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ABSTRACT

The interplay between the Cerenkov and anomalous Doppler inter-
actions in the relaxation of a warm electron beam is investigated
by numerical means. The most important feature in the interplay
is found to be a non-elastic isotropization. A simple semi-
analytical model which allows one to estimate various quantities

relevant to the relaxation process is also presented.



I INTRODUCTION

Electron beams are one of the classical features of plasma physics.
Interest in the beam—plasma interaction was stimulated by its use
. .1 . .

for plasma production and heating , and is sustained today by REB

. 2 ..
experiments . However, the fundamental reason for this interest
is that an electron beam interacting with a plasma represents, in
fact, the simplest system in which velocity-space instabilities
occur in a pure form. As such, this interaction is a useful tool

for investigating collective processes in plasmas.

The "classical" theory of the bump-on-tail instability nowadays is
fundamental to any basic course on theoretical plasma physics, and
related experiments are performed in magnetised plasmas (wce >> wpe)
in order to simulate the one-dimensionality of the theory. In con-
trast, it is less known that, in the same operating regime, the multipli-
city of the wave-particle resonances may lead to qualitatively differ-
ent results, for example, to a partial disappearance of the plateau
even in a collisionless plasma. In this paper, we study the inter-
play between two of these resonances, viz. the so-called Cerenkov and
anomalous Doppler effects, in the scattering of fast electrons in ve-
locity space. This interplay could explain the inversion of the

plateau observed by Kharchenko et a13; it might also be related to

the anomalous loss of the parallel energy of a beam reported in4.



Also it cannot be excluded that the interplay may occur in the auro-
ral plasma of those planets with a strong magnetic field, such as

Jupiters.

In the present work we do not intend to discuss any specific problems
associated with laboratory or space plasmas. Rather, as a part of

basic plasma physics, we study the initial value problem of the rela-
xation of a warm high-velocity electron beam in a magnetized plasma.

The free energy provided in this way gives rise to a Langmuir turbu-
lence with a broad spectrum, so that the Cerenkov and the anomalous
Doppler interactions cooperate closely. The non-separability of the
interactions makes analytical treatments suspect6 and so it is strong-

ly advisable to make use of the much greater potential of numerical
calculations. For this purpose, we have introduced a new finite ele-
ment approximation in order to cast the quasilinear equations in a compu-
ter code that is able to treat the wave-particle interactions consistent-
ly. Besides the computational results we present simple semi-empirical

formulae inferred from parameter studies.

The plan of the paper is now outlined. In Sec. II we formulate the

model; successively we discuss the assumptions involved, we present



the basic equations, and explain the numerical approach used. The
scenario of the beam relaxation is analyzed in Sec. III. In Sec. IV
we study the role played by the different parameters. Sec. V, which
differs somewhat from the others, contains a simple semi-analytical
model able to reproduce the essential features of our numerical ex-—
periments. The lengthy calculations, concerning the spectrum are

given in Appendix.
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II MODEL
A. Assumptions

Let us consider a uniform, collisionless plasma immersed in a strong magnetic
field, Wee > Woe (where w.. and Wpe are the electron cyclotron and plasma
frequencies, respectively). Initially we launch a warm electron beam along
the magnetic field {cf. Fig. l(a)]- It is well known that, in such a situa-
tion, plasma waves with the frequencies U = Wpe K, /K grow exponentially

and exert a feedback action on the electron distribution. Since we are
interested in studying the interplay between the Cerenkov resonance

wK = K,v, and the anomalous Doppler resonance Wy = Ky - W.e» the beam
velocity vy has to be sufficiently high vy >(QK+uhé/Ky. On the other hand

we want to avoid the higher harmonics of the cyclotron frequency. Thus, we

have to choose the beam velocity in the range

Wt We oy ¢ Dt 2Wa e
K, K,

The emission of a plasmon via the anomalous Doppler effect is characterized
by an increase in the gyration energy of an electron AE = ﬁ‘wce, and by a
decrease in its parallel energy AE = -ﬁ(wK + w,). If the magnetic field
is sufficiently strong Woe » Wpe > Wes the plasmon energy may be neglected
in comparison with the kinetic energy transferred. For simplicity, we shall

assume that the former inequality holds, and so the pitch angle scattering of



the electrons may be regarded as elastic. Nevertheless, we should still
make two remarks about this simplification. Firstly, the commonly-adopted
picture of elastic scattering may fail if a force due to the Cerenkov inter-
action acts simultaneously on the same particles (cf. Sec. IILI).

Secondly, this approximation makes the system of equations non-conservative

(cf. Secs: IIB).

B. Basic equations

. .y . 7 .
We normalize the quasilinear equations according to k-+k/kd, Vo> VTV,

t > t/mpe, f>f - nfv3 sy E, > E_ ¢ awnEi3.r Here K is the wavenumber, A

te K K d 18

d
the Debye length, Vie is the electron thermal velocity, wpe is the plasma fre-

quency, and n and T are the electron density and temperature, respectively.

The kinetic equation for the electron distribution is then

l(uuf) épog,f,,(_b_ xf,,g)__l () @
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where the diffusion tensor component D, takes the Cerenkov interaction into

{'

U

account

D, (v, [—'_TK_ (g/t)g(ﬁ - K)o, (3)
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and D, takes the anomalous Doppler interaction into account.

V;,) . (4)
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The nonresonant interaction is neglected since for the range of para-
meters used the amount of the beam energy transferred to the fluctua-

tions is much smaller than the thermal energy of plasma.

Expressions 253 and (4) show an iﬁpaffant common point : neither Dirac
operators comprise the variable v; . Thus, while the local shape of the
distribution function with respect to the parallel velocity is important
and so excludes a moment approach, the perpendicular dependance may be
treated globally. On the other hand, Eq. (3) and (4) differ in the
arguments of the wave-particle operators, which imply different resonant
velocities, namely, \@=‘% for the Cerenkov interaction and v, = wce/K* for
the anomalous Doppler interaction. Nevertheless, if the spectrum of the

fluctuations is broad enough, not only an asynchronous interplay but also a

synchronous interplay is possible.

The evolution of the waves obeys the quasilinear equation
-aéta(g’t):z(&-*y:)e(g'{) y (5)

" where Yé corresponds to the Cerenkov interaction

4

Xo*zq‘r%/dzv K”g-u'{ (g - wu) -

and vy to the anomalous Doppler interaction

1 112 () Vi 0 ~
X,z If:l %jiu (E}E) Kﬂ(&i T -5,&{)5(% Ku).




We note that, consistent with the symmetry of the wave-particle interaction,
the reducing factor (k_,v;/ch)2 between the anomalous Doppler interaction and
the Cerenkov one is the same, both for diffusing particles and for growing
waves. This reduced "efficiency" of the anomalous Doppler effect plays a

role in its competition with the Cerenkov effect, as we shall see later.
It can easily be checked that Eqs. (2) - (7) constitute a set of equations
which conserves the number of particles and momentum, but not the energy

due to the assumption of elastic scattering.

Finally, the beam-like initial distribution is modeled by

{(\["/lrtlt’U) :

it
N
l
’-ﬁ
|
=
S~
S,
N
x
~
.

]
Ny~
Cammn S
=

~
=
~
—

where the free parameters, controlling the relaxation phenomena, are £ the
ratio of beam to bulk density, v the velocity of the beam, v, the longi-

tudinal spread of the beam, and A the perpendicular spread of the beam.
28

C. Numerical Procedure

A finite element approach has been used to discretize Eqs. (2) - (7). It

8 . .
has been shown elsewhere that this method leads, in a natural way, to con-
sistent numerical schemes for quasilinear equations. In this paper we would

like to describe a cylindrically-symmetric magnetized plasma. After integration



over the ignorable variable in Eqs. (2) - (7) we are left with a two-dimen-
sional problem given essentially by the same equations. At this point the
method described in8 could be used. For the purpose of a magnetized plasma
however, further simplifications turn out to be possible. They consist of
a substantial modification of the finite element method, which is outlined

in the following paragraphs.

Remembering the remarks in Sec. IIB about.the global character of the~

distribution function with respect to the perpendicular direction, we may
introduce special semi-finite elements, assuming a shape a priori in that
direction. This amounts to using a moment approach in the perpendicular
velocity space where the local shape of the distribution is not important
while keeping a detailed kinetic approach in the parallel velocity space

where the local shape is crucial.

In this context we seek a solution of Eq. (2) of the form

{u = f(tl \Ij ") z""ﬁ"(t) F( Ttt)] ) @

where Tj(vh) is the usual roof function. TFor the moment we cannot offer to
a skeptical reader a more convincing argument for the choice of a Maxwellian
shape than its practical handling, however, an a posteriori justification will

be given later (cf. Sec. III).

Let us project the diffusion equation (2) on the test functions Yi(v,) by

means of the scalar product -
+o°

(1{,”{):. dv, | 2T v, du, 1{/{{

B 0
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As a result we obtain a set of N ordinary differential equations of first

order for the expansion coefficients fj(t).

N ) . _ N , ?. I i .= )
%'A” } ,,Zr [ B‘J ! 3'J }{, y b=l N (10)
where
ALJ ==—J: JLQ IK V; )
BLJ'—'"JJUZW%DO(U;) 3

The expansion coefficients Tj(t) are obtained by the projection of Eq. (
on the test functionms ¥,

2)

. Thus, we have a second system of ordinary

A

differential equations for the quantities gj(t) = fj(t) ‘Tj(t)

y ey 5 (11)
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where

Ci = - ) da (v w219, T,y w) D om)

e

Finally, we also use finite elements for the discretization of the wave
spectruﬁ, in contrast to what has been done ing. The finite k space is
subdivided into small rectangles of irregular size. The basis functions
take the value one on a small rectangle and are zero elsewhere. Integrals
over small rectangles are performed numerically using nine integration
points. This method has the advantage over that of equally-spaced discrete
waves that it produces a high density of Cerenkov and anomalous Doppler
interaction lines in velocity space, 1 -=Kv, = 0 and Wee = K,vy = 0, res-

pectively, even with a rather coarse wavenumber grid.

IIT SCENARIO OF THE BEAM RELAXATION

For convenience, we first introduce two abbreviations. For a wave with wave-

will be

A=

number K, the resonant velocity for the Cerenkov interaction vy, =
c ; A e ” 7 ;
noted Vr, while Vr will stand for the resonant velocity of the

anomalous Doppler interaction Vh=*wc[Ky-

In a first stage, which is short compared with the complete relaxation, the
usual Cerenkov interaction leads to the formation of a one-dimensional plateau
on the electron distribution (cf. Figs. l.a,b,c.). Simultaneously, a broad
spectrum of the plasma waves is excited. This spectrum is independent of

the initial level of the fluctuations, as long as the level is chosen to be



sufficiently low. Thus, we may consider this parameter as being irrelevant
to the relaxation phenomena. Wherever the distribution function has changed
in v, -space, forming a plateau, there exist waves of substantial energy with
the corresponding VE. Those with the smallest V; (near the bulk of

the distribution function) have their Vi corresponding to the end of

the tail and so can diffuse the fast electrons via the anomalous Doppler
effect. This diffusion would tend to make the tail isotropic by converting
the longitudinal energy into perpendicular energy (cf. Fig. 2). However,
the Cerenkov effect makes this situation unreal. Immediately after the
start of the isotropization process the slope of the electron distribution,
integrated over v,, becomes sufficiently positive to destabilize the plasma
waves via the Cerenkov effect again. As a result, a part of the electrons
with high gyration energy is pushed from the region of positive slope down
to the bulk. For the same reason the level of turbulence is raised and the
perpendicular temperature increases all along the tail. This dominating
character of the Cerenkov effect over the anomalous Doppler effect is due to
the factor (KLVL/che)z, as mentioned in Sec. IIB. It is important to
emphasize that tﬁeir interplay never results in the formation of a bump ;

the plateau has only a very small positive slope which does not appear in
the figure [cf. Fig. 1.(d)].We may point out another interesting feature
about the interplay. The retraction of the plateau leaves a negative slope
at the end of the tail so that waves with their VE here,'previously'

excited by the Cerenkov effect, are now damped by the inverse Cerenkov effect.
As a result, some electrons are pushed back to the high velocity domain. Thus,
they may be diffused by the anomalous Doppler interaction more than once and

so acquire a very high perpendicular energy. On the other hand, all electrons
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at the end of the tail may gain perpendicular energy but not all are able

to complete their diffusion due to anomalous Doppler interaction, since the
Cerenkov effect interferésand pushes them down to the bulk. In view

of this situation, it is clear that the true dependénce of the distribution
function on v, may not be simply constructed from the initial longitudinal
dependence via the diffusion of the electrons along the lines of constant
energy in the way shown in Fig. 2. This phenomenon, which we shall call
"non-elastic isotropization", justifies the use of the ansatz. From one
standpoint it lays by the heels the objection which could arise a priori
against the ansatz : the concept of isotropization seems somehow incompatible
with the idea of an imposed perpendicular shape. From another point of view,
the "non-elastic isotropization" may not be expected to lead to some exotic
dependence of the distribution function on v, ; moreover, since thé detailed
shape is not important as explained in Sec. II8, we choose the. convenience

of a Maxwellian shape.

Let us come back to the scenario of the relaxation. As the plateau shrinks,
its level rises so that it goes deeper into the bulk. Thus, the waves with
a smaller V: grow, the lower boundary of the Vi is shifted down, and

a new section of the plateau is destroyed by the anomalous Doppler effect.
At the end of this competition between the Cerenkov interaction, which tends
to flatten the distribution, and the anomalous Doppler interaction, which
tends to destroy the plateau, the perpendicular temperature is uniform

along the tail. A shortened plateau stays between the bulk and the point D

; o ey F . . ;
defined by min {Ur} [cf. Fig. 1.(e)]. The edge point C near the bulk is
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defined by min{Vz}, and is related to D by the obvious relation

D=2, C ; 853

Beyond the D point the distribution function is isotropic, and hence stable
with respect to the generation of waves via the anomalous Doppler effect.

As far as the spectrum is concerned, there remain only large fluctuations
with their V; situated on the plateau.. . It is worth mentioning that the

final state of the distribution is found to be affected only slightly by the
initial spread of the beam (cf. Fig. 6 for an example). A warmer beam relaxes
more slowly during the first stage. However, at the end of the stage

the distribution has no memory of the initial spread - nevertheless this
information remains in the spectrum. There are less fluctuations with a

high VE, but those which have their v: close to the C point, and so start

diffusing the fast electrons via the anomalous Doppler effect, remain

nearly unchanged.

IV PARAMETER STUDIES

Apart from the C point and the D point, the final state is described by the
perpendicular spread of the shortened tail. Since the spread is uniform all
along it, the concept of perpendicular temperature T, may be introduced to
summarize the code results. Moreover, the final perpendicular temperature
is an adequate measure for the efficiency of the interplay in thermalizing

a beam. Even if the net result of the relaxation plasma does not depend on
the initial spread of the beam, it does depend on the other free parameters
€, Vp » Wy We are going to show their respective role in plots (Figs.3-6)
where the code results are indicated by crosses; the solid line refers to

the semi-analytical model to be presented (cf. Sec. V).



A) role of g (ratio between beam and bulk density)

The only essential change resulting from an increase in £ is a rise in

the level of the plateau appearing at the end of the first stage. This
rise does not change the ratio of electrons which are diffused by the
anomalous Doppler interaction to the others. Hence, we expect no change
in T,. However, we observe a slight increase in T, (Fig. 3). This effect
may be easily understood in a more accurate description. The rise in the
level of the plateau is accompanied by a shift of the C point Foward the
bulk; according to Eq. (12) the corresponding shift of the D point is
more pronounced, AD = wce- AC, and the relative number of the electrons
which are diffused by the anomalous Doppler interaction is a little higher.
An increase in £ also results in a rise in the level of turbulence and so
accelerates the diffusion of the electrons by the fluctuations. The effect
appears in Fig. 4 where we consider the complete relaxation time versus &;
the former.may be defined as the time from the launching of the beam until
the growth rate of the perpendicular temperature has dropped by two orders

of magnitude.

B) role of vy (beam velocity)

It is natural to anticipate that v, has a strong influence on the perpendi-

b

cular temperature (ef. Fig. 5). A little increase in vy is &0 drastic, not

only because the kinetic energy of the beam is proportionnal to the square

of its velocity, but also, because of the more pronounced retraction of
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the tail. 1Indeed, the more the tail shrinks the more waves are damped
by the inverse Cerenkov effect. As explained in Set¢.3III, this damp-
ing promotes the "more-than-once" diffusion of the electrons and increases

the perpendicular temperature.

As for the relaxation time, an increase in Vi leads to a rise in theé
level of turbulence and thus stimulates the diffusion of the particles
by the fluctuations. On the other hand, the particles have to travel a

longer distance, and the net result is a relaxation time slightly increas-

. ing with the beam velocity vy,

€) role of ®.0 (electron cyclotron frequency)

It is clear that a higher magnetic field requires a higher velocity of the
electron for the resonance condition to be fulfilled. Thus, due to an in-
crease in the ratio mce/wpé, fewer electrons may be diffused by the anomalous
Doppler effect and the final perpendicular temperature drops (cf.Fig. 6).

The weak dependence of the relaxation time on 0, may be understood without
invoking a subtle interplay of the anomalous Doppler effect with the Ceren-—
kov one. Simply, the diffusion tensor component Dl[Eq“ (4ﬂ;becomes smaller
with increasing ©.e whereas the distance the electrons have to travel be-

comes shorter [cf. Eq. (12)] ~ The two effects tend to balance each other.
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V. ANALYTICAL MDﬁEL -
At the level of understanding of the topic, which our numerical experi-

ments have led us to, it appears that a simple analytical model which in-
cludes the salient features observed in the relaxation Process can be
suggested. Moreover, it has the advantage of yielding very simple formu-
lae which are far more flexible in use than a code.

At this point,

' 6
we should comment the attempt to treat the relaxation in a purely ana-

lytical way. 1In spite of sophisticated analytical means, the authors
were obliged to separate the part of the spectrum due to the Cerenkov effect

from that due to the anomalous Doppler effect. All the study was biased

by this basic assumption which led to artefacts in the dynamics of the re-

laxation and dubious results.

The final distribution function, to which the relaxation process described
in Sec. ITI leads, may be characterized by the following quantities :

the positions of the C and D points, and the perpendicular spread of the
tail. As mentioned in See. II, the spread may be characterized by a

single quantity T,, thus, three quantities have to be determined. Howevér,
we have only two relations available: the conservation of particle number,
and Eq. (12) relating D and C. 1In order to eliminate the remaining degree
of freedom, one should know the spectrum and use the conservation of momen-—
tum. Instead, we take the initial beam velocity vy into account in the

simplest manner and sketch the dynamics of the relaxation as shown in Fig. 7.

where V' is related to v, by

V' | (13)




In other words, V' is the V; for waves having their Vi at v, .

The C point is given by conservation of the number of particles

o xp(-€) (-0 1 w-D]- |
therefore,

C={2€n(C(%’J°; ) ZV”)‘ZF"(WE'T‘)

'h

which can be solved in a few iterations with a simple pocket calculator.

A. Estimate of T,

(14)

Let us assume that the plateau retracts as far as the D point in the manner

shown in Fig. 7. The diffusion mechanism stops when the slowest of the

electrons, which are able to emit a plasmon via the anomalous Doppler effect,

are prevented from doing so by the shape of the distribution. At this mo-

ment, the edge point of the distribution reaches the D point so that y, > 0

(marginal stability for the anomalous Doppler effect).

On introducing the Maxwellian ansatz, already discussed in detail (ecf.

Sec. III).

——

| (.
(UII)U1’£)=+(M”£)W) ZXP<Z TJ-(U;'/t))

(15)
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into Eq. (7), we obtain

-bu;/ VJ- . u'.; e
" K,

= 0, (16)

fim | 8T LD F
T.L

V,=D+€

We are well aware of a small inconsistency when considering both the
Maxwellian ansatz (15) and the straight line between the D and vy points
in Fig. 7. However, since it enables us to write down convenient formulae

with reasonable accuracy, we will retain it without more ado. Therefore,

Eq. (16) yields

T.L =D(%—D)=Uce'c(%'wce"C) . an

Thus, by means of Eqs. (l4) and (17) we are able to estimate the final
perpendicular temperatures. The various dependences on the relevant para-
meters are shown in Figs.. 3, 5,7 ahd 6 with the "experimental' points ob-

tained from the code.



B. Estimate of the relaxation time T

The sketch of the relaxation comprises two qualitatively different
stages. The first one, dominated by the Cerenkov interaction (time tl,
in Fig. 7) may be considered as instantaneous when compared with the complete
relaxation process. Nevertheless, it has the important role of increasing
the level of fluctuations so that the initial level can be neglected. The
second stage may be seemingly characterized by a change in the wave spectrum
resulting from a transfer of the fluctuation energy from high V: to

low Vi near the bulk, As the plateau shrinks, the waves are damped

by the inverse Cerenkov effect in the domain D—vb, and re-emitted via the
anomalous Doppler effect in the domain C-V', the total fluctuation energy
remaining constant within a few per cent (cf. Fig. 8). Thus, it is

plausible to assume that the relaxation is controlled by this transfer.

Let us try to use this assumption to estimate the relaxation time.

. . 9
By analogy with the formula pertinent to pure Cerenkov effect we

write for T

= & fn(w) ; (18)
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Here, a is some empirical factor, W1 is the initial (with respect to

. . . c
the second stage) fluctuation energy of the waves with their Vr

situated between C and V', W2 is the amount of energy transferred, and

<Yl> is a mean value of the growth rate of the waves in the domain C-V',

Combining Egs. (7) and (15) we obtain

Here, X =(D+Vb)/2 is the averaged velocity of the electrons which émit the

plasma waves in the region C-V', and

& = (-Z—l:)'a QXP(‘ g) (20)

I

is the height of the plateau.

Hence, we find

(21)

—

e

o 2
z - ke dnf13%)

TREN Dv ¥

. 2l
Let us assume that the factor O(/<<K,, /K)(KL/K)> is independent of the para-

meters, which seems to be justified a posteriori by the results, and can

be determined empirically from numerical experiments. It remains to
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estimate the ratio wzlwl. Since WZ and Wl are:to be evaluated at the
end of the first stage, one can use the method indicated by Parail and
Pogutse [Eq. (ZO)J to obtain the spectrum. We present these calcula-

tions in the appendix. Finally, we find the following formula for

the relaxation time

103 CJZ f | WAR
= ihauii] + e )
7 n (l - , (22)

Since the only drastic parameter controlling T is the magnitude of the

beam in Fig. 6 we show the behavior of T with respect to E.

VI CONCLUSION

Our aim has been to study the interplay between the Cerenkov and anoma-
lous Doppler interactions in the relaxation of a warm electron beam. We
have investigated this problem with the assistance of a code which includes

as few ad hoc assumptions as possible.

The most important feature in the process considered is found to be a non-
elastic isotropization. We emphasize that this new phenomenon is the con-
sequence of the cooperation, either synchronous or asynchronous, between

the two interactions; it is not due to the plasmon emission via the anoma-



lous Doppler effect since we treat the case ® o >> w.

Also we have shown and discussed the role played by the different para-
meters in the beam dynamics. Moreover, we have presented a simple semi-
analytical model, based on our numerical experiments, which allows one

to estimate various quantities relevant to the relaxation process without

the need of a code.
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Appendix : calculation of wl and W2

In the units used, Eq. (20) given by Parail and Pogutse reads

"
é(K:#)‘—‘WVS dx (}fz(x) - F (x)) , V>C, @D
c
where Tigy
E(k-5)=) & smat

Fz,: = Z'TU'LJVl {

2,1 )

and the indices 1,2 refer to the initial and final distributions. (with
respect to the Cerenkov stage), respectively. From Eq. (8) and the

fact that F, = of it follows that

) j (x-v,)
(x)~F (x) = A - ) exp [+ it ]

(A2)
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We now combine Eqs. (Al) and (A2) to obtain the quantity E

which appears in the expression for the wave energy

W PV 7o € (5 5)

1. In the estimate of Wl, we neglect the term corresponding to the
beam and find
v' v

WI=E‘SJUU d x [‘Bﬁ— —"'«QXP("%E)]-

< C

Performing the integration we obtain

where P' (X)-'IJ} W‘QXP('%)

2. In the estimate of W2 we disregard the bulk term so that

W, - [awjax{ae ey exp[-%‘—%j—flb




- 26 -

oo E[W(§-9)-2(5-9)]
(Vi-D)°7
w2 2T (v0)
(A4)
- L <V6+U;I'D1)TZ(V;:‘D)
_ e %,
RN CTIVES
where
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FIGURE CAPTIONS

Typical evolution of the electron distribution function.

=3
The parameters used are : £ =10 ", v, =10, = 2.

a) Launching time.

b) Pure Cerenkov stage, t v 103.

c) End of the first stage; leading electrons start being
pitch—-angle scattered by the anomalous Doppler effect
on the fluctuations previously excited, t ~ 104.

d) Cerenkov and anomalous Doppler effect cooperate closely
to destroy the tail; notg that there is no appreciable

beam formation, t v 8 x 104.

e) Final state, t v 4 x 106.

Velocity distribution (represented by equi-lines) we would
find if we omitted the Cerenkov effect during the second

stage.

Influence of the beam density on the final perpendicular
temperature. The parameters used are: vb=]ﬁ, wc‘= 2.

The crosses show the code results whereas the solid line

is calculated from the formula (17).



Fig. 4,

Fig. 5.

Fig. 6,

Fig. 8,

Dependence of the relaxation time on the beam density.

T is defined as the time after which T increases so
slowly that [TL(ZT) - T‘(T)]/TL(T) < 37. The bars

account for the uncertainty due to the "discret" code
outputs whilst the solid line represents the formula (22).
The parameters used are: vy = 10,;wce= 2.

Influence of the beam velocity on the final perpendicular
temperature. The parameters used are: § = 10 7, w = 2,
The crosses show the code results whereas the solid line

is calculated from the formula (17).

Influence of the magnetic field on the final perpendicular
temperature. The parameters used are: v, = 14, £ =10 ~.
The crosses show the code results whereas the solid line
is calculated from the formula (17). The plot shows also

the influence of the initial spread of the beam:

(%) Vt” = 2, vtl =1; (0) vt:// = 4, vtl = 1; (o) Vt/, =2,

Model for the relaxation of the distribution function

(cf. Sec. V).

Sketch of the transfer of the fluctuation energy during

the second stage (cf. VB). C.R.V. stands for Cerenkov re—

sonant velocity,
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