+1 Jj+l a o
T — de £, , de' f. ,r'v'.v'G - f. , 8..\ do'r'v'.V' G
PP AR 1+3 J*3 — — pP 1+3 1] - — PP
GJ

—~

£
i 1 ixt j+1 5 5., Diel
= - ds f. n i3 i3
S el ST ) SN GRS SRS N (RN
g :

* 5 g d 2\ PP
i i :
6, 8. 27
.. 1 i+1 Jj+l n o
T . S ds £, de'f, , r'v'ev'G. - £, , 6., \ d8'r'v' VG,
ps'  27as. i+k i*5 - — 'ps 1+5 1] ) | - — ps
TR g, o
i i (
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P 0. g,
i 1 i+l i+l n dij dij i+l
E T e de f. de's. \G N [24—-'}-_ — [2 —aty2
sp' 2wA8i+% g i+k g fﬁ_}2 sp'T T LnlAc+(6-6 f f1+% = gnjA“+(86-8")
8 8. 5]
i j i
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1+3
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1 J
Eliminating ¢ from eq. (29) we obtain
b=Qa
S -1
Q= [é - 21 - (C2D)F 2] [13. - (C-2DE E] - (31)
whenever the wall is close to the plasma (HEH << Hé”):
C>A-¢
DwA+e
- (32)
F~a
E=B |
-1
gbecomes Qac B . (33)

Note that for a wall tight on the plasma surface all subdeterminants of Q are «=.
This implies that a — 0 which corresponds to the exact condition N(©) =—O.

Also note, that the way that we calculate the matrices enables us to pick up
this singular behaviour of Q and, therefore, it is possible with this method

to have the wall arbitrarilyclose to the plasma as we shall demonstrate

(Fig. 3).

e
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7. Numerical Integrations

The regular integrals in (30) are performed by means of a 4 point integra-

tion formula

h'

g

2 2
£(x,y)dxdy = hh'[f(— Booye£0,- Myeect 0450, 20| (34)
V6 Ve /6 V6

x= =

b '
2

It is an integration rule in O(ha) which does not use values of the function
on the diagonal (figure 2) on which we would meet numerical problems due to

the cancellationof the singularities.

In the code, the singular part of Sanal (equ. 27) is calculated analytically,

i+1 fi+L
= - T i+ 2
Sanal 27 . al g g do r.
i
8.
i

i+k

8.
i+1 2
[ 2 -
g do' 2 4n [A + (6i+1 ei) . (35)
8.
1

Note that for the matrix B (equ. 30), o and p' are on the plasma surface and at
6' =8, p' =p (i.e. Ao = 0) there is a logarithmic singularity (equ. 35).

In the integral E, however, there is no singularity but for a wall near the
plasma surface (when A is smaller than the mesh size) an apparent logarithmic
singularity is built up numerically. We avoid the problem by treating these

integrals, B aad E, analytically.

g 9i+1

1+é 2 2 2

5 de’ enfA” + (8-97 = - -

S S nf (8-9")7] 3 (0,8 +

8. g,

1 1
8. -8
1+1 i 2 2
+ 4A(ei+1 ei) Atg —h + A ind  + (36)

2 2 2 2
8 SRS CIECI N RS (SN GRSl
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Here A2 is considered to be constant in the interval Si s 6 < 6i+1’
i.e. A% = 0 for the matrix B (the value of the integral is then-'(ei+l —8i)
{3 - '_,_2 2 = - 2 = .

3 - In(e, 8.) } and A (pp 0.) /pppC at 8 = (8., + 8.)/2 for the

matrix E).

8. Results of Test Runs

The method described has been implemented in ERATO, an ideal MHD spectral

code which computes the eigenmodes of a toroidal axisymmetric plasma confi-
guration. We choose as a test case to run the Solovév equilibrium {7}, which
we already have run with the so-called ''old" method. This old method, des-
cribed in {5}, uses the same starting point, namely the integral equation (8);
the singular terms in the integrals are substracted off and integrated sepa-

rately. The identities (10) are then only approximately satisfied.

The results of the comparison runs are shown in figure 3. The configuration
itself is shown in figure 1. The plasma has an elongation of 2, an aspect
ratio of 3 and the eigenvalue A plotted represents the square of the growth
rate of the most unstable n=1 mode normalized to the Alfvén transit time
across the main radius of the plasma. The important parameter is Rext which
fixes the distance between the conducting shell and the plasma surface
(figure 1). When Rext is too large, the shell crosses the main axis of the
torus, in which case we cut off the unphysical part of the shell and complete
the shell with a wire on the main axis. In our test the effect of this wire
is so small that the case Re = ® can be considered as identical to the case

xt
without a shell. When Rext = 1, the shell is tight against the plasma and
prevents any surface displacement. This is the rigid boundary limit which
can be directly computed by omitting the vacuum contribution and forcing the
normal component of the displacement to vanish at the surface. The result
of this calculation appears in figure 3 as a circle at Rext = 1. The varia-
tion of the eigenvalue A as a function of Rext is shown in figure 3. The

/12
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old and new methods agree at large values of Rext’ but the limit Rext =1
is only reproduced by the new method. The value of ReXt below which the
old method becomes incorrect depends on the size of the mesh used to solve
the integral equations. The calculation in figure 3 has been done with

56 intervals. For a given Rext’ the two methods give the same result in
the limit Ne + o3 but in ERATO the computing time grows as Né and the

range of interest of Rext turns out to be of the order of 1.1 to 2. It

is impossible with present computers to have a sufficient resolution to use

the old method.

The described Green's function method is asymmetric in its treatment of
the fuo variables 8, 6' and it does not lead to an explicitly symmetric
kernel Q(8,6'). Because of the discretization errors the matrix Qij is not

symmetric. This lack of symmetry can be measured by the quantity

NG
- 2
.Z._1<Qij Q)
02 = lél (37)
G
) Q. .2
i,j=1
Figure 4 shows 02 as a function of Ng“ for Rext = 2. The fact that the matrix

becomes indeed symmetric in the limit Ne + ®» ig a verification of the correct-

ness of the method and of the coding. Practically, in ERATO, we have to have
.. symmetric and we do this by introducin Q.. = .. +Q..)/2. Th rror

QlJ y ic e y in g QlJ (QlJ QJl)/ e e

is O(Né“) and is thus of higher order than the error in the elements of the

matrix themselves.

9. Conclusions

We have presented a Green's function method to compute the change in the
vacuum potential energy of a toroidal axisymmetric region which surrounds a

toroidal plasma column, due to the displacement of the plasma surface and
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which works for any thickness of the vacuum region. This method is now
implemented in the standard version of ERATO which is used by many groups

to study B limits in Tokamaks.

This work has been supported in part by the Swiss National Science Foundatiom.
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Figure Captions

Fig. 1: The configuration and the coordinate systems. The conducting shell

surrounds the plasma. AB = (R - 1) a.
ext

Fig. 2: The positions of the 4 points in a mesh cell used in the numerical

integration (34).

Fig. 3: The eigenvalue X as a function of the distance between the shell

and the plasma for N6 = 56. The Solovév equilibrium is characterized by

an aspect ratio of 3, an elongation of 2, Uxis ~ 0.666 and n = 1. The abcissa x

. . 2 . . . .
is proportional to (1 - Rext Y. The solid curve is obtained with the new

method while the dotted curve is obtained with the old method {5}. The circle

at R =1 is the exact rigid boundary value.

Fig. 4: The asymmetry of the Q matrix as a function of the number of

_.2+.

elements Ne for Re = 2. The abcissa is proportional to Ne

Xt
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Figure 4.
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