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1. INTRODUCTION

In this paper we shall present an exact non-linear amalysis of
the development of a long wavelength finite amplitude Langmuir wave
in a uniform plasma. The initial Langmuir wave is chosen to satisfy
conditions (ko hDe < wzl(me/mi) where ADe is the electron Debye
length and Ve is the ratio of specific heats) such that the decay
instability is forbidden. Under these conditions a long wavelength
Langmuir wave, whose amplitude exceeds a certain threshold, is subject
to the modulational instability which was discovered by Vedenov and
Rudakov (1964).

The work described in this paper complements that of Morales and
Lee (1976) who recently gave a very interesting analysis of a similar
problem, Morales and ﬁee carried out a numerical analysis of the
fields generated by a travelling electrostatic wave of finite spatial
extent., In this work the driving (or pump) wave was assumed to remain
constant in time but its amplitude was assumed to vary in some pre-
scribed way (it was actually chosen to model a recent observation of
Wong and Quon (1975)). The non-linear interaction between the pertur-
bations generated by this pump wave weré.then computed numerically
but the reaction of the perturbations on the pump wavé was ignored.
In our work we assume the pump wave amplitude is initially uniform
but we take full account of pump depletion. The variation in the
pump amplitude we obtain is due to the reéction of the perturbations

on the pump wave.

Another feature of the analysis we shall present is in the method
of treating the high frequency fields. Many authors describe the high
frequency fields by a single envelope model using the non-linear
Schrodinger equation (e.g. Zhakharov (1972), Rudakov (1973), Nishikawa,
Lee and Liu (1975), and Nicholson and Goldman (1976)). However, in
many situations of practical interest the pump wave and the perturba-
tions occur at very different wave numbers. In wview of this and the
fact that the basic instability is a four wave interaction we describe
the high frequency fields by three separate wave envelopes - the pump
wave and two sidebands. These three wave envelopes are treated as
physically distinct throughout the interaction, This method has

recently been applied by us to the problem of the non-linear development



of the filamentation of an electromagnetic wave which is also a four
wave interaction. (The four wave interaction consists of two pump
waves and two excited waves.) The above points are discussed more

fully later.

2. MODEL AND DERIVATION OF THE NON-LINEAR EQUATIONS

We shall consider a uniform, infinite plasma in which a small
but finite amplitude Langmuir wave is propagating. We shall restrict
the analysis to one spatial dimension and the initial Langmuir wave
is described through its electric field

=7 @ i(kox ] wot)
.§L0(x,t) T %o © (1)
Associated with the electric field ELO(x,t) is a density perturba-
tion nLo(x,t) and an oscillating fluid motion v

. LO
~.have .used the subscript L to distinguish oo from the equilibrium

(x,t) where we

density of the plasma n . We assume that w and ko are related

by the linear dispersion relation
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where wpe’ 1& and Vore are the electron plasma frequency, the

ratio of specific heats of the electron fluid and the electron thermal

velocity respectively.

The plasma model we use to analyse the problem is the two fluid
isothermal approximation. We have chosen this model in the interests
of simplicity. It gives an adequate description of the phenomena, at
least for the initial stages of the non-linear behaviour, since the
basic phenomena are non-resonant. However, it does leave out the
important effect of particle trapping.' We shall return to this point
later.

The equations are as follows
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where j =i or e, and we have immediately specialised to one
spatial dimension - the X coordinate. Since we consider only
longitudinal perturbations all the fields are also in the x direc-
tiqn. Vj’ nj, qj’ mj, vj, Wj and Tj are, respectively, the fluid
velocity, density, charge, mass,phenomenological damping coefficient,
ratio of specific heats and the temperature of the jth species. E
is of course the elctric field and k and €, are Boltzmann's con-
stant and the dielectric coefficient of a vacuum (we use MKS units).
As equations (3)-(5) are written above, they are fully non-linear

and contain all the fields and perturbations of interest., For example,
the electric field consists of -a sum of the initial finite amplitude
Langmuir wave plus both high and low frequency electric field pertur-
bations. We now wish to consider the effect of the finite amplitude

Langmuir wave on perturbations which may arise.

Suppose, for example, there is a 1dw-frequency density perturba-
tion, of frequency and wave number (Q, ks), which are as yet un-
specified. This low frequency density perturbatiom, which involves
both ions and electroms, will beét with the initial Langmuir wave to
produce Langmuir wave perturbations with wave numbers ko + ks' These
Langmuir perturbations can in turn beat with the imitial Langmuir wave
to regenerate the assumed low frequency perturbation thus closing the
feedback loop for the perturbations and giving rise to the possibility
of instability. The above scheme is illustrated im Fig.l which shows
these perturbations related to the linear dispersiom relation, This
diagram is not to be interpreted too literally simce although the
Langmuir waves are only weakly perturbed by the imteraction the low
frequency waves can be strongly perturbed. As already mentioned in
the introduction, the wave number of the initial Langmuir wave is chosen
to satisfy the condition k_ ADe < vél(me/mi)% such that the decay
instability is forbidden. Under these conditions it is essential to
allow for the coupling of both side bands (k - k_ and k, + ks). We
shall refer to these perturbations as the Stokes and anti-Stokes

Langmuir waves.



We must now obtain the equations for the Stokes and anti-Stokes
Langmuir waves. Since the initial finite amplitude wave is required
to satisfy the condition eolﬁolz/nox Te « 1, we may use a perturba-
tion procedure to obtain these equations, The details of this are
given elsewhere (Bingham and Lashmore-Davies (1976),(1977)). The
method consists in expanding the equations for the Langmuir perturba-
tions about the linear solutions (w,,,, k  F k) where

wi, = w;e + oy (k) F ks)zv,;e (6)
Introducing slowly varying amplitudes to describe the non-linear
behaviour of both the Stokes and anti-Stokes Langmuir waves and the

low frequency density perturbation
1(1(1’2}; = (‘)1, zt)

EL1,z(x’t) = ReﬂLl’z(x,t)e (7
where kl,z = ko F ks and,
iksx ‘
n_(x,t) = ReN (x,t)e (8)
es s : :
where n is the low frequency density perturbation of the electron

fluid (ﬁ:a use this variable to describe the low frequency perturba-
tion). For the long wavelengths (k2 Aﬁe « 1) with which we shall

be concerned N ~ Byige The amplitudes 8L1,2 and NS are required
to vary slowly compared with the high frequency fields whose time
scales are ~ w;;. Notice that we have not separated the linear time
scale from the total time variation for the low frequency perturbation
since, as already mentioned, this mode can be strongly perturbed. The

equations for gy,,,, are then

5 8 - iw? -16,t

— — = *

(at ¥y x + TL>8L1(X’t) 4‘10‘"1 Hs o ® (9)
5 5 ) - iwé -i6,t

(é_t & Wyl ¥ g era(x,t) = T, N 2, (10)

= = . - 2
vhere &, , =W - W 3, Vi 2 =7, ky,2 vTe/wpe
n, is the equilibrium plasma density in the absence of all fields.
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Equations (9) and (10) have been obtained by choosing only those
fields which satisfy perfect k-matching. This results in the mis-
match parameters &, and &,. Only the dominant non-linear coupling
term has been included in these equations. This term comes from the
continuity equation and is> éi (nes vLo) where Vio is the electran
fluid velocity associated with the initial Langmuir wave.

The equation for N_ can be obtained from equations (3)-(5)
without expanding about the linear mode. Again, only the dominant
non-linear term is included, which comes from the momentum equation
for the electrons (the ion non-linearities are all negligible) and
is Ve % Vg Again only those terms are included which satisfy
perfect k-matching. The equation for NS is

82 2( A 9
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(11)
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where ¢ =K Te/mi .

Before considering the non-linear development of these perturbations
and the initial wave let us first obtain the initial behaviour of the
perturbations assuming the pump wave amplitude 1o remains constant.

-1i6 lt i&zt

Using gfl e s and N_ as the amplitude variables,

e
equations (9)-(11) becﬁéé a set of linear differential equations with
constant coefficients and can be solved in the usual way assuming a
variation exp i(qx - Qt). The resulting dispersion relation is a
quartic in Q. However, we shall be concerned with the simpler case
when 02 « k;c; . If we also take q = 0 then the dispersion rela-

tion for Q reduces to the simpler form

6, *+ 8,
(9-61+1‘YL)(Q+52+1'YL)-( 3 )woK=0 (12)
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Solving this equation we obtain the following threshold for instability
= _ [~2 2
K (¥ +a 1/w A (13)

where A = (6, + 6,)/2, 1i.e. we have instability only when A <O .

However, from the definitions of 6, and 6, we find that
A=~ - k2v2 /w
Yo ki /0, (14)

and so A is negative definite. When the threshold for instability

is exceeded the real part of Q is given by

ReQ = (6, - 6,)/2 - (15)

Again, using the definitions of &6, and &, we can write this as

= 2
ReQ = v, koks v,l,e/wo (16)

Since ReQ 1is the frequency of oscillation of the low frequency den-
sity perturbation we see that in the limit of an infinite wavelength
pump‘wave the density perturbation is pufely grdwing or non-oscillatory.
This instability then becomes indistinguishable from the oscillating

two stream mode as already noted by Lashmore-Davies (1975).

In the general case of finite k, the instability excites a low
frequency wave of frequency given by equaticn (15) and two high fre-
quency Langmuir waves whnrse frequencies are shifted from their un-

perturbed values w; , to w F %(w, -‘gl).

The growth rate < resulting from equation (12) can be expressed

as
7
Y=Ly gk - Kz)%
) W s s
o o

(17)

where K, = (78/2)%

(ks vTe/wo) and we have used equation (14) irn
deriving equation (17). We can see from the expression for the growth
rate that there will be a wave number ksm at which the growth is a
maximum, The maximum growth rate occurs for

K =(%)% (18)

sm
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where K is defined below equation (17). The maximum growth rate
is

m, B (19)
It is of interest to calculate the range of unstable wave numbers ks

corresponding to < falling to 7&!2. For the pump wave only slightly

above the minimum threshold

Ak %
S o 8K
- )
sm min
where K = Kmin + 8K and 6K « Kmin' For K sufficiently close to

threshold the range of unstable wave numbers will clearly be very

small.

For pump amplitudes well above threshold (but not so far above
to violate the condition v < kscs) the range of unstable wave

numbers is given by

ix_s;=..J..3. (21)
K 2
sm

In this case, the band of unstable wave numbers is much broader but

even so the spread of K is only of the order 0.4 Ksm.

Let us now calculate the ratio of kém to ko. This is an
important quantity since it determines whether all the high frequency
waves occur in a narrow band centred on ko or whether they occur

in well separated regions of ks-space.

Ueing equation (18) we obtain A
2 %
ko " (_2_ . Yo eolal.ol (22)
k Y k v 8n kT
o e o Te o e

We can obtain an estimate of ksm/ko by using the condition on ko’

=1 % .
namely ko)ﬁ)e <7, (me/mi) and the threshold condition
2

€ le | 2bn kT > v fu

For a neodymium laser created plasma at a temperature of lkeV,

ksm/k0 >1 for all ko and the ratio can be several times greater



than unity. Similarly, for a carbon dioxide laser created plasma
also at a temperature of 1 keV, ksm/ko > 1. Finally, for the
experimental conditions of Wong and Quon (1975) . = 5 X 108 cm™3,
T, = 2 eV and Eo =5 V/cm? we also obtain ksm/ko > 1. This means
that for many situations of practical importance the Stokes and anti-
Stokes Langmuir waves are excited in bands of wave numbers which are
physically quite distinct from ko and each other. The Stokes and
anti-Stokes waves will propagate at very different group velocities
from the initial Langmuir wave and from each other. In particular the
anti-Stokes wave will propagate in the opposite direction from the
pump wave whereas the anti-Stokes wave will propagate in the same
direction as the pump wave but significantly faster. Under these
conditions a single envelope description of the high frequency waves
(the non-linear Schrodinger equation) does not appear to be the most
natural treatment. Instead, we shall use a model which describes the
high frequency waves in terms o% three physically distinct envelopes,
one for the pump wave and one each for the Stokes and anti-Stokes

Langmuir waves. We shall now consider the fully non-linear development

of the initial Langmuir pump wave and the waves it excites.

3. NON-LINEAR SOLUTIONS

In order to close the non-linear system described by equations (9)-
(11) we must add one more equation namely the equation for the pump
wave. The pump wave is now treated on the same footing as the Stokes and
anti;Stokesperturbations so that we no longer assume that it is large
compared with the other high frequency waves. The equation for the pump
wave 1s obtained in a similar manner to equations (9) and (10). The

equation for 3Lo(x,t) is

(a 3 1) ks | 6t LY g5,
ot T Vo T Y By Fat) = bn W Ns €Ly © T bn W NS &r.®

(23)
where v vk v:/w .

o ~Ye o Te pe

Equations (9)-(11) and (23) now form the non-linear system of
equationslwe wish to solve. We again emphasize the idea behind this
are the high frequency waves which

set of equations. £ and ¢

L1 L2
are excited by the pump wave. These waves are chosen by imposing

perfect k-matching and we take ks = ksm so that we concentrate on

- 8 -



those waves with the maximum growth rate. In practice other Stokes
and anti-Stokes waves would be excited for neighbouring values.of ks.
These waves could be described either by the addition of other pairs
of waves aLa , and additional pairs of equations corresponding to
these nelghbouring values of k.. Alternatively, these additional
waves could be described by anluding a term in 82/9x? in the equa-
tions for e, and g;,. This dispersive term would describe the
spreading of the Stokes and anti-Stokes wave envelopes. Either of
these additions would complicate our non-linear system enormously.
Since ksm{ko >1 and often » 1 we assume that the most important
effect of dispersion has already been allowed for by the inclusion

of three significantly different group velocities v,V and v,

for the three wave envelopes. Since the spread in ks about ksm is
fairly small and ksm/ko > 1 this appears to be a reasonable first

approximation.

In order to solve equations (9)-(11) and (23) we must make one
further approximation. Equation (11) can be solved easily if we
assume that 02/9t? « k;c: . This is equivalent to our previous
assumption in obtaining the dispersion relation, given in equation
(12), that 9% « k;c; and is referred to as the static approximation
for the ions i.e. the ion response time is assumed infinitely fast

and the low frequency density perturbation is a driven response given

by
€W
) -i6,t ” is,t
B T L Bt s A tRaelk, g, e V) @8
e pe
Substituting this expression into equations (9), (10) and (23) we
obtain a reduced non-linear system
i E
A o) £)
9Ly, L =
(;t Vigx ¥ aLl(x,t) BnOKT w’ (f l"E.’Lo c3 B
-1(61+6,)t>
* g &1, L (25
9 2, (x.t) = o -1(6,+5,)¢
Bt t Vadx t M )CLe ™t T B wr wz - ”Lo 8L1
o e pe
2
+oglel eL,) (26)
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This is the set of equations we use to describe the non-linear develop-
ment of thé initial Langmuir wave and the perturbations it excites. It
should be noted that similar coupling terms to those appearing in the
above equations also arise from the second harmonic of the pump wave
and the other highvfrequency fields. We have compared these terms with
those arising from the low frequency density perturbation and have
found them to be negligible. This result has also been noted by
Nishikawa and Watanabe (1976)..~Equations (25)-(27) can be written in

a simpler form in terms of the amplitudes

CLENE W
o =(_2>__2.g
o 2 w Lo
pe )

€5 W .
a, =2 '—-—1 £ elalt
\ 2 w La
pe :

(__)JE V2 iﬁzt
w_&r2®
pe

The significance of these new amplitudes is that ]aolz is the total
wave energy density of the pump wave and “|e |2 and |a,|? have the
dimensions of energy density. In terms of @, a, and @, equations
(25)-(27) become

..Q_ — -4 2 2 *
2 v, 2t 4 y) 0G0 =i T (fa|? o, e a)) (28)

9 9 _ = {i 2 o*% 2
(at vy g0 - 18, + 'y\) @y(x,t) =i b (a2 a + [aol a,) (29)

3
a .Q— = 1 2 *
<_8_E TVt 'yL)ao(x,t) i Iv,(|e,] @ +a e, ao)

i T, (a0 + Ja,|® @) (30)
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where I'= 1/4n kT .
o e

4, CONSERVATION RELATIONS

The total energy density of a wave in a medium; averaged over the
period of oscillation and a wavelength depends on the values of w and
k in the medium. For a Langmuir wave in a uniform i-otropic plasma
we use equations (3)-(5) for the electron fluid to obtain the following

expression for the total wave energy density

_]1 1
€L B {? % IELI2 * 4 "o |lez

L } (31)
+ 7 [n |2
4 e T L w,k

Expressing n in terms of EL from Poisson's equatioh and v, in

L
terms of EL with the aid of the momentum equation we obtain
%o w;e 1 | kzv%é
= — + }2
€ =% \1+ 72 kz"';e)z + o7 } 1% (32)
’(é T Yo w2 . .k ‘

For the pump wave, we substitute the unperturbed values wo,ko in

equation (32) to obtain the usual result

C 1 297
€Lo - 5 €o IF‘Lo 57_ (33)
pe

However, for the Stokes and anti-Stokes waves we must take account of
the fact that the wave frequency is shifted by the interaction from
Wy, to W F %(w, - w,). When this is done equation (32) yields the
following expression for the total energy density of the Stokes and

anti-Stokes waves

2
€, , 1,2 (8, + 8,)
eLi’z = —-2—' IEL1’2| (.dz l - 2 ‘D ] (34)
pe ‘ pe

We may now use these expressions to derive a conservation relation for
the wave energy density. For the sake of simplicity we neglect the

damping and the spatial derivatives in equations (28)-(30). It is

- 11 -



then straightforward to obtain the following expression which shows

that the wave energy density is conserved by the interaction
6, + 6 6, + 6
5 1 2 1 20\
ac (1o 1% + Iallz( - 7(5‘“‘))“ la,| 2 (1 -(*27;—‘“)) =0
pe pe

(35)

Using equation (35) we can then obtain the equation for conservation

of wave action density

9 |ao|2 ler | 2 (51 + 52}) |, 2, (51 + 51»
ot | w A L\ RETA (1 TN 2w =0
o pe pe
(36)
where )] and W, are the perturbed frequencies defined above.

Equation (36) illustrates the fact that the basic instability results

from a four-wave interaction. In other words, if the Stokes and anti-

Stokes waves both increase by one unit the pump wave will decrease by

two units, i.e., two pump 'quanta' produce two excited 'quanta'.

The conservation of wave momentum density follows automatically
from equation (36) since we have imposed perfect k-matching. We
note that analogous conservation relations are obtained when we include

the spatial derivatives and damping terms in equations (28)-(30).

5. TIME DEPENDENT, SPATIALLY INDEPENDENT SOLUTION

We will now give some exact analytic solutions of equa-

tions (28)-(30) for a number of special cases. So far we have been
unable to solve these equations for their simultameous evolution im
space and time. At the present time no inverse scattering transform
for a four wave interaction appears té exist, The first special
case we consider is when all the waves are uniform in space and we
solve for the time evolution of the system neglectiﬁg the spatial
derivatives and also the damping terms (these are included later).

We follow the method of Armstrong et al (1962). Writing the complex

amplitudes an(t) as follows

an(t) = an(t)ei¢n(t); n=0,1, 2

- 12 -



where an(t) and mn(t) are real functions of time, substituting

into equations (28)-(30) and separating real and imaginary terms we

obtain

aao ) :

—5;:— =TI (wl + wz)ao a, a, sinf (37)

Oa, ‘

—SE- = - l"wo 8(2’ a, sinf (38)

oa, :

s < - I‘wo a; a, sinf (39

o9

_a_f. =T (w, a2 + v, a? + (v, + v,) a, a, cosd) (40)

99, | a2 a,

—a-t— = I‘wo(ag"-i— oa cosf) + 51 (41)
v 1

00, a; a,

vl I‘wo(ag + = cosf) + &, ‘ (42)

2 ,

where 0(t) = 2¢°(t) - ¢,(t) - g,(t). Equations (37)-(39) give rise

to the.following constants of the motion

W, + W, W + W,
2 —_———Yn2 ————eYn 2 =
2ao +—( > )al +-( x >a2 W (43)
) o
wl + wz
a; + (——7;—-—)a§ = n, (44)
0
W, + w,
ag + (T_) a% = n, (45)7
)

where W, n,, n, and n, are constants defined by the above equa-

tions. Using equations (40)-(42) we obtain the following equation
for 6(t)

- 13 -



d d |
It 0(t) = - (8; + 8,) + 2I' (0, ai + w, a} - W a’) + cotf It tn(a? a,a,)

(47)
Next, we make use of equations (38), (44), (46) and (47) to obtain the
result
, (6, + 62) W, W, ‘
a’a, a, cosf + —2—1-:5;—— a? - (n1 t = n:,) a? "(Ul_:—w—z)ag = A (48)

where again A is a constant which is defined by the above equation.
We shall take as the initial conditions a (0) » a,(o) # 0 and
a (o) = 0 we then find

wO
A= - —2—o 2 (49)

(w, +.w2)
Calculating sinf(t) from equation (48), substituting it into equa-
tion (38) and using equations (44) and (46) we finally obtain an

equation involving only a,

da! af af
Tl-t- = FUO ('al Asz)%[C - X‘i‘) (1 + -ﬁ—i)]% - (50)
where
A= -2+ =L (b2 o 4|a|c)%
2{a| ~ 2{a] T

B? = - ?ﬁT +-2-[1;[ (b2 4 4]a]c)?

and
(W2 - wd) (W, + w,)
a =gz 03t T 7 (6, + 8,)
(o] o
Wy . W, W, (6, +6,) W, 6, + 6,
= ——— —— e e— 4 ——— - — 4 —
b W n3<n1 w, W n; T'w (nl w "3 T4rw )
o o (o] o o
= 2
c = n3nl

The solution of equation (50) satisfying the initial condition

al(o) = 0 1is now obtained in terms of a Jacobi Elliptic function

-14 -



a,(t) = A cn(K(k) - Bt,k) (51)

where K(k) is the complete elliptic integral of the first kind,
k( = A2/(A% + B?)) is its modulus and B = ((A2 + Bz)lal}%]?wo .

The corresponding solutions for the pump wave and anti-Stokes
wave can be obtained using equation (51) and equations (44) and (46).
The solutions are periodic in time and the pump and excited waves are
one half a period out of phase. The Stokes and anti-Stokes waves
reach their maximum amplitudes in a time given by Toax - K(x)/B.
This time dependent (spatially independent) solution is very similar to
the one reéently obtained by the present authors for the filamentation

of an electromagnetic wave (Bingham and Lashmore-Davies (1977)).

To complete this solution we must calculate expressions for the

phases. These can also be obtained explicitly and are

(61 = 67)
NMw, + v, + w,)
9, (t) = m n, t
o
(5, + 63) g2/ 2
- zwo ﬁnlaz ﬁ(@,az,k) - F(@ ,k) + CPO(O)

(53)

where

: 2
k' = 1 o? = (won k + Azkra ( wonl )
4 S .
1 k (w1+w2) (J)l + (02

and F(g,k), m(g,@2,k) are the incomplete elliptic integrals of the
first and third kind respectively. @,(t) can now be obtained from

equation (48).

We conclude this section by briefly noting that the density per-
turbation can be obtained using equation (24) and the above solutions

and is

- 15 -



N (t)
S -—— - —-—
o = - noKTe (ao a, cos(cpo cpl) + ao a, cos(cpo (Pz) (54)

By analogy with the filamentation calculation (Bingham and Lashmore-
Davies (1977)) there will be a maximum density depletion when the
Stokes and anti-Stokes waves reach a maximum and half a period later
when the Stokes and anti-Stokes waves interfere destructively the

density perturbation will pass through a maximum accumulation.

6. TIME DEPENDENT SOLUTION WITH DAMPING

If the initial value of the pump wave is close to the threshold
for instability then it will not be a good approximation to neglect
damping. However, for the spatially independent case discussed in the
previous section, we have been able to include the effect of damping
as follows. [Bingham and Lashmore-Davies (1977))}. Introducing the
new amplitudes G_, G and G,” into equations (28)-(30) through the

transformation

and transforming to the new time variable T where T = {1 - exp(- Zwit)}/ZWi

(Armstrong et al (1962)) the non-linear equations for G, G, and G,
appear in exactly the same form as the equations describing the time
dependent (spatially independent) problem without damping. It is only
possible to solve the problem with damping in this manner because we
have assumed that the damping rate for all high frequency waves is the
same, This is a resonable approximation however, since in the long

wavelength regime (kL ADe « 1) we consider, damping is due to collisioms.

Having cast the problem with damping into the same form as in the
previous section we may immediately write down the solution. To illus-

trate the effect that dissipation has we shall just give the solution

for the Stokes wave ELI
IaLll = A cn[K(k) - —2%— (1— e-Z’YLt)}, k}e-’YLt (55)
L

where A, B,k and K(k) have been defined in the previous section.
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The solutions for the anti-Stokes and pump waves can be obtained, as
before, with the aid of the conservation relations. The physical
significance of equation (55) is that, the amplitude of the Stokes
wave decays exponentially in time and simultaneously there is a
lengthening of the non-linear period of oscillation. The period of
oscillation tends towards infinity as the amplitude decays to zero.
This behaviour has already been noted in another problem by the pre-
sent authors (Bingham and Lashmore-Davies (1977)). A similar result
has also been obtained by Nicholson and Goldman (1976) as a solution

of the damped non-linear Schrodinger equation.

7. SPATIALLY DEPENDENT STATIONARY SOLUTIONS

We now look for stationary solutions to equations (28)-(30).
In order to obtain the solutions we neglect the damping terms in
the equations and assume the existence of a velocity u (to be
determined) such that the complex wave amplitudes depend only on the

new coordinate
=x - ut

These stationary solutions are obtained using the method already
described for the time dependent problem discussed in Section 5.
Thus, transforming equations (28)-(30) from x and t to § and t
and introducing -

i(pn(ﬁst)

an(g,t) = an(g,t)e n=0,1,2

the stationarity conditica is then imposed by requiring that

oa B@n co
at  dt

where a_ and ¢, are real functions of §. The set of equations
for the an‘s and wn's is similar to equations (37)-(42) of

Section 5, the only difference being a factor Vn Sv,-u which

multiplies the first order derivatives with respect to £ on the left
hand side of the equations (vn is the group velocity where n = O,
1:2):

The following constants of the motion result from the equations

for the a_'s
n



2 4 " 2 =
al + 7 5 a2 const . (56)
o o
V, (W, + w,) :
2 L S L =
a’ + v " a? const , (57)
o o
v, vV,
7 a2 - v a? = const (58)
o o

where the vn's are defined above. Again, the phase functions

always appeér in the same combination, namely
0(e) =29 (&) - ¢,(&) - ¢,(8&)

" Proceeding as in Section 5 we obtain the analogous equation to (48)

involving cos 6

2 1 Va [ (3 Vi Wy 3 Vi gﬂ .
a‘ a; a, cos@ - 5 — | — + — + — - + aj
o 4V, LY, Va W v,
1 Vl ) Wy Vl > (1 Vl VO
-a T — {m m, ) - +— ) == m
2 VO B h)o 2 V2 1 V2 V1 (o]
(1 N Vl ((01 + wz) ] : 1 (61 . 62> Vl \ A
- — ) ————— n,| a “\0—+ 5 )— az =
v, W, o 2\V, V1, !

(59)

where the constant A 1is defined by the above equation and the m
are the values of the a; at & = O (where, of course, n =0, 1, 2),
We have chosen the origin in the §g-coordinate to coincide with an
extremum in a? '(usually a maximum). This is obtained by choosing
8ing(o) = O and we have therefore chosen 6(o) = 0. A can now be
expressed in terms of the values the various quantities have at the
origin., With the aid of equations (56),'(58), (59) and the equation

for a, (which is similar to equation (38) in Section 5) we finally

1

obtain a single non-linear equation involving only a,
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du 2Ra 7 ‘
:I:—-——(au4+Bu3+'yu2+nu+€) (60)

dg v,
where we have put u =a?(g). The coefficients a, B, ¥, n and ¢
can be expressed in terms of m_ s My, MWy, A, Vo’ V,, V, and 6 with
the aid of some straighiforward but rather tedious algebra. For the

sake of completeness we give these expressions which are as follows:

@ =D, + c2
B =D, + 2c,cC,
v=D, + C} + 2/C,
n =D, + 2AC,
€ =A2
where
Vl h)z 4 1 52 vl
IR emmam ctm— +._._
¢, V w > ( ) X- (Vl v, 2R)
o o
Vi [w v, w, v,
= e—— — +_.__ — —
€ AVva,)+w<3v+i>
o (e} o o
D, = X2y
D, = —X2-2—— ——— Xy
Vo Vo up
2
Vi (v, +w,)? 2v, (w, +w,)
D, =0, — 77— %Y - 3 ; X
Vo l‘)o VO wo
Vi (w, + w,)?
D, "{]‘g w;“—
and v, W, + w,)
X Emo +{7_ W My
o o
v, vy
Y =V- m, - v m,
(o) o)
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Inoue (1975) has considered a model four-wave interaction for
which he obtained an equation of the same form as (60). Inoue found

four basic types of solution which we give below.

As noted by Iﬁoue and many other authors, an equation of the
form given by (60) is analogous to the motion of a particle subject
to some non-linear force field. The amplitude u represents the posi-
tion of the particle, the coordinate ¢ the time and the potential

energy of the particle is equivalent to the polynominal

P(u) =a u4 + Bud + yu2 + nu + €

We will consider the solution of equation (60) when @ < O

and when o > O,

Case I a <0

FEquation (60) can be written in the form

8 o [ (4~ u)Cu - b)u - e)u - )] (61)

n1n.
I

where K = ZIEO('Q|)%/V1 and a, b, ¢, d are the real roots of the
equation

0 (62)

P(u)

The roots are ordered such that a > b > ¢ > d. Equation (61) can be
solved exactly, in terms of Jacobi Elliptic functions. The integrals
arising in the solution of equation (61) are given by Byrd and Friedman
(1971). We obtain

d(a - b)

a + 1) sn2(Ge,k)
al(g) = (63)
1+ %%-E—%% sn2(GEg,k)

where G = Tbo([a|)%[(a - c)(b - d)]%/V1 and k2 = (a - b)(c - d)/

(a - ¢)(b - d) is the square of the modulus of the Elliptic function.
Clearly a2(&) 1is a periodic function which oscillates between its
maximum value af(O) = a at the origin and af(gmin) # b, This is the

first of Inoue's four types of solution. a;(g) and al(f) are also
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periodic in £ and can be obtained from the solution for af(g) and
the two conservation equations (56) and (58.). The periodicity length
£ of these solutions is given by £ = K(k)/G.

In the limit when £ - © these periodic solutions become solitary
wave or pulse-like envelopes. This is the second type of solution of
equation (61). It occurs when k? - 1 i.e. when the roots b and ¢,
of equation (62), merge into a double root. If, further b = ¢ = 0,

then a? tends asymptotically to zero as § =+ o .

It

The conditions for u = 0 to be a double root of equation (62)

are clearly
- =0 and € =0

These conditions imply that

A=0 ' (64)

" and either
m, V,
ET = F: _ (65)
or
Vl wo mo
o - R . NP - (66)
Vo (W, + W,) m,

The physical significance of equations (64)-(66) is as follows.
Firstly, the solitary wave solution for a?(g) follows from equation

(63) if we put b = ¢ = 0. The solution bicomes

a2(e) = ad (67)

[a - (a -~ d)cosh?G¢E]

We now have two types of solitary wave solutions according to whether
we choose to impose the condition given by equation (65) or (66).
The difference between these two types of solution is demonstrated when
we use equations (56) and (58) to obtain the solutions for aZ2(g)

and a2(g). When we impose equation (65) we obtain

o I -



a2(e) =m  + v " [m, - a}(®)] (68)
o o
mz -
a2(g) = - a(e) . (69)

We see that, for this solution, the Stokes and anti-Stokes wave ampli-
tudes have solitary wave ehvelopes which tend to zero as § — % o,
Correspondingly the pump wave forms an envelope hole which tends
asymptotically to its maximum value as the solitary waves vanish.

Using equation (65), we can obtain the following expression for
vy /v,

v -7 axN ~ (70)

We can now obtain a relation between the maximum and minimum values

of ag(g) with the aid of equations (68) and (70).

(71

To complete this solution we choose a value for the ratio mz/m1 and
then use equation (64) to determine mo/ml' The normalization of the

amplitudes results from the conservation of emergy. This gives

[ag(g)]max - eoEﬁo/FnoK Te (72)

where ELo is the initial pump wave amplitude. Thus, we obtain a
family of solutions depending on the parameter mz/ml. The choice of

m,/m;, immediately determines the value of the velocity wu.

Now consider the second type of solitary wave solution as
determined by equation (66). For this case, we obtain the following

expressions for a;(g) and a(¢)
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m

a2(g) = u'f a2(g) | (73)
Vl
a?(¢) =m, + v [a3(&) - m,] (74)
2 .

This time we see that it is the anti-Stokes wave which forms the
envelope holeand the 'pump' develops into a solitary wave envelope.
At first sight,'this may seem surprising, however, since equations
(28-30) treat all the waves on an equal footing and the anti-Stokes
wave is the highest frequency wave in the system, it is perfectly
reasonable that there should be a steady state solution in which the
anti-Stokes wave appears as the pump wave. These two types of soli-
tary wave solution are, of course, mutually exclusive. There is
no suggestion that for a given set of physical conditions the pump
wéve and anti-Stokes wave will interchange roles during ;he inter-

action.

Using equation (66) we can calculate the quantity V,/V,

v, n
where
W m
— ] 0
n

T (W, +w,) m,

Substituting equation (75) into equation (74) demonstrates that for
this second type of solution the anti-Stokes wave always forms an

envelope hole,

There is another periodic solution of equation (61), still for

¢ < 0. This is

[c - ‘tl('(‘bg—_——fj)— SHZ(Gg’kil
[1 ] snz(cg,k)]

where G and k are defined below equation (63). As was noted by

ai(e) = (76)

Inoue, this solution does not reduce to a solitary wave when k = 1.

For this case a? is constant corresponding to a phase modulation of



the envelope with the phase proportional to ¢. The behaviour of

2 2

a’ and a; is similar and can be obtained as before. Figures 2 and 3

represent the amplitudes and corresponding density perturbation using the
solitary wave type solutions for the amplitudes and equation 24 for the

Case II, a > 0 density perturbation.

For this case, equuation (60) can be written

-g-‘é- =+ K'[(a - u)(b -.u)(u - c)(u - d]

E an

where K' = 2Iboa§/V1 and the roots a, b, ¢ and d are ordered in the
same way as for Case I. Again, with the aid of Byrd and Friedman
(1971) we can write down the solution of equation (77)

a2(e) = = (78)

[ - —E*E—:'—-::—; snz(Gg,k)]

where G and k are not the same as for case I and are given by

6 =Moo (a- )b - DIV, k2= (b-c)a-dfa- b - d.

This solution is again periodic and when k2 =1 (i.e. ¢ = d) it becomes

a solitary wave, which for the special case ¢ =d =0 reduces to

a b sech?Ge
(a - b tanh?Gg)

ai(e) = (79)
If the double root ¢ =d is finite, then the solitary wave ampli-
tude tends azymptotically to a constant value, rather thanm zero. We
again find the two types of solitary wave solutions as discussed

for the case @ < 0,

We have so far obtained two general types of solution - periodic
and sdlitary waves. As already mentioned, Inoue (1975) noted four
general types. The third possibility occurs when the four roots of
equation (62) occur as a pair of double roots one of which is u = 0.

The conditions for this to occur are

and B2 - bay =0 .



Putting a=b and c¢c =d =0 in equation (77) we then obtain

du _ '
-&—é = « K'ul(u - a) (78)

where we have chosen the negative square root. Integrating this equa-

tion we obtain

a2(g) =28 (79)

This time the é€nvelope of the Stokes wave has a shock-like structure,

2

since as § varies between * ® aj

changes from one state to another
one., We should emphasize that this shock-like structure, which is
usually associated either with dissipative or turbulent processes,

has been obtained in the absence of dissipation (the damping terms

have been neglected) and for a coherent wave interaction. A similar
result has also been obtained by Berkhoer and Zakharov (1970) for

the interaction of electromagnetic waves with different polarizations.

We can again distinguish two types of solution according to
whether a or a, behaves as the pump wave. The ccnditions for this
are given, as before, by equations (65) and (66). We also note that
the maximum value of a2(f) does not occur at the orgin, as was the
case for the previoﬁs solutions. This means that A will be differ-
ent although still determined by equation (59) (6(o) will take on

some value other than O or nw).

The fourth and final type of solution of equation (60) is
obtained when the smallest root of equation (62) is u = 0 and the
remaining three roots form a triple root. Under these conditions

equation (77) becomes

_<_i_u_= r - 3%
at K'[u(a - u)?3] (80)
The solution of this equation in terms of a,(&) is
%
4
a(g) =+ ——2_& , (81)

(K’ 22262 + 4)°

Inoue (1975) has called this a phase jump solution, since a,(t)
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changes sign as £ passes through the origin. aZ(E) has a similar pro-
file to al(g) when equation (65) is satisfied while ay(¢) forms an
envelope solitary wave with its maximum at the origin. When equation

(66) is satisfied a, and a, exchange roles.

8. DISCUSSION

We have presented a non-linear analysis of the development of a long
wavelength finite amplitude Langmuir wave in a uniform isotropic plasma.
The wave number of the driving (or pump) Langmuir wave was chosen such
that only the modulational instability could occur. The analysis given
is complementary to a similar study by Morales and Lee (1976). They also
considered the perturbations which can be generated by a propagating Langmuir
wave. Morales and Lee (1976) solved the space and time evolution of the
excited waves numerically allowing for the non-linear interaction between
the excited waves but neglecting the non-linear reaction of these fields
on the driving wave. In this paper, we have given exact non-linear solutions

for the system of excited waves and the pump wave. These solutions were

obtained under the following conditions :

(a) spatially independent solutions with and without damping,

(b) stationary spatially varying solutions without damping.

Whereas Morales and Lee (1976) imposed a fixed spatial variation on the
amplitude of their pump wave, chosen to match the experiment of Wong and
Quon (1975), the variation (both temporal and spatial) in the pump amplitude
in our case resulted from the non-linear interaction with the excited waves

i.e. it was a result of pump depletion.

The model we have analysed in this paper appears to have some bearing
on a recent numerical simulation by Matochkin and Buchelnikova (1977) who
also analysed the evolution of a large amplitude Langmuir wave in a uniform
plasma in one dimension. Matochkin and Buchelnikova (1977) found that the
low frequency density perturbation changed from a moving to a stationary dis-
turbance during the evolution of their system. This lead to the build-up of
the excited high frequency fields to large values and later to the almost
complete dissipation of these fields due evidently to particle trapping.
These authors have suggested that the non-linear excitation of backward pro-

pagating Langmuir waves is one of the most important effects in the evolution
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of their model. This feature is explicitly taken account of in our
calculation. Furthermore it is possible that particle trapping could
be simultated in our model by the inclusion of a wave number dependent
damping term. It would be of interest to discover whether this addi-
tion lead to behaviour of the kind observed by Matochkin and Buchelnikova.
Another conclusion of Matochkin and Buchelnikova's simulation was that
the electron non-linearities (which give rise to harmonics of the high
frequency fields) did not.affect the development of the instability.

As already mentioned, this is an agreement with our analysis and with
that of Watanable and Nishikawa (1976) but it is in conflict with some
results of Khakimov and Tsytovich (1976) who found that electron non-
linearities could prevent Langmuir wave collapse. These authors stress
that the electron non-linearities they considered were essentially

kinetic effects.

.Wong and Quon (1975) have also observed the generation of
stationary density perturbations from a travelling electrostatic field
~and resulting localized high frequency fields. Morales and Lee (1976)
have accounted for these structures by assuming the existence of a
pump wave whose amplitude is constant in time but-varying iﬁ some
prescribed manner in space. Neither the experiment of Wong and Quon
(1975) nor the calculation of Morales and Lee (1976) showed the sudden
dissipation of the high frequency fields observed by Matochkin and
Buchelnikova (1977).

Finally, we note that Baumgartel and Saur (1977) have carried out
a numerical calculation of a model very similar to the one we have
analyzed. However, one important difference between their work and
ours is that they assume the presence of an initial ion acoustic wave
in addition to a high frequency field. In view of this they use two
low frequency equations, one for the ion acoustic wave and one for a
zero frequency mode. However, we believe that the low frequency
response can be described with the aid of a single non-linear equa-
tion which will determine the kind of low frequency wave that will

occur,
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Figure 1.

Linear dispersion diagram showing the coupling
of the pump wave (wy, ky) to the Stokes (wy, ko—ks)
and the anti-Stokes (wy, ko o+ ks) waves through the

low frequency density perturbation (%, ko).



Figure 2. The wave amplitudes obtained from the solitary wave solution

of case I for a typical low density unmagnetized plasma
(ne = 10'2em™3, T_ = 10 eV).
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Figure 3. The density perturbation corresponding to theLwave
amplitudes in Figure 2. Note: X = Fwo(a|ad[)2/V1.



