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Abstract

Using a simpler formalism than in the original paper on this subject,
we verify the earler result that for a pump frequency separation A
approximately equal to twice the ion acoustic frequency @, the use of
two long wavelength pumps can reduce the threshold for parametric
excitation of ion acoustic waves when, and only when, the Langmuir

wave damping rate y is much larger than Q. The threshold is reduced by

a factor of order Q/y, the optimum value of A being 20 -T for equal

pump amplitudes, where I' is the ion acoustic wave damping rate, T << Q.
The analysis presented in a recent paper is shown to be valid only for
yY<«< §,where there is no threshold reduction, and for weak ion acoustic
wave damping (Te/Ti<<l). There it gives thresholds in agreement with

the earlier work, but its results for Te/Ti of order 1 are invalid.



I. Introduction

In an earlier publication1 a complete and detailed account was given of
the parametric excitation of ion acoustic waves and Langmuir waves re-
sulting from two long wavelength pump waves, whose frequencies are near
the electron plasma frequency, while their difference is of order of ion
acoustic wave frequencies. Naturally, the use of two pumps is of interest
only if the threshold for the resulting instability is smaller (or the
growth rates above threshold larger) than for a single pump, and while

it seems reasonable that the use of two such pumps might result in lower
thresholds and larger growth rates, it is not clear a priori whether, or
under what circumstances, this will indeed be the case. A principal

result of Ref. 1 was that the threshold is reduced when, and only when,

the damping rate, y, of the Langmuir waves exceeds the ion acoustic wave

frequency,(. Recent experiments by Akiyama et al.2 appear to confirm this

threshold reduction.

In a recent publication on this same subject3, results strongly at
variance with those given in Ref. 1 have been reported. Although Ref. 3

uses two different methods of calculation to obtain results which are in



agreement with each other but, allegedly, quite different from those

of Ref. 1, the authors do not identify any errors in the earlier work,
offering only a vague speculation that the authors of Ref. 1 "might have
made over-simplified assumptions about their resonance functions'. Since
an analysis of two pump excitation inevitably entails considerable al-
gebraic complication and since, of the two methods of camputation in

Ref. 3, the one which is described in most detail is quite different from
the approach of Ref. 1, some effort is required to ascertain which is

o~

correct.

We have carefully reviewed the theory of two pump excitation, and find
that, notwithstanding the assertions of Ref. 3, the results of Ref. 1 for
pump power thresholds are correct, although the value cited there for the
optimum value of the pump frequency separation is very slightly in error.
Ref. 3, on the other hand, is found to have serious limitations and also
some errors. Where it is correct, it is essentially in agreements with
the analysis of Ref. 1. Unfortunately, the only regime treated correctly
in Ref. 3 is the inherently uninteresting 'weak damping" case, v<<Q,

where the threshold with two pumps is always greater than that for a

single pump; the case of "strong damping', y>>Q, where the use of two
pumps can indeed give a lower threshold, is not examined. Ref. 3 also
contains statements concerning the importance of phase relations between
waves of different frequencies which would be surprising, if true, but

which seem, in fact, to be without foundation.



A further complication arises from the use, in Ref. 3, of kinetic theory
expressions for the ion susceptibility, rather than resonant fluid ap-
proximations. While the former is, of course, correct for a collision-
less plasma, the authors seem not to have realized that the truncation
of the infinite set of coupled mode equations which underlies their work,
as well as that of Ref., 1, is justified only when the ion acoustic modes
involved are highly resonant, i.e., when the electron—ion temperature
ratio , Te/Ti’ is large enough to make the Landau damping small. In that
case, a resonant fluid approximation is valid and makes it possible to
obtain closed form results from which general conclusions can be drawn,
whereas use of the kinetic susceptibilities forces the authors of Ref. 3
to rely upon numerical calculations for specific parameter values, making
it hard to see the forest for the trees. Thus, the thresholds given in
Ref. 3 for small Te/Ti values of 1, 2 and, probably, 4 are incorrect,
since the ion acoustic resonance is then so broad that there is no jus-
tification for ignoring additional low frequency modes. The thresholds

for larger Te/Ti are in substantial agreement with Ref. 1.

In the present paper, we re-exam the theory of two pump excitation,
simplifying and extending somewhat the work of Ref. 1 and formulating

the analysis in a manner which facilitates comparison with Ref. 3 and
which should serve to resolve the confusion engendered by that work.
Comparison of the two treatments is complicated by the fact that Ref. 3
uses a heuristic approach, quite different from that of Ref. 1 (although
a more conventional method is also briefly sketched). In addition, Ref. 3

deals with the high frequency sidebands, while Ref. 1 involves the low



frequency waves. We therefore present here both the high and low fre-

quency approaches.

The treatment in Ref. 1 is quite formal, and while this provides a useful
tool for examining all of the possible cases and for rigorously justifying
the approximations used, it can, apparently, be difficult to follow.

In this paper we have therefore taken the opposite tack, presenting every-
thing in the simplest possible way, using approximations whose careful
substantiation can be found in Ref. 1, and emphasizing the physical pic-
ture of the instability. For example, since only electrostatic waves are
involved, and since the lowest threshold or largest growth rate corres-
ponds to a common polarization, with all electric fields parallel to the

pump fields, it sufficies to use a one dimensional analysis.

In Section II, we summarize the essential aspects of two pump excitation
and discuss several approaches to the calculation of thresholds and growth
rates. Some general properties of the coupled modes are discussed in
Section ITI. In Section IV we analyze the weak damping and strong damping
cases, avoiding some of the approximations used in Ref. 1 to obtain
specific results. We obtain threshold values in general agreement with
those of Ref. 1 but find that the minimum threshold is obtained when

the separation of the pump frequencies differs slightly from twice the

ion acoustic frequency, a shift overlooked in Ref. 1. In particular, we
show that the threshold for two pumps always exceeds that for one pump

in the weak damping case, whereas two pumps can be advantageous in the



strong damping case. In Section V we explain the relation between our
approach and that of Ref. 3 and briefly discuss the errors and limitations
of the latter work. Conclusions, relations to experiments and suggestions

for future work are given in Section VI.

ITI. Parametric Excitation with Two Pumps

In this section we derive the basic equation (16) which expresses the
coupling of high and low frequency components of the fluctuating elec-
tric field, E. This equation, or rather set of equations, contains all

of the physics of the problem and there remains only the question of how
to obtain thresholds and growth rates from it. We discuss three alter-
native approaches which, though formally different, must, of course, yield
the same results. In the weak damping case, one of these, as will be

shown explicitly in Section V, leads to the dispersion relation (7) of

Ref. 3 when the damping is weak (y<<Q).
We assume a spatially uniform, high frequency pump electric field

Eo = E|ef"l’('iw:t) + Eisxp(—.&wat) + C.C. (D

in a homogeneous plasma, where wl and w2 are of order of the electron

2 2 :
plasma frequency, wp = (4™e"/m) | with w,> w,. This field causes the



electrons to oscillate with a displacement

X, (t) = (e/’")z E,exp(-iwt)w;? ¢ cc. @
S

where, as in subsequent equations, s is to be summed over s = 1,2. (The
field also causes ion oscillations, but since these are smaller in ampli-
tude by the electron-ion mass ratio, m/M, we shall neglect them.) Without
loss of generality we can take E1 and E2 to be real, since the relative
phase of two waves of different frequencies can have no physical signi-
ficance in a linear theory; it only determines the absolute time at which
the two waves are instantaneously in phase, and in absence of something
which depends upon the absolute time, this cannot have any physical con-

sequences.

Before proceeding with the formal analysis, we describe the essential
aspects of the physics. Because of the oscillatory electron motion 2y,

a charge density fluctuation or perturbation at a high (or low) frequency
w will give rise to similar perturbations at the low (or high) frequencies
0 * - (In the heuristic discussion of this paragraph and the following
one we regard the frequencies as real, but thereafter w, as a Laplace
transform variable, is correctly treated as a complex quantity). The net
result, under proper circumstances, is an amplification of the original
perturbation, i.e., an instability. The relation of the various frequency
components is illustrated in Fig. 1, where a low frequency fluctuation

at w is seen to give rise to high frequency sidebands atwt o_.



It is important to note that two of these, (a and b in Fig. 1) lie

between the pumps. We shall call these the inner sidebands, whereas the

other two, which lie above the higher pump or below the lower ome (c and

d in Fig. 1) we shall call the outer sidebands. (Of course, since we are

using complex exponentials, a negative frequency, such as w-w. is always

1

accompanied by, and hence can be considered as being entirely equivalent

to, the corresponding positive frequency, w,-w). All four of these high

1

frequency sidebands generate low frequency perturbations at u, just as

in the case of a single pump, but also, as a consequence of having two

pumps, at the frequencies w+ A where

A= w - w, (3)

These low frequency components, in turn, generate high frequency side-
bands, some at the old frequencies, wj;ws, and others at new frequencies
so that, as usual, an infinite set of both high and low frequency modes
are coupled. Under certain circumstances, a finite subset of these can be,
to good approximation, decoupled from the remainder and these may rein-
force one another, giving rise to an instability. Although there are
several possibilities for this situation, as shown in Ref. 1, we con-

centrate here on the simplest, which is also the subject of Ref. 3.

Suppose we choose the pump frequency separation to be approximately

twice the ion acoustic frequency

L

Az 20 2 ke (1 kz/ki)_a (4)

n
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for some wave number k<<kD = (4 T ne /Te)z. Then if the i1on acoustic
resonance is sharp, i.e., if its damping rate r'is small compared to 9,

there can be two resonant low frequency modes, namely at

w =N and w-0 = -Q) (5)

In computing the threshold and the growth rate for pump amplitudes not
too far above threshold it should be a good approximation to keep just
these two low frequency modes and neglect all the others, i.e., those at

frequencies w+nA with n # -1,0.

In this way, the infinite set of coupled modes is reduced to just the
six frequencies w, w-A , and(ui,ws. The term "double resonance" is used

because two low frequency pertubations, at w and w-A, are involved and

both can be resonant, whereas for a single pump the low frequencies which
are coupled to w are only its harmonics, which are not, for given k,
resonant when w is. Of course, if w = + A/2 go that w — A = -w, then we
will have only a single low frequency, but this is éimply a limiting case
of what are, in general, two distinct low frequency modes. Clearly, if
the ion acoustic waves are strongly damped, due to either collisions or
to Landau damping (as when Te/Ti is of order 1), then the restriction

to just two low frequency modes and the consequent truncation of the
infinite set of coupled modes is completely unjustified and results
obtained from the 6-dimensional subset have no validity. Finally, we

mention that, of course, the threshold will be lowest if the high
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frequency modes are also resonant, i.e., if the W lie near the Bohm-

Gross frequency,

2 7.2\
we (1+ 3k [k3) (6)

Wy

We now proceed to the formal analysis. The basic equation describing the
coupling of high and low frequency components can most easily be obtained

using the Dawson transformation to a frame oscillating with the electrons,

X = X - X,(t) 7

We shall use the tilde to denote quantities in the oscillating frame,

E(X t)= E(x,t)+ E(Kex.(8), ), ete. ®

In this frame, the electrons do not feel the pump field and hence will
execute their usual thermal motions, unperturbed by the pump. Consequently,
in this frame the linear electron density response to an electric field
with wave number k and frequency w will be determined by the usual linear

relation between the Fourier-Laplace transforms of the density and field,

o~

~
Pe (k,w) = =(ik/am) X (kW) E(kw)  ©
where p_ is the electron density, x is the usual electron susceptibility,

2 ! -1
X(kw)= -(welk) ldv £ [v)(v-w[k) (10)
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and feo is the unperturbed electron velocity distribution. (This physi-
cally obvious result can, of course, be derived formally using the

Vlasov equationl).

To make use of (9) we need to know also the relation between the Fourier-

Laplace transforms of variables such as E and Py in the oscillating frame

and the corresponding quantities in the laboratory frame. This is provided
by a straightforward calculation of the transforms, in which we retain

only terms of order kxo, which is assumed to be small, and neglect terms

of order (kxm)2 or higher. (The neglect of quadratic terms, both here
and in Eq. (12) below, is justified in Ref. 1, where terms of all orders

in kxo are retained in the general analysis). From the definition of E (k,w)

we have
E(kw) = Sdt dx E(xt)exp[-i(kx-wt)]
:gal‘t AR E(%, t)exp[-ik(7-wt)] (1-<kx,)
0 -o
~ - -t
= E(k,w)-ildt E(klt)[gz\sg “ +c.c.]e/x}>(c'wt)
with XS = k (CES/MU‘):)

Thus,

E(k,w)= E(klw) - < SZ As[é(k,w-ws)+ E(k)wfw,)] (11)
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and a similar relation holds for p and 5. (Since k appears in (11) only

as a parameter, unaffected by the transformation from one frame to the
other, we shall generally omit it in the interests of notational simpli-
city). The inverse relation, eypressing E in terms of E, differs from (11)

only in the sign of the AS terms:
Ekw) = Elkw)s e 3 A[E(Komwe) o E(k wews)]

Using the transformation equations together with (9) we have (omitting

the k dependance)

plw)= Fw)- X0 L Fleo-w) o flwews)]

= -(L'I(/Mr){ X(u))[ E(w)« ig )\; ( E(w-w)e E(‘*’“‘"‘))]
- I[N E e X Eo-n)] |

where we have againomjtted terms quadratic in the AS. Finally, we make

use of Poisson's equation,

ckE = 4m(pe+p) (13)
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and the usual linear relation between the density of ions (which, as

noted, are scarcely affected by the pump fields) and the electric field,

po= -(ik/um) X E s

where X; is the usual ion susceptibility, given by an expression analogous

to (10). From (13) and (14) we have

E(w) = (4m[ck) g, (w)(1+ Xi)-i (15)

and substituting this into (12) to eliminate Py gives us the desired
equation relating the high and low frequency components of E induced by

the pump:

€(w) E(w) +i,§ )\s{ [ X(UO‘*WS)- X(w)] E (w *Ws) +

[. X (w0 -wg) - X(w)] E(w—w,)} =0 (16)

where

E(w)= 14X (w)+ X (w)

(17)

is the usual linear dielectric function. (To simplify the notation in
subsequent equations, we have omitted the subscript e which would

normally be carried by the electron susceptibility, and have written it
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simply as X. The dielectric function, e, of course involves both the

ionic and electronic contributions).

The infinite set of equations (16) contains all of the relevant physics
(correct to lowest order in the pump fields) and there remains only the
question of finding circumstances under which truncation of the set can
be justified. As the analysis of Ref. 1 shows, there are two interesting

possibilities for the choice of the pump frequency separation A :

1) A = 29, in which case we have what might be described as a generali-

zation of the usual decay instability;

2) A =Q, in which case there is, roughly speaking, a combination of the
decay and oscillating two stream instabilies. It is only the first of
these which is considered in Ref. 3 and since it has the lower thres-

hold, we shall only examine that case.

Of the infinite number of components E (w) in (16), the important ones
will be those which are resonant, i.e., for which the coefficient of E

on the left hand side, ¢ (w), is very small. This occurs only when [u|

is near either the Bohm-Gross frequency w, or the ion acoustic frequency Q.
(For consistency we should perhaps write[lk, but since k is a fixed
parameter in all of the equations, we omit it whenever possible). With

the choice A = 2Q there will then be, as expléined above, altogether 6

such resonant frequencies:

w=fN "' w-4& =-Q° Wi wy = L+ wy (18)
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It is trivially straightforward, in principle, to obtain a dispersion
relation for the truncated system of equations. We simply select from

(16) the six equations corresponding to the 6 frequencies (18) ; compute
their determinant; and equate it to zero. An alternative, and in some
cases less onerous and hence more common, procedure, which may provide
more insight into the physics, is to work directly with the 6 equations,
eliminating dependent variables until we are left with only one or two
components of E. Moreover, it is only in this way that we can make con-
tact with the somewhat curious approach used in Ref. 3 and thus understand

fully its limitations.

Before commencing this elimination of dependent variables, we interpolate

a remark concerning the role of initial conditions and also introduce an
assumption concerning the symmetry of the velocity distribution functions
which, while not essential, has the advantage of simplifying the algebraic
formalism. As regards the first point, in order to establish the connection
between the Fourier-Laplace components considered here and the physical
space—~time fields E (x,t) we should, of course, include on the right

hand side of (14) an inhomogeneous term representing the initial pertur-—
bation whose long time growth is described by the unstable or least

damped roots of the dispersion equation. If, for example, the initial

perturbation is in the ion distribution functions,
-1
‘&(x)vif=0)= T F(v) cos(k,x) (19)

giving &(k,\l,’“o): F(v)[g(k-k.)+ S(k+|<,,)] (20)
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then (14) would be replace by

pio= - (ikfam) (X E +v) e

where (22)

re (amnekt) [ ko8 (k-] |dv Fv- wiig™

and n is the unpertubed density. The net result is that an inhomogeneous
term, namely r, should be added to the left hand side of (16). We shall
assume that the perturbation, F (v), is symmetric, F (v) = F (-v), and
that this is also true of the unperturbed electron and ion velocity dis-
tribution functions, i.e., that there is no streaming motion either

initially or in the perturbation. Then
_w*)* (23)
and similarly

e(kw)= e (k-w*)" | X(kw)z X(k-w), ete. @

It follows that when the inhomogeneous version of (16) is solved for the

E (k,w), these will have a similar property,

2%

E(k w) = E(k, -w") (25)
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This reflection symmetry proves useful since (16) inevitably mixes
frequencies having positive real parts with those having negative real
parts and (25) allows us to consider only the former, provided we admit
as dependent variables both E (w) and E *(w). (In absence of this assumed
symmetry in the velocity distributions we would have, instead, the usual

relations

*
= - - (26
E(kw)s E(-k-w"), .t ’
We restrict the discussion to symmetric distributions since we can then
work with fixed k>0 and need not bring in the -k components. This
simplifies the formalism but does not, of course, affect the results for

threshold or growth rates).

We now return to an examination of the subset of (16) corresponding to
the 6 frequencies (18). In dealing with such mode coupling equations it
is customary either to eliminate the high frequency (wéu)k) components,
leaving a smaller set of equations involving only low frequency (w=0)
components, or to do the converse. As will become apparent, it is
significantly more convenient to work with the low frequency components,
as was done in Ref. 1, but since Ref. 3 formulates the problem in terms

of high frequency components we shall consider these as well.

We note that if Wy and w, denote typical high and low frequencies,

respectively, then we have

X(w,) = -1 27)



_18_

X(wp) = (kfk) > 1 o

If the unperturbed distribution functions are Maxwellian, then (27) and
(28) can be obtained formally from the expression of X in terms of the

plasma dispersion functiona, Z,

X (kw) = - (wp/ka) Z (0/ka) 5 a(xTefm)Eee

and from the small argument and asymptotic expressions

-9 |s] «1

i
L(s) = .2 (30)
S Is| >1 -

More generally, (28) is simply a manifestation of Debye shielding while
(27) follows from the fact that the high frequencies are near the roots

of ¢ so that

e

e=1+X,+X = Je(m[u)-X =0 (31)

I

Since the right hand side of each of the equations (16) involves the
difference of a x(mh) and a x(wl), and since we assume k<<kD, we can
always neglect x(wh) compared to X(wz). That is, of the two terms ¥ ()
and X(miJuS) in any of the equations (16), only one need be retained (the

former, if w is a low frequency, the latter if w is a high frequency)
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and the one which is kept can be set equal to (kD/k)z. Consequently, in

the following it suffices to simply write X, sans argument, and to regard

it as an abbreviation for (kD/k)z.

To eliminate the high frequency components from (16), let w be a low

frequency, with Rew =0> 0. Then from (16) we have

e(w) E(w) = <A XL A\ [E(w-wr)r E(wewy)] 6
Using (16) again, with u replaced byuw+ u_ gives
¢ X[ N E(w)e ) E(wen)]
€ E(wew)= (X[ N E(w)« ) E(wzh)]

"

€ E(wziw,)

(33)

wherec E (w) is an abbreviation for € (w) E (w), etc. Note that these

equations involve both the inner sidebands,U)—ui,u)+ Wos and also the

outer sidebands, w + W15 W= . Substituting (33) into (32) we immediately

obtain

el_ E(w) = M_(w) E(w-—A)+ M+(w) E(w +A) (34)

where

€, (W)= €(w)- XQX X;l [@"'(w-“’s) e €' v wg) ] (35)

]
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plays the role of a nonlinear dielectric function and

Mt(w) = XQAIX’.[G—‘((» tw,)-t—é"(w 4'“’;)] (36)

are mode coupling coefficients. Writing (34) with w replaced by w - A
and neglecting the non-resonant components E (w+ nA), n # -1,0, we
obtain a pair of equations for the two coupled, resonant, low frequency

components E (w) and E (w-A) :

t
o

€, E(w) - M_(©) E(w-a)
- ’1+(u)-do E(uo) + € E;(Lu-lk)

(37)

1}
o

The vanishing of the determinant of these two equations then gives the

dispersion equation for this system,

D(w) = € (w)€ (w-2)-M (w)M,(w-2) =0 @8

. . . 2 .
Aside from differences of notation and a factor of (1 + X)° in each term,

. . .. . . -1
this equation is identical with Eq. (35) of Ref. 1. The terms ¢ (w-+u)1),
£ -1 (w=- wz) arise, of course, from the outer sidebands, and while they

will be small compared to those arising from the inner sidebands if the

damping is weak, y<<Q, they will all be of comparable magnitude when y2Q .

This is an essential point, to which we shall return in Section V.

To obtain specific results from (38) requires explicit expressions for the
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susceptibilities and either algebraic or numberical analysis of the
resulting equation. This was done in Ref. 1 using simple fluid expressions
with phenomenological damping terms for the susceptibilities and we shall
present additional calculations of this character in Section IV. One can,
of course, use kinetic ekpressions, as is done in Ref. 3 for X; o but that
will affect the results of (38) only if the ion damping is significant,
i.e., only if the ion acoustic resonance is appreciably broadened, in
which case the essential approximation of neglecting low frequency compo-

nents other than w and w=A, on which (38) relies, is no longer valid.

Thus, the use of the kinetic expression for ¥, while correct, is at best
a useless and unwarranted complication. Even worse, it can, as in Ref. 3,
lead to erroneous results: having gone to the trouble of introducing the
kinetic X;» one may be tempted to explore the case Te/Ti = 1, where the
argument of the Z' function is not large and a simple resonant approxi-
mation to X4 is inadequate. However, since the basic truncation (neglect
of components atw+nd , n # -1,0) which leads to (38) is unjustified,

the results are of no use.

We now turn to the, unfortunately more complicated, analysis of (16) based
on elimination of low frequency components. Assuming, then, that y is a

high frequency, = w, >0, we have from (16)

e E(w) = i X2 Ag E(w-w) 39)

where we neglect non-resonant components having frequencies of order 2 Wy e
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Applying (16) again, with w replaced by w-w  we obtain

€E(w-w)= —4;7({ ML E()« E(m-2)]+

(40)
[ E(®)+ E(w-2)]
where w = w- w, - 2, ——:—(A.)k (41)
and
6 E(w-wa) = ~i X | ML E(w)+ E(+4)]
(42)

+ N E®) + E(een)]]

Note that the frequency w has a simple physical significance: if w is one
of the inner sidebands, say at a in Fig. 1, then w corresponds to the
other sideband, at b. To eliminate the several new high frequency
components, at #, w + A, T+ A , which have entered, we must again use
(16), evaluated at each of these new frequencies. If we assume that

w corresponds to an inner sideband, so that |w-wy, |%|w-w;|* Q and if we
neglect non-resonant components near 2 Wy and at w - wy + A = Q + A, etc.

then no new frequencies enter. Leaving the algebraic details to the appendix,

we simply state here the resulting coupled equations for the two inner

sideband components, E (w) and E (W)

[ew) - F)] B - Fy(w) E(®)

\
o

(43)

1))
O

- FR(w) E(®) + [€(w) - Fuw) ] E(®)
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with

Flw)= X'3 Af ¢, (w)

"

Fa(w) = MM XT3 €'(w)
Fo(w) = X* L A2 ' (w)

(44)

€ (W)= €(w-w)- )CA[ )\fé'l(Ja—A)+ N e (w-a)]

€a(w)= €(w-wa) - X[ N €(wea)+ Ay ¢ (5 +4)]

X' >"~ Al - Al

The greater simplicity of both the derivation and the results when we
work with low frequencies is impressive. In particular, we note that the
quantities €, (w) which appear in the denominators of the coefficients

F., F, and F, involve terms quadratic in the AS, with coefficients which

1’ "2 3

will be large if the outer sidebands are resonant.

The vanishing of the determinant of the equations (43) provides a

dispersion equation

Dy(w) = [ €)= o] e@)-F()]-Flw) =0

which must have the same roots as (38) since both (38) and (43) are
obtained from the same initial set of six coupled equations. However, the

actual dispersion relations, i.e., (38) with (35) and (36) substituted
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into it, and (45) with the quantities (44) substituted into it, are so

different in form that this coincidence of roots is by no means obvious.

ITI. Properties of the Coupled Modes

In this section we briefy consider some of the general properties of the
two coupled modes described by (37) or (43). Or course, there are, in
general a total of 6 coupled modes: two near the ion acoustic resonance
and four (two inner sidebands and two outer sidebands) near the Bohm—
Gross frequency. As we have seen, the simplest procedure is to eliminate
the four high frequency modes, leaving us with the two coupled low fre-
quency modes described by (37). Alternatively, motivated by a desire to
understand the results of Ref. 3, we can eliminate the two outer side-
bands and the two low frequency modes, leaving the two coupled inner side-

bands, described by (43).

Although it may not be immediately evident, the roots of the low frequency
dispersion equation (38) must be symmetrically located with respect to the

frequency A/2. This can be seen most clearly by defining
Z= w-Aala (46)

(47)

and “f(Z)

0
o
~—~~
S
\
»
+
N
S
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From the definitions (35) and (36) and from the reflection symmetry

property (24) it follows that

f(z) = f*(-z*) (48)

so that if z is a root of f, then so is -z*. If Re (z) # O, then there
will be two distinct roots, with the same imaginary part but equal and
opposite real parts, i.e., the complex roots must occur in pairs. In
addition, there may be pure imaginary roots, since they satisfy z = -z*,
To a pair of complex roots correspond two low frequency waves, with
frequencies lying symmetrically above and below A/2; two inner sidebands,
with frequencies lying symmetrically above and below the mean pump fre-

quency,

(49)

N »

Wo = (’ubl.r UD")//gL

and two outer sidebands. To an imaginary root in the z plane there
corresponds a single low frequency wave, with the real part of its fre-
quency at A/2; a single high frequency wave, with the real part of its
frequency at w3 and two outer sidebands.

We can expect that for E1 = E, = 0, the roots of f, which must lie in the

2
lower half plane if damping is included in e, will in general have non-
zero real parts and hence, as a consequence of (48), lie symmetrically

about the imaginary z axis. As the pump amplitudes are increased, the

trajectories of the roots can follow one of several patterns, depending
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upon the values of the free parameters (pump frequencies, pump amplitudes,
damping rates, etc.). One of the symmetrical pairs could move up to the
real axis, in which case the spectrum at marginal stability would have

- two low frequency waves, two inner sidebands, and two outer sidebands.
Alternatively, the two roots of a pair could move towards the negative
imaginary axis; merge; and then separate again, with one moving down the
imaginary axis and the other moving up until it reached the origin. In
this case, the marginally stable spectrum would consist of a single low
frequency wave, at A/2; a single inner sideband, at w3 and two outer
sidebands. Naturally, many other topological possibilities could occur,
including the coalescent of two distinct roots at z = 0, i.e., a double
root of f. We shall consider in detail only the second of the cases des—
cribed above, where marginal stability occurs at z = 0, which we refer to

as the case of coincident inner sidebands, since there is, in fact, only

a single inner sideband frequency (and, correspondingly, a single low
frequency) in this case. (The analysis of Ref. 3 and the specific results,
albeit not the general analysis, of Ref. 1, are also limited to this case,
although we are not aware of any formal proof that this necessarily
corresponds to a lower threshold than the case of two distinct, marginally

stable roots).

To obtain the physical fluctuation field E (x,t) it is necessary to use
the inhomogeneous form of (37) which results from including the initial
value term r, defined by (19) in the mode coupling equations (16). These

inhomogeneous equations have the from
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(l

€, E(w) = M_(Ww)E(w-a) = R(w)

(50)

- M, (w-8)E(w)+ € E(w-8) = R(w-a)

where R (w), whose exact form is of no concern here, is just a linear
combination of r, evaluated at arguments w,<uiAml, and w i_wz, with
coefficients involving the AS and e(«»i_ws). It is convenient to separate

out explicitly the delta functions of k which occur in r, and hence in R,

and to set

R= m{ §(k-kJ)~§(kek)]Q (51)

We then have

E(k'w)= LnN(m)[S(k_k°)+g(k+ ko)]/])‘_(w) (52)

where

(N = R(w) €, (w-a)+ R(w-a) M-(w) (53)

Assuming a marginally stable root of f at z = 0 and inverting the Fourier-

Laplace transform gives a standing wave at A/2:

E, (x,t) = [N(8/) /D'(a)2) ] exp(-cat/a)cos kx + c.c.

= Avcos(at/a~)cosk,x (54)

where 9 N (A/a)/j)'(A/ﬁ) = Ae:fﬁo (55)
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The subscript L on E indicates that (54) describes only the low frequency
portion of the field. An ekplicit expression for the high frequency part

i.e., for the inner sideband at W, and the outer sidebands at o + A and

wo = A can be found by using (52) and (33) to find the high frequency

components of E (k, w) and again inverting the Fourier-Laplace transform.

As is clear from (53) and (55), the phase ﬂ(ﬁfthe standing wave depends,
in an essential way, upon the initial conditions and can be anything from
O to 27 . This is consistent with the fact that ﬂ can have no physical
significance, since it is the only wave in the system with frequency A/2.
Exactly the same remarks apply to the phase of the high frequency waves,
for example the standing wave at w s its phase, which can likewise assume
any value, depending on the initial conditions, can have no physical

significance. Since there is only a single wave with frequency .

IV. Threshold Calculations

In this section we obtain explicit results for thresholds from the general
low frequency dispersion equation (38). As we have explained previously,
our truncation of the infinite set (16) is justified only if the ion
acoustic resonance is sharp, so it is sensible to use a resonance appro-

ximation. Thus, if w is a low frequency, with Re w 2Q>0, we have

i

€(w) I+ X - oo,-f[((AHH")':l
(56)

X[1- Q% (wsi l")v"“] = (&X/.Q)(w-ﬂu;r')

]
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If, on the other hand, ¢ is a high frequency, withw=w >0, then

K

€(w) = I-wf(oo-u—cY)—i;'— (&/w,,)(w—wk+ib’) (57)

We always assume the damping of the Langmuir waves to be small compared
to the plasma frequency, Y<<wP,so that the resonance approximation (70)
for high frequencies is always valid, whether Y is small or large compared

to Q.

Once we have introduced these resonance approximations, the dispersion
equations (38) and (45) reduce to polynomials in w. However, considerable
algebraic complications remain because we have four parameters at our
disposal, the amplitudes and the frequencies of the two pumps, and would
like to choose these so as to minimize the threshold or maximize the

growth rate of the instability.

To minimize the rather tedious algebra, we shall, as remarked in Section
ITI, consider only the simplest case, where marginal stability occurs at
the origin in the plane of z = w -— A/2, We shall futher simplify the
analysis‘by examining only the two particular cases of weak damping,

Y<<{l, and strong damping y>>Q.

A. Weak Damping y<<Q

Consider the high frequency form of the dispersion equation (45). As is

clear from Fig. 1, not all of the high frequency sidebands can be resonant
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in this case, but if the two inner sidebands are close (or, as we assume
here, coincident), then we can choose both of them to lie within Y of the

Bohm-Gross frequency, i.e., take

SE wO'wks Y (58)

(0f course, we could also choose the pump frequencies so that one of the
outer sidebands was resonant, but the choice (58) is preferrable since it
results in two resonant sidebands). We can then neglect the outer side-
bands, since their resonant denominators will be larger, by a factor of

Q/y , than those for the inner sidebands.

In general, the pump parameters would be specified and (45) would be
solved to find the roots of D(w). Here we are specifying(u=wo (i.e.,
postulating coincidence of the inner sidebands and marginal stability)

in which case (45) gives a relation which must be satisfied by the W

and AS. Our goal is find what combination of these parameters, satisfying
(53), minimizes the total pump power, or, equivalently, the dimension-

less quantity

Pz (ENENfamnT= A« A= (5N o

Here, consistent with the notation in Ref. 1, we have defined

A= XK= () JK) = BN famaT e

S
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and also written
Ne = § N\

where A is a convenient measure of the general pump power level and

the fS determine the ratio of the two pump amplitudes.

For the case of coincident inner sidebands, we have w = ~% * and it then

follows from (44) that F, (w) = Fg (w) and that F_ is real, while (24)

2

gives €(@) = €*(w). Thus, (45) can be written
2 [}

Ié(w) - E(W)l - F’_ (w) =0 (61)

where we have, so far, not made use of the resonance approximations (56)

and (57) i.e., (61) is valid in general for the case of coincident inner

sidebands. If we now introduce the resonance approximation only for the

Langmuir waves, using (57) to set

€E(w) = Q(Su)’)/w,, (62)

then (61) can be written as
2
(25/w,- Re F ). (ib//w,- ImF) = F, (63

It follows from the expressions (44) for the Fi that, independent of the

precise form of X; (kinetic, fluid, or whatever) contained ine, F

1 (w)

and F3 (w) depend only on the pump frequency separation, A, and not on the
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displacement § of the average pump frequency w from the Bohm—-Gross
frequency. The only dependance on § is that which appears explicitly in

the first term of (63).

To find the minimum threshold we should set w= Wy in (63); solve for A2
as a function of the parameters at our disposal, namely §, A, and the fs;
and then vary these parameters so as to minimize P. However, since the
only dependance on 6§ is in the first term of (63), differentiation with
respect to 8 yields the result that the first term must vanish and hence

that

QX/WP -InF = £k, (64)

&g/wp = Re F (65)

We now introduce the resonance approximation for the ion waves as well,
i.e., (56), and, consistent with our assumption of weak damping,y<<Q ,

neglect the outer sideband contributions to F,, i.e., the terms involving

1’
e_l( w*A) and e_l(EiA ). (The argument for neglecting the outer sidebands
is most easily made in terms of the low frequency form (38) of the dis-
persion equation: in the expression (35) for sL(w) the inmer and outer

sideband contributions appear additively and the latter will be smaller

than the former by a factor of y/Q.) From (44) we then obtain

E(w) = XAS Ajé’l(w— w‘) = (ﬂ/ﬁl)[ﬁ(/\ﬁ*’/\i)i’ LF(A?-/\:)] (31-} ’.,2)"’

-~y (66)

Fa(w) = XAMN, € (w-w)= QAN q(5" )



_33_

where we have, to simplify the notation, defined

a:(wo-UOa,)-‘ ﬂ: ("\)/"wo)— Q: A/i__ﬂ (67)

For g = 0, we have the special case where the pump separation A is exactly
equal to twice the ion acoustic frequency, 2Q, but in general we are
free to choose A or g so as to minimize the threshold. Substituting (65)

and (66) into (64), we obtain
¥fwp = AT($-43) A Ja(gr?) = £ £, g KT oo

which can be immediately solved for Az:

A= (4yr)me)ut)[ $2-52 a5 8 u]” ()

where

1

U = 3//" (a/a - ﬂ)/F’ (70)

We have chosen here the + sign on the right side of (68) since for f1 >

f2 this gives a smaller value of AZ than does the - sign, while for fl<

f2 this is the only choice consistent with Az > 0.
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From (69) we can now read off all of the results for the weak damping,

coincident sideband case. For example, setting £, = 0 we obtain the

single pump result,

/\&—"- ( 4 YF/w,,.Sl)(u’“+ l) 71)

which, for u = 0, takes on its minimum value,

>
i
>
I

0 (4YF /WP-Q) 72

the well known single pump weak damping result®. For equal pump ampli-

tudes, f1 = f2, we have

/\2 = /\9;(0(2+l)/9l(,( (73)

which is a minimum for u = 1, i.e., when the pump separation A is shifted
away from @/2 by T'/2. The minimum value is again Ag, but the total pump
power 1is now ZAS,SO there is no advantage in having two pumps. In general
for any choice of the fs’ the total power, P, achieves its minimum value,

Paw = Ao (10 £[4])

for u = f2/f1’ and hence in the weak damping, degenerate mode case the

two pump threshold always exceeds that for the single pump (f2 = 0).
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. . . 2
Of course, having thus determined the optimum u and A” values, we can use
(65) to find the shift § of the average pump frequency from the Bohm—Gross

frequency:
28w = ReF, = L (81 VA" [aT (' +1)
or 8 = XJ('i/DC,

(75)

B. Strong Damping, Y>>0

In this case it is easiest to use the low frequency dispersion equation

(38). Remembering that w is now a low frequency, with Rew= Q>0, we have

from (44)

E(wrwg) = | - wf(wtws+if)9‘

(&/wr)L § £ (Lo+ ix)]

(76)

1

where the quantities
SS = Wy —u)k (77)

which give the displacements of the respective pumps from the Bohm—Gross

frequency are simply linear combinations of § and A:

§= (5,+6,)]% (78)

From (76) and (56) we then obtain (for Rew>0)

€ (W)= X{ (&/.Q.)(w-—.ﬂ.fi P) - wPZ /\:: SSES:— (u..aa’)’]"} (79)
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and

M-(w) = M-r(w'b) = W X /\a A.‘L S[Sl’ (Z*iX)&]" (80)

where z is defined by (56). If, as in the weak damping case, we consider
marginal stability (Imw= 0) and degenerate roots,w=A-w= A/2, or z = O,

%
then eL(w-A) = sL(—m) = eL(w), M_(w) is real, and (38) becomes

2
¢ )| = [ M. (w)] (&)

In the denominator of the second term on the right side of (79) we can

[gsa-(w*ix)*]-' = (S:-&- Y—’-)"[ ’+&4',Xw(£;-*)§l)—,] (82)

sincew= A/2 = Q<<y. Then (81) gives

—qq2
[&3/5)' - wp2 A‘SS(S:*XI)“'JQ* [&P/Q - 2wy Z/\f (‘:+X2) :tl

(83)

= (w AAS) (82

From this we can easily recover the single pump threshold for strong
damping. On setting A, = O it follows that each of the positive definite

terms on the left side of (82) must be zero. The vanishing of the second
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term gives

/\9‘ = {"(82\» X"‘)&/ Xw,, _Qag, Y (84)

which, for § = Y/B%, achieves its minimum value,
2
Ao = (4[s#) A (t]a) = 072 (R)A. o

Thus, as originally shown by Nishikawas, this threshold exceeds
the weak damping one by a factor of order y/Q>>l, From the vanishing of
the first term in (83) we find the value of the pump separation A

corresponding to this minimum threshold:

g/Q = (A/z_ﬂ)/ﬂ = :LY/"/3Q& (86)

The fractional shift of w= A/2 away from 2 may be small or large,
depending on the ratio of the two small quantities Q/y and T'/Q. However,

the shift is always large compared to TI:
(w-ﬂ)/l": &X/S.Q_ >>1 87)

To see whether two pumps can give a lower threshold, we consider the case
of equal pump amplitudes, f1 = fz. We shall find that the optimum 61 and

62 are of order y and hence large compared to §, - §, = A, S0 we can

1 2

approximate 61 = 62 = §, except in places where the difference 61 - 62

appears. Then (83), which is in any case simply a biquadratic in A, can be
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written as

3% - Buy s 4 (WP4 1) =0 (88)

where u is given by (70)

and gz (AA) LYS(¥§Y) (89

Solving (88) for y and minimizing the result with respect to u, for fixed

§ , gives a minimum value, Ymin = 2 for u = 2, or, from (89)

(AJA)E = (% ") /275 0

Minimizing (90) with respect to § gives

A= A o)

Miv 4

for § =Y. Thus, with a pump separation A which is nearly equal to 20,
A-a2Q = al«aqQ
we obtain a threshold for the strong damping case with two equal amplitude

pumps which is the same as for a single pump in the weak damping case,

2

2
namely A = Ao’ whereas the single pump threshold with strong damping,

(85), is larger by the factor 0.77 y/Q>>1.
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In summary, the results found in this section are in agreement with those
of Ref. 1 regarding the pump power thresholds. As before, we find that in
the weak damping case the threshold for two pumps is no less than that
for a single pump. In fact, we have shown here that, at least in the case
of coincident inner sidebands the threshold with two pumps is always
higher than with a single pump. In the strong damping case we find, again
in agreement with Ref. 1, that the two pump threshold can be lower, by a
factor of order 9/y, than that for a single pump. By carrying out the
algebraic analysis of the dispersion equation (81) somewhat more care-
fully than was done in Ref. 1, we find that the minimum threshold with
two pumps does not occur for A = 2 Q, as stated there, but for A shifted

slightly away from 2 Q. Specifically, in the weak damping case
A- 2] =2,P§,_/5-' (92)
while in the strong damping case with equal pump amplitudes

A-2Q =T 93)

In both cases, the fractional displacement of A from 2 Qis small, of

order T'/Q<<1, but it is not strictly zero.



_40_

V. Relation to the Calculations of Fejer, et al.

In Ref. 3, two different methods of calculating the threshold are presented.
The most straightforward, which is only briefly sketched (in their Section 3),
involves two coupled, low frequency equations which, aside from notational
differences, appear to be equivalent to eqs. (37) of the present paper.

The authors state that the vanishing of the determinant of their coupled
equations yields eq. (35) of Ref. 1, which is, in turn, identical, save for
a factor of (1 + x)z, to eq. (38) of the present paper. Moreover, since
they proceed to use resonance approximations for the dielectric functions
which are equivalent to (56) and (57) of the present paper and consider the
case of coincident, marginally stable low frequency perturbations,

w=A- w = A/2 one would expect the results of that method of approach to

coincide with those of Sectiom IV and of Ref. 1.

Unfortunately, the authors of Ref. 3 drop from their coupled equations the
terms corresponding to the outer sideband resonances, i.e., they implicitly,
albeit never explicitly, limit themselves to the uninteresting case of

weak damping. For that case, their results actually, as should be expected,

disagree with those of Ref. 1 only as regards the optimum choice of the
pump frequency separation A . As discussed at the end of Section IV, the
minimum threshold corresponds to a value of A whose fractional difference
from 20 is of order r/g<<l, a shift which was neglected in the approxi-
mations used in Ref. 1. Of course, if one insists upon having A precisely

equal to 2Q, then one can indeed find nonsensical results, such as the
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"infinite thresholds" which are emphasized in Ref. 3. (The origin of

these becomes clear if we ekamine the weak damping result (69). As ex-
plained in Section IV, A or, equivalently, the quantity u defined in (70)
must be considered as ome of the free parameters, to be chosen in such a

way as to minimize the total pump power P, and, as shown there, the optimum
value of u is just fZ/fl' If one, instead, requires u = 0 for two equal ampli-
tuﬁepumps(fi =,f2), then (69) indeed gives an infinite value for A2. In
fact, for any choice of f1 and f2 there is a value of u, namely u =

; - fi) / 2 fle’ which makes the right side of (69) infinite, but such

(f
considerations are clearly irrelevant to the problem of finding thres-

holds for the instability).

The other approach to the calculation of thresholds, described in consider-
able detail in Ref. 3, can, in the case of weak damping, with degenerate
eigenvalues, lead to correct answers (although it is also applied in

Ref. 3 to the case of strongly damped ion acoustic waves, Te/']_‘i = 1, where
it does not give valid results). The derivation given in Ref. 3 is a
heuristic one, in which a single high frequency sideband, precisely at

w = (wl + wz) / 2, is assumed. (Actually, two travelling waves at this
frequency are postulated, but since they turn out to have equal amplitudes,
this is equivalent to a single standing wave). A physical argument in-

volving ponderomotive forces and energy conservation is then used to

obtain a dispersion equation which turns out to be equivalent to (78).

To relate that work to the analysis of the present paper, it is easiest

to consider the coupled high frequency equations (43). If we specialize
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to the case of coincident sidebands, W

-w , then the first of eqs. (43)
becomes

- %*
[ e - F(w)]E(w) - R(wE(w) =0 on
while the second equation is simply the complex conjugate of the first. It

is then reasonable to expect that all the information about the system is

contained in (94). In fact, if we set

E(wo)': ,Elcda

(95)

*
multiply (94) by E ; and take the real and imaginary parts of the resulting
equation, we obtain,

since F2 is real in this case,

Re €

Re F, + F,_ cos 26 (96)

Ivv\e = IMF]"' FzS]loﬂg ©7)

The angle 6 which appears in these equations is unknown, but we can

. . . . . 2
eliminate 1t. Since 31n226 + cos 26 = 1 we have

F: = (QQG" QQF')Q-‘- (Imé "’_-I:MF,)2 (48)

an equation which is, not surprisingly, identical with the high frequency

dispersion equation (45) in the special case of coincident inner sidebands.
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In Ref. 3, however, (97) is used in a quite different way. In principle,
we could solve (97) for»A2 and then minimize the total pump power P,
defined by (67), but since we would have to minimize with respect to 8,
as well as the free parameters &, A, and the fs, this approach appears
to be no simpler than the conventional method of calculation based on the
dispersion equation (98) in which © does not appear. Of course, if we
could, by inspection, choose 6 so as to minimize P (or even to minimize A
for fixed fé), then this procedure might offer some computational adv-
antages. In general, this does not seem possible, due to the somewhat

complicated dependance of the F. on the A , as given by (44), with the A
i s s

appearing in the quantities e However, in the weak damping case the Fi

are simply linear functions of the A , since we can, as noted in Section IV,
- s

neglect the outer sideband terms, e_lfuLtA ) and a—l(uLiA ) which account

for the more complicated dependance of the Fi on the AS. Then € (w) =

£ (w—ws) and with the resonant approximation (57) or (62) for the high

frequency dielectric function (97) becomes

ib’/wl, - Im F, = Fisim20 (99)

Save for notational differences, this is precisely the dispersion
equation (7) of Ref. 3, on which the results cited in that paper are
based. Since ImF1 and F, are linear functions of A2 for fixed fs’ one
can argue, as in Ref. 3, that the minimum Az will be obtained if sin26 is

chosen to be either 1 or -1, depending on the signs of F, and ImF.. Indeed,

2 1

if we introduce the resonance approximation (56) for the low frequency

dielectric function, then (99) just reduces to (68), with sin26 replaced
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by the + sign of the latter equation.

In summary, the heuristic approach of Ref. 3 does lead to a threshold
equation, namely (99), which is correct in the special case of weak damping
and coincident inner sidebands. Of course, since (99) is only a relation
for determining the marginal stability threshold, it cannot be used to

find growth rates, as one can do with the conventional dispersion equations
(38) or (45). Moreover, this approach appears to be limited to the un-
interesting case of weak damping: although (91) and, consequently, (99)

are valid in general for the case of coincident inner sidebands, there is
no simple way to determine the value of 6 which will minimize A2 for

fixed fS when the complete expressions (44) for the Fi are used in (99).
The restriction to weak damping and coincident inner sidebands is, of
course, built into the derivation in Ref. 3, which assumes at the outset
only a single sideband frequency,too, without even considering the
possibility of distinct inner sidebands or the existence of outer side—

bands.

The phase & which appears in (95) through (99) is taken, in Ref. 3, to be
the physical phase of the high freauency sideband field. If true, this

would be quite surprising, since the fact that minimum threshold corresponds
to sin20 = 1 would then imply that only those fluctuations having this

phase would reach marginal stability. In fact, this point of view is

adopted in Ref. 3 and the authors attach some importance to what they call

a "coherent instability". However, as is well known from linear stability

theory, the conditions for instability or marginal stability are entirely
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determined by dispersion equations, like (38) or (45), which are
completely independent of the phase of the fluctuations involved. If the
dispersion equation has unstable roots (in the upper half w plane), then
essentially any initial fluctuation will grow. If it has real roots,

then the fluctuations will oscillate with constant amplitude, again in-
dependent of phase. As the analysis of Section III clearly shows, the
actual phase of the growing or marginally stable waves depends in an
essential way upon the initial conditions for the perturbation, and can
certainly not be determined by the homogeneous form of the coupled mode
equations, such as (104). Moreover, as explained in the final paragraph

of Section III, the phase fpof the low frequency wave, and, equally, the
phase of the high frequency sideband, a) should not have any physical
significance and b) will depend in an essential way upon the initial
conditions. It thus does not seem that either can have any simple relation
to the angle 6, which must, we believe, be regarded assimplv a mathematical
artifact of the special technique used in Ref. 3 to obtain (68) from 97),
rather than from the dispersion equation (61) in the usual way, as de-
scribed in Section IV. (Of course, these remarks concerning the importance
of the phase of the excited wave do not apply to the oscillating two
stream instability (OTSI), which is mentioned in Ref. 3 but actually has
no direct pertinence to the case analyzed there and here. For the OTSI,
the parametically excited wave can have, at threshold, the same frequency

as the pump, and hence their relative phase can be of physical significance).
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Finally, we reiterate that even under circumstances where (99) is correct
(weak damping, coincident inner sidebands) it can only be applied to the
case where the ion acoustic resonance is fairly sharp, I'<<Q. In the col-
lisionless regime, where T arises from Landau damping, this requires that
Te/Ti be large. To use (99) with the kinetic expression for the ion
susceptibility and with Te/Ti equal to 1 or 2, as done in Ref. 3, is clearly
unjustified and will lead to invalid results: when I':Q there is no reason

to neglect the other low frequency components, e.g. at w +A= 3Q, etc.,

so we can not truncate the set (16) and would have to analyze a much

larger subset of the coupled modes than the six considered here.

To summarize this section, we have shown that the work of Ref. 3 is

limited or incorrect with regard to the following points:

1. Their equation for the threshold pump power which results from their
heuristic derivation is correct only for the weak damping case, with
coincident inner sidebands, and a consistent analysis of that equation
shows that the two pump excitation is then of no interest, since it

always leads to a larger threshold than single pump excitation.

2. Their alternate derivation, using the low frequency dispersion
equation, is correct in principle, but since the terms corresponding
to the outer sidebands are dropped, the results which they obtain from

it are, again, valid only in the weak damping case.

3. Insofar as the weak damping, coincident inner sideband case is



VI.

47 -

concerned, it is clear that the two methods of Ref. 3 should not

only yield the same results but that these should coincide with those

of Ref. 1 and of Section IV of the present paper for this particular
case. As shown in Section IV, the optimum choice for the pump separation
A differs from 22 by a small term of order I'<<Q. The fact that this

was neglected in Ref. 1 seems a rather minor point, considerably
inflated in Ref. 3 by a discussion of "infinite thresholds", but, as
shown above, these are simply a consequence of rigidly requiring

A = 2Q rather than allowing A to be chosen so as to minimize the

pump power.

The use of the threshold equation in Ref. 3 for Te/Ti = 1, where
I'29Q , is totally unjustified and the results obtained therefrom are
not valid, since there is then no basis for the truncation of the

infinite set of coupled modes.

The claim that there is a preferred phase for the marginally stable

waves is both unphysical and unfounded.

Conclusions and Discussion of Results

Using a simplified version of the analysis of two pump excitation pre-

sented in Ref. 1, we have confirmed the principal results of that paper

concerning thresholds when the pump frequency separation A = w.- w. is

1 72
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approximately twice the ion acoustic frequency: for weak damping (Langmuir
wave damping rate Y small compared to ion acoustic frequency I ) the
second pump is of no help, the threshold always being greater than with

a single pump; for strong damping (y>>Q) the two pump threshold with equal
pump amplitudes, is less than that for a single pump by a factor of order
of Q/y . The optimum choice of A is found to be not exactly 2Q, as stated
in Ref. 1, but rather to be shifted from that by a small term of order of
the ion acoustic wave damping I'. Since the reduction of the infinite set
of coupled mode equations to a subset of 6 modes is justified only when
I<<Q, this shift in A will be unimportant whenever the assumptions un-
derlying the entire analysis are satisfied. As in Ref. 1, these specific
results pertain to the case where marginal instability of the low frequency
waves occurs at A/2, the associated high frequency sidebands being at

w, = (wl +ut)/2 and w, * A. We give below some physical arguments sug-
gesting that this situation probably corresponds to at least as low a

threshold as the one where marginal stability occurs with two distinct

low frequency waves, located symmetrically about the frequency A/2, but,

the extensive exploration of parameter space needed to provide a formal

proof has not been undertaken.

Using the known properties of the usual single pump excitation5 we can
present a simple physical argument which indicates why two pumps are
advantageous only in the strong damping case. For a single pump with weak
damping, the minimum threshold is achieved when the pump frequency, w5

is above the Bohm-Gross frequency Wy by approximately Q. Thus, when
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the low frequency wave at W ig resonant,u&é'ﬂ, the lower sideband, at

wy - W= @, s will also be resonént. Thé EBEéE sideband, at W, + W, is
separated from Wy by 2w= 29>>y,so it will be far off resonance. Of
course, all three waves, the low frequency one and both sidebands grow

at the same rate (if we are slightly above threshold or oscillate, un-
damped, just at threshold) but the amplitude of the upper sideband, as
given by linear theory, will be smaller than that of the lower sideband
by a factor of order +y/Q. (This can be seen, for example, from (33) which
shows that the amplitudes of the sidebands will be inversely proportional
to the corresponding values of e , which is of order Y for the lower,
resonant sideband and of order Q for the upper, non-resonant sideband).
Thus, within the linear theory, the upper sideband is relatively insigni-
ficant. (Naturally, the actual saturation amplitudes will be determined by
non-linear effects). If we now add a second pump, at Wy < Wy s then its
lower sideband will be far off resonance if we continue to keep the lower
sideband of the first pump resonant. The upper sideband of the second
pump can coincide with the lower sideband of the first pump, and hence
also be resonant, but, as we have seen, it is unimportant in the decay

of the second pump and hence not likely to have much effect. In fact, it
probably does not matter very much whether or not the two inner sidebands
coincide, so that the threshold we have found should be approximately

correct also for the case of non-coincident inner sidebands.

If the damping is strong, then in single pump excitation the amplitudes
of the two sidebands are comparable, since the optimum pump frequency is

shifted away from Wy by something of order y and the same will therefore
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be true of both sidebands, which are separated from the pump by a
frequency of order A/2= 9<<y, It is then plausible that adding a second
pump, at such a frequency that its upper sideband is near or even equal
to the lower sideband of the first pump, could result in an enhancement
of the instability, particularly if the inner sidebands have the same

frequency.

An examination of the analysis given in Ref. 3 shows that of the two
approaches used there, one is inherently restricted to the weak damping
case, since the outer sidebands are ignored. The other is in principle
equivalent to the dispersions equations used here and in Ref. 1, but in
applying it the outer sideband terms are neglected in Ref. 3 so that,
again, only the weak damping case is analyzed. Within the confines of the
weak damping case, the results of Ref. 3 for large Te/Ti are correct and
differ from those of Ref. 1 only with respect to the exact value of the
optimum A, which, as noted above, should be shifted from 2Q by a term
of order T , an effect not taken into account in Ref. 1. Ref. 3 also gives
results for the case of strong Landau damping of the ion acoustic waves,
i.e., for Te/Ti of order 1, but these are invalid, since for r>q, the
truncation of the infinite set of coupled modes on which the work of the
present paper, as well as that of Refs. 1 and 3 is based, is no longer
justified. Remarks in Ref. 3 concerning the determination of the phase

of the marginally stable wave and its physical importance appear to be

without foundation.,

More detailed experimental tests of the predicted lowering of the threshold

consequent on the use of two pumps appear quite feasible using large volume
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laboratory plasmas, for example a large "Mackenzie bucket" (in which the
ionizing electrons of a d.c. discharge are confined by rows of permanent
magnet dipoles on the surface of the vacuum vessel). From the parameter
values for a typical xenon discharge shown in Table 1, we see that the
pump powers required are only of order of tens of watts, even for a plasma
with dimensions of the order of Im. Moreover, in the low frequency portion
of the ion acoustic spectrum, say, k/kD = .004, (corresponding to a wave-
length of 3 cm and an ion aocustic frequency of order 60 kHz) we have
strong damping, Y/Q = 10, while in the high frequency part of the spectrum,
say k/kD = 0.4 (A =3 mm, Q/2r = 6 MHz) we have weak damping, v/Q = 0.1.
Thus, one could pass from the weak damping case to the strong damping one
by simply varying the pump frequency separation from 12 MHz to 120 kHz.
The threshold should rise by a factor of 10 with a singie pump but should
Yemain approximately constant for two equal amplitude pumps. (A variation
of this sort was not possible in the experiment of Akiyama, et al2 since
the use of a resonant cavity required that the separation of pump fre-

quencies be less than the resonance width of the cavity.)

It may also be possible to observe double resonance excitation in the F
layer of the ionosphere using existing high power antennae. In recent
experiments6 two pumps with a frequency separation of order Q were used
and for A = 2Q much stronger excitation of sidebands was observed than

with a single pump of comparable power.

Numerical studies, now in progress, will be required to settle two questions

left unanswered here :

1) In the strong damping case, can values of El/EZ # 1 give smaller thresholds
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n 4 x 1011 crn_3
e
10701
Po orr
T 2 ev
e
T. 0.2 ev,
i
w . 108 secn1
pl
=4
Y/wpe 10
, -3
I'/? (Landau damping) 10
-1
kD 500 cm
v/ 0.04 kD/k
A2 4 x 10_7
o
L2 ,
E = (4m T )“?A 0.6 v/cm
o e e’ "o
P = cE2/2ﬂ 2 mw/cm2
o o

Table 1. Typical parameter values for a Xenon discharge

plasma in a multidipole plasma configuration.
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than the value, A . = A , which we have found for E,/E. = 1 ?
min - o 172

2) Are there parameter values for which marginal stability with two
distinct low frequencies occurs at a lower threshold than when the

frequencies coincide ?

More valuable, but also more difficult, would be the inclusion of ad-
. . . . . ' . 2
ditional sidebands, as observed in the ionospheric experiments , and a

calculation of the nonlinear saturation effects.
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Appendix

Detailed Derivation of the High Frequency Coupled Mode Equations

We give here the algebraic details leading to (43) and (44). To

eliminate the high frequency components at w + A and w + A which occur

in (40) and (42) we use (16) evaluated at these frequencies, obtaining

e E (w = A) iXA, E (w - w
e E (w-24) =ixA, E (w - w,)

e E (w+ A) = ixAl E (w - w

e E (w+A) =iXA, E (0 - w.)

where we have neglected non-resonant components near 2 Wy

Substituting (Al) and (A2) into (40),

€(w)E(w-w)= -4 X[ AE(w)+ A, E(K’)]

(A1)

(A2)

(A3)

(A4)

and near (Q+A).

(A5)

where 81(w) is given by (44) and similarly, substituting (A3) and (A4)

into (42), gives

€y (w) E(w-wy)= -i X[ A Ew) + X, E(@)]

(A6)
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where 52 (w) is given by (44). Finally, substituting (A5) and (A6) into

(39) gives

€ Ew) = F(w)Ew) + Fu(w)E(&D) (A7)

To obtain the corresponding equation for E (w), we evaluate (16) at ® .

obtaining

eE(D) = ¢ X3 N\ E(w-wy) %)

and then substitute into this (A5) and (A6) to give

e E(3) = F(w) E(®)+ F(w) Ew) (49)

where F3 is given by (44). The set (A7) and (A9) give equations (43).
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