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I INTRODUCTION

The knowledge of the ideal MHD spectrum is a prerequisite to a good
understanding of the behaviour of actual experiments and to the
design of new devices. Most of the effort is now devoted to the
study of axisymmetric toroidal configurations, either Tokamaks or
Belt Pinches. One of the main objectives of the present fusion pro-
gram 1s to show the possibility of increasing the maximum E.value,
which is the ratio of the plasma pressure to the energy invested in
the magnetic field. This quantity measures the efficiency of an
electric power reactor based on this principle. Different methods
have been proposed to reach this objective, such as additional heat-
ing, cold gas injection, decrease of the aspect ratio, elongation of
the plasma cross section. The first two schemes work by increasing
Bp, which is the ratio of the plasma pressure to the energy furnished
to heat the plasma. The other two play on the optimization of the

geometrical parameters.

In order to understand the MHD stability behaviour of a plasma, Mercier,
J. Greene and J. Johnson {1,2}, as a first try, have obtained necessary
stability criteria against localized modes in straight and toroidal
geometry. Surface instabilities have been treated by considering non-
circularity and toroidicity as perturbations {3}. These approaches are

irrelevant to solve the problems linked with the maximisation of B.

Considerable progress in the knoWledge of MHD stability has been made
by a numerical approach, made possible with the size of recent compu-
ters. The first successful codes were time evolutionary codes {4}. The
linearized equations of motion are solved numerically by a finite dif-

ference scheme. This discretization does not respect the topology of



the magnetic surfaces and gives only information for the fastest
external modes in high beta plasmas. The advantage of this method is
the straightforward inclusion of non-ideal effects like resistivity

or viscosity.

The second method, used here, is to minimize the potential energy
associated with a perturbation of the plasma. This procedure gives

the normal modes of the equilibrium and their eigenfrequency. The
displacement is represented in a limited set of basis functions,
following a Ritz-Galerkin method. The nature of the unstable modes
makes this choice very sensitive. A first code "THALIA",based on a
mixed finite element discretization {5}, has been written, to treat
straight cylinder plasma. The understanding of a 1-D MHD spectrum
{6,7} is a solid basis for the study of toroidal effects. For axi-
symmetric toroidal configurations, the equilibrium quantities are
functions of two variables (radius and angle) so that the stability
problem becomes two-dimensional (2-D). The Princeton group has devel-
oped a general 2-D code {8}. The discretization uses global functions
in the azimuthal direction (Fourier analysis) and finite elements in
the radial direction. This method has difficulties to compute balloon-
ing modes which are localized in the poloidal direction. Also, the
time required to determine an eigenvalue is rather large {9}. In the
Lausanne approach an extension of the finite element method, the so
called "hybrid finite element" {10} discretization, has been used. This
method has been tested in straight, circular and elliptical cases {10}
and shows good convergence properties. It is well adapted to the study
of numerically produced equilibria and easy to implement. The time and
cost for one case is lower than the other method. A general purpose

2-D code, ERATO {11}, has been written.

The first use of this program was the understanding of the MHD spectrum

of a simple toroidal equilibrium. After a workshop at the 7th European



Conference on Controlled Fusion the Solovév equilibria {12} have

been chosen as a test for all 2-D MHD stability codes. It is analytic
and thus avoids the errors inherent to numerically determined equi~
libria. Also, a spectral code, specific for these equilibria, has
been written {13}. In our study, a small aspect ratio of 3, close

to the Joint European Tokamak device, has been used. Different prob-
lems have been investigated. The first is a study of the internal
modes and their correlations with the Mercier criterion. 1In this case,
the localized criterion is also sufficient for MHD stability. Ballooning
modes at low-n have been pointed out. The destabilizing effect of
ellipticity on the internal mode {14}, and the non-sensitivity of the
kink to this effect, have been shown. A major point is the toroidal
coupling between singular surfaces, inside or outside the plasma. This
phenomenon strongly affects transport processes and Alfvén heating in

a toroidal system.

The non-physicsl toroidal current profile of the Solovév equilibrium
leads to a strong external kink which destroys the equilibrium in a
micro-second time scale. Real Tokamak experiments exhibit very good
stability properties with no destructive linear MHD instability. More-
over, measurement of the current density profile has shown a peaked
shape. To understand the behaviour of a Tokamak, the influence of
peaking the current distribution on the MHD stability is a crucial point.
The safety factor at the plasma surface is controlled by MHD instabili-
ties, therefore limiting the total current and the total B. The effect
of a peaked current distribution on the MHD stability has first been

investigated in a cylindrical circular plasma {4}.

In small aspect ratio Tokamaks the coupling between modes leads to dif-

ferent stability limits, unknown before our study.



To understand the effect of peaking the current distributipn, we

have varied this factor in a series of equilibria characterized by

a Gaussian current shape. The elongation of the plasma cross section
E, the safety factor on axis 9, and the poloidal beta BP are kept
fixed. The aspect ratio is chosen equal to 3. For large q,, the
stability is given by the kink limitation. This mode disappears

when qg/q, reaches a minimum level. (qS represents the safety factor

at the plasma surface.) For q, in the vicinity of 1, new modes, namely
ballooning modes, degrade the maximum g and fix the MHD limit. The

same study has been done for elongations of 1 and 2, and different BP'

The Bp variation is related to additional heating or cold gas injection.
The results show that stability will force the current to decrease as
Bp increases. For a given 99 E-passes through a maximum value as Bp

increases, thus limiting the effectiveness of auxiliary heating {15}.

Our computation shows the effectiveness of changing the elongation to
increase the maximum g available with stability. The kink limit is not
affected by the elongation, in contrast to ballooning modes which are
destabilized .. Up to an elongation of 2, the increase in B is linear

with E. The existence of an optimum of B with E remains open.

Our study has exhibited limitatioms in dg»> 9o> E; and E imposed by the
MHD stability theory. The usefulness of "ERATO" for design {16}

or for understanding experiments is demonstrated.

In chapter II, the basic MHD theory needed to build the ERATO code is
presented. Chapter III describes the discretization scheme used to
approximate the plasma and the vacuum energy contribution. A flow chart
of the code is given. Chapter IV deals with the MHD spectrum of the
Solovév equilibrium. In Chapter V the effect of peaking the current
distribution is studied. The optimization of the maximum E.permitted

by stability is performed for different elongations and Bp.



The MHD stability fixes a forbidden range of parameters for an experi-
mental Tokamak or an electric power reactor. The remaining functional
phase can be limited by strong anomalous transport or different types
of instability, like resistive modes {27}. To obtain an exact range
of functional parameters, a more detailed study must be made. This

is the next step for the future of the thermonuclear energy.



IT IDEAL MHD MODEL

This chapter contains the basic analytical theory needed for the

construction of a numerical spectral MHD code.

1. Basic MHD Equations

In the ideal MHD model the plasma is treated as an inviscid fluid with
infinite conductivity and no thermal diffusion. We consider plasma
phenomena with time scales smaller than characteristic diffusion time.

This model is able to analyze macroscopic instabilities.

In a natural unit system {17} the ideal MHD equations can be written :

9%

SE + Z (j 1—/,) -— O (2.1) (continuity equation)
o(gv) : (2.2) (Newt tions)

+ ) = 1x 8 -y . ewton equations
o T Y(swv)=jx8-vp
28 _ vx (¥xB) (2.3) (Maxwell + Ohm Law)
ot ===
V'B =0 (2.4) 1}: — _Y xé (2.5) (Maxwell equations)

o, P Py .
5-.2 (?7:3.) + _V_- }TF::.-L — 0 (2.6) (Equation of state)

The dependent variables are the demsity p, the velocity of the fluid V,

the current density j, the magnetic field B and the pressure p.

First our aim is to investigate MHD equilibria.



2. Magnetostatic Axisymmetric Equilibria

Magnetic confinement devices such as Tokamaks or Belt Pinches exhibit

a toroidal topology of constant pressure surfaces. This geometry is

represented in Fig. 2.1.
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Figure 2.1
Toroidal geometry described by cylindrical coordinate system. Magnetic

surfaces are plotted.
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In a set of cylindrical coordinates (r, ¥, z) axisymmetry eliminates

any dependence on the toroidal direction P -

The general solution of V+B = 0 can be written as

I

B T

Al

+ %’xv}”. 2.7)

¥(r,z) and T are two arbitrary functions, the flux of the poloidal field
and the flux of the poloidal current respectively. Magnetic field lines

lie in constant ¥ surfaces which are called magnetic surfaces.

Then {18}

J;z_zxﬁ:(%y)%’_%xyT (2.8)

* 9* 1 9
& = 3?“-’.32‘_737'

The MHD equilibrium equation,

vp = 4xB e

implies that p and T are function of ¥ only. Getting (2.7), (2.8) and
(2.9) together, we obtain the following partial differential equation

for Y :

___a2dp _ drl )
£y = r 1% T,:J—g# (2.10)
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Note that the toroidal current density is

. CJP 1 AT
do = r =4 + T —
b dy Fooody
The two arbitrary functions p(¥) and T(¥) are determined by considera-
tions linked with transport phenomena and the creation procedure of
the plasma. These functions chosen, the problem is completely defined

if we impose ¥ = constant on a given boundary surface. The choices

used in our computation are specified in Chapter III and V.

2. MHD Stability. Normal Mode Analysis

The equation of motion for small displacement £ (xr,t) of the plasma
around its equilibrium position can be derived by finding the stationary

points of the Lagrangianﬁof the system.
For magnetostatic equilibria, we write
Lwt
£ (r, t) = f_(:> €
and

£ = o'k (if)_wf’(i)f)* W, (£ ,67) -

&g are the values of {(r) at the plasma surface and szc, wp, WV are
the kinetic, plasma potential and vacuum energies, respectively.

Following Bernstein et al. {18,19} we obtain
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{ 2
k(c = :Z- ‘(. ‘f I:éé l CJ-IZP

=
I
bul-;
—
Q_
D
M-\
1
g
>
Y
S
~—~~
Y,
x
iy
N
4

£2p (2.11)

where Q = V x(£xB) denotes the magnetic field perturbation in the

plasma and vy the ratio of specific heats;

W, = _;gj H_BVIZJHV | (2.12)

6By, being the perturbed magnetic field in the vacuum region. The

following boundary conditions {20} have to be fulfilled :

=]
M
E=

= - (n* £)B (at the plasma boundary) (2.13)

0 (at the wall limiting the (2.14)
vacuum region)

s
]
=
il

Here n denotes the unit vector normal to the plasma or wall surface,
and A is the vector potential from which B is derived, with the gauge

V- A =o0.

Solutions of this well-posed problem are called eigenmodes and the cor-
responding values w? : eigenvalue. A negative w2 represents an unstable

mode with a growth rate I' = lezl .
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3. MHD Stability - Normal Mode Analysis

3.1 Plasma Potential Energy

a) Coordinate System

Considerable thought should be given to the choice of the coordinate
system adapted for the calculation. The physical characteristics of
the plasma equilibrium where currents can flow freely on magnetic
surfaces,dictates the choice of ¥ as one coordinate. The second
variable corresponds to the toroidal angle Y. The coordinate describ-
ing the poloidal direction is chosen, as a first try, as the orthogonal

coordinate X, perpendicular to the (W,q) variables.

In this curvilinear system the operator V has the form

- r B, o 1,9 1 o 2
TN P TR P

3 is the Jacobian of the system emdg_p the poloidal magnetic field.

The plasma potential energy Wp takes the form {1}

1} pdx ax , T oX Iz

..L

oU 7 U X
Trl"—- W(JX)}*JB/D? TN h ’*

(2.15)

"pplap(M) tpgar 52 v B 2 [ z;/(/)(/}

with
= _ v __fz -fs’-l__
and
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This system has been used in a first version of ERATO {21} using

a pure finite element discretization. For an elongated plasma cross
section the orthogonal coordinate system has an anomalous behaviour

near the magnetic axis where the X, -lines collapse in the direction of
elongation. Moreover, the analytical stability criterion {1,2} or a
continuum spectral analysis {22} shows the fundamental importance of

the operator B-V, especially for internal modes. It appears in the
first term of Wp in Eq. (2.15). It is possible by a change of variable
to make this operator constant on each magnetic surface and to represent

it easily {8}. Let us define

AT

dX = = X, dn,= JS”a‘t)o dX . (.16

ar
T

q(¥) is a normalizing factor such that 0 € X € 2m. So

{ T
‘](SU) = I—7F§d£ I’zB,,

and corresponds to the usual safety factor.

We transform the partial derivative with respect to ¥ at constant X, to

a derivative at constant X by the relation

d c]r‘z,_f 0 7)’2}}—5 2.17
J_Y’(}S)Xl =rc]5{5‘f’ 2Y+ ()X( T )} o

V(¥,X) =-%$|X measures the non-orthogonality of the system and S(¥,X)
- 8

is a general function. Putting (2.17) into (2.15), we obtain a new Wp
form with a natural variable V = q¥X-U. As X is proportional to ¥? around

5 .
the axis, we choose the coordinate system (Yz,?,x) {11} with the correspond-

ing plasma energy
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¥ 4Ty il
W—djodk’{c/rqﬁ IF”'+_IAW DX,+

P 0
r Bl )-(— 2¢) TX IV ;2
*;7— /‘/—bl/"( }QVTFH Ws}l \/_Tg—ylf

(X +;7(r’\7)+7/:( Y- Q—KIX}

Sl

— - oW YN
X="F5% V= rTfy ) /= 2vTWI-Y AT
F

— .?7_ 3% 5? (2.18)

b) Projection of the displacement

The variables‘i, Y, V are well defined for a numerical approach. For

example,there are no singularities when the toroidal current decreases

(low-B) or around the magnetic axis.

This transformation can be written in the matrix form

r T [
fy 7 0 0|

>

(2.19)

Tr va
T Y

e
<
{

<<|
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A remarkable property is that the 2nd and 3rd basis vectors are pro-
portional to the magnetic field B and tangent to the magnetic surface,
Tespectively. We have basis projection vectors where acoustic

and shear Alfvén modes are decoupled. This fact is important for a

good representation of all the MHD spectrum {8}.

¢) Normalization

To avoid problems involved with a specific unit system, we define di-

mensionless variables

~_r o~ B v - Y
"=E'93=B°7W“‘I’s
2 (2.20)
2
~ P ~  f S W
P30 T YT Ty,

R, is the radius of the magnetic axis, B, the toroidal magnetic field
at the axis, P, the density at the same point and ¥ the flux at the
plasma surface. Frequencies are normalized with the inverse transit

time for an Alfvén wave in the toroidal field w% = T2(Ro)/R%po.

d) Fourier Analysis, Up-down Symmetry

Since we consider axisymmetric equilibria it is possible to decouple

Fourier components in the toroidal direction. We write
X = XRcosnf + X" sin he
Y = YRCOS hy + YI'S’.n ng (2.21)
V = VRwsnf + VIsmny |

n is the toroidal wave number.
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For equilibria which are symmetric with respect to the z = 0 plane,
. I R R R I

the analysis of Wp shows that x , v , vy (x , VI, y ) can be assumed

to have up-down symmetry and antisymmetry, respectively. This is an

advantage of a real Fourier analysis. This property is used to per-

form the MHD stability study in the half-space z 3 0 only.

3.2 Vacuum Potential Energy

The vacuum potential energy is given by

WV = lié d 1], (LB? | (2.22)

with 6B, = VXA and boundary conditions (2.13), (2.14).

For an n § 0 perutrbation or for an axisymmetric mode which does not
change the volume of the plasma, it is possible to write B, = Vo
(23,24} where @ is a single-valued scalar potential, thus avoiding

Lust and Martensen terms {25} associated with flux conservation.

V - 8B, = 0 leads to the following equation for & :

vzﬁb = ( (2.23)

with the boundary conditions obtained by taking the divergence of rela-

tions (2.13) and (2.14)

d ¢ T

—_— == . = fTCX) (plasma surface) (2.24)
dn n ‘Q Y'IBP

J¢w —_ 0 . (wall) (2.25)

d n
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Using (2.22), (2.23) together with Green's theorem, we obtain

1 Sc/ d¢ qs[ (2.26)
=~—)do¢4—=—-— dxde¢ F(x), @
2' L3
'23.0. dn
Instead of solving (2.23) inside all the vacuum region, it is possible

to use a Green function technique to reduce the problem to an integral-

differential equation on both the plasma and shell surfaces {8, 23, 24} :

c,SP (5) f do* G(x X %) +
—’r— § Pa/a'_rg_v'e (,%) , (') -

gc/o-nVG(,,,w)qS(x) (2.27)
8, (5,) = —7=( do < <) G (%, %) +
12, (2.28)
1— Jo nV’G(X“ X) 4, () -
f
47 do'n'v'G (x, X)) $, ()
o4,

with G(x, x') = 1/i§:§'[, the Green function for gravitation problem,

¢p the value of ¢ at the plasma surface and @W the value on the shell.

In order to avoid the integrable singularity of the n'V'G function, we

use the following identity
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0 if x is inside the

volume limited by 3Q

CIG—,_’ZI'_V_IG (_)Y) x‘") = =2 if x is on 80
dn

— lfn- if x is outside the

volume limited by 3Q

Adding this term in both sides of (2.27) and (2.28) leads to {26}
24,(6) - 24, (%) = ja Gl
1 B ) ( ' ( -]._
= de ' n-y 6()(7?))(;) ¢P X} - ¢p fﬁ)
Mya, —— - -
4

(2.29)

;T 0’0' 'G( )[ c"w <Pw(_’_<',',,)]

g G(x" x) +
20,
(2.30)

.2
_%Bj do'n' 76 (3, 5) [ 09~ 5] -

" g § A ga s, 5) [0 4]

w
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}_g designates the projection of -}Ep on the wall (see Fig. 2.2).

Magnetic axis

Figure 2.2 Definition of 35.;7

Performing the Fourier analysis o(x) = @(_}El)eln‘F (%, denotes the poloi-
dal component of x) and taking the projection of (2.29) and 2.30) on
each basis function e'"Y leads to the same formal equation as (2.29)

and (2.30), but with G(x, x') replaced by Gn(xl, X.'L)‘

2T cos hat
%
'( du [r‘+ F2a(g'-2) - 2rr cos u ]
9

y (4)"
[(r'H‘)"-i— (2'-2)
(¢'-r)* +(@'-2)*

(Fler)*+('-2)*

G“("I)Xf)

LJ'/: Kh_('?) (2.31)

Note that K is expressed by a recurrence relation in terms of the

complete elliptic integral of the first and second kind {24}.

Solution of (2.29) and (2.30) furnishes the Green's function of the

problem GF(E’ X)) such that

b (%) = q, & G, (s, %) F(X)dX'. (2.32)
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Then the vacuum potential energy can be written as

W, = - 21 c]: jdk JX’GF(_x;/_x;') Flx) F'(X) ) (2.33)

The treatment of the remaining singularity of G, is mentioned briefly

in Chapter 1IV.

3.3 Localized Stability Criterion

The Mercier criterion {1,2} is a convenient diagnostic to evaluate

stability of an equilibrium against localized modes. It is a necessary
condition corresponding to the Suydam criterion in the cylindrical case.
The connection between the Mercier criterion and real stability domains

will be one of our goals. The Mercier criterion can be represented as
M=MS+Mu+Mp>O {28}

the three terms representing contribution from the shear, the magnetic
well and the finite plasma pressure, respectively. These terms can be

written, using surface quantities, as

Ms=;{4¢[§r‘8 ”"] 415&
m=iTs$g il (T4 b o

by T
.
B

H

Mp
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This criterion tests if the lower limit to the continuum w? = @
becomes also an accumulation point for unstable modes {27}. For
common profiles, the Mercier criterion can only be violated near

the magnetic axis.

We have presented the notions we need to build a numerical spectral
MHD stability code. Chapter IIT will deal with the problem of the

approximation of the MHD spectrum in a toroidal geometry.
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IIT NUMERICAL SCHEME. CODE STRUCTURE

This chapter deals with the numerical methods used to approximate
expressions given in Chapter II. All the discretization is supported
by a "finite hybrid elements" scheme {10}. Let us first look at the

plasma potential energy.

1. Plasma Potential Energy Approximation

Two major facts have to be taken into account. The quantity zj(é/rz)
corresponding to the 2nd square of the Lagrangian (see Chapter II)
becomes very small for a kink mode. In the same way, the operator

B'V vanishes on each singular surface. Moreover, these two terms are
zero for marginal continuum spectra {22}. To correctly represent all
unstable modes, it is necessary to respect these features. If the
first condition can be fulfilled with a finite element discretization,
it is not the case for the second one as it involves a function and

its derivative. The main idea of the finite hybrid element scheme is
to consider each derivative as a new variable, writing the energy prin-

ciple as

( ) “.-
(z) XY Jy Y(l) _b_y__ \/U):O (3.1)

5’6(DX) }9(’/)9)() ) 0 X )

with the trivial conditions

(B @ )

vy -y

dD @

(3.2)



We choose for each of the 7 unknowns finite element basis functions

making each term of (3.1), piece-wise constant on each (¥,X) cell.

We write

)
X

()
Z Z Xi%j Cony
(2)
Z Z Xif’/, J+% ﬁ*%ﬁ?z
‘Xm Z Z X(jj% LJ*//z.
| “)
| Yw ZZ Y;/J L%J (3.3)
Z Z Y‘—‘/zj*/z %-&/‘ +0;
()
= ZZ vé+’/zj C«L%J'
(2)
Va) = Z Z \/c'% J*h ¢¢*’AJ’%

il

@)
X

il

il

)
Y

I
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h‘x + ‘ TC

| li+}/2,j+ 15 )mesh cell

> (/Y

Figure 3.1

Discretization mesh (Y¥,X)

Ny is the number of discretization points in the ¥-direction and Ny

in the X-direction.

. » . . . - %
Note that ej+kj 18 linear in X and piecewise constant in v?, g,
1

l+% 1s

. A . . .
linear in ¥* and piecewlse constant in X and £.

L:,L 18 piecewise
ithj+y 5 P

constant.

The condition (3.2) is imposed at the middle point (i+y, j+%) of each

cell, leading to the relations
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() (1)
(2) X&y,_j + Xé-r%. J+1
C+7,_J+’/,_ — l
(3) 3)
@) _ X.;J};q + X:.'u Jth
XLf’/,J\% - 2
“) “) (3.4)
Y(z) — YL,,Z_J + )/C-o%fwl
C-l%ﬂ'/,_ Py
(1)
(1)
V @) _ VL'W..J + Vifz,J'u
i+7,,jf/l - ‘2’ .

Putting (3.3) and G.4) in the Lagrangian expression, we obtain in

matrix form

L = xlAyle> —winlK;lg> 6

{Aij} is the matrix potential energy

{Kij} the norm matrix and

{Xi}

a vector containing the value of X,Y,V at each point (i+k, j+k).

Each equilibrium quantity involved in & is approximated by piecewise

constant functions on each cell. Integration is trivially performed.

We now want to describe the last term to discretize the vacuum contri-
bution.
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2. Vacuum Discretization

We use a numerical technique consistent with the plasma discretization,

writing {24}

Z ¢ape¢(x)
q’w = JZ CE-WEJ'(Q)

ei(X) and ej(e) are piecewise constant functions and 6 is the angle of

(3.6)

the polar system centered on the magnetic axis (cf. Figure 3.2).

FX) = ZF(X e (X) = Z(”‘“ X‘-nM)

2

which is equivalent to

F(X)L - Cc'j XJ. (3.7)

. MAIN AXIS

|
| by

y 4

———————e -
l

Figure 3.2

Plasma and wall definition
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Inserting (3.6) into (2.29) and (2.30), we obtain a set of coupled

matrix equations

y B C
28, -24"= (45-5) %‘P—E;[F(X)JJ ~(C-245) 47

(3.8)
) E =
0 =Tng=84) 4 - E5[F)| D ¢

The matrices are formally equivalent to (2.27) and (2.28) with & or

%% replaced by e;(X). The matrix elements of A, C and F are regular
and can be integrated numerically by a four-point integration scheme

in the (X, 6,) plane. The diagonal elements of B and E exhibit an
integrable logarithmic singularity which is treated specially {24}.
Around n = 0, where n is defined in (2.31), we expand n to second order

in (0'-8) and obtain

G—- )n+4

Ko 2 loy = [ a}+a,(0m6) +(6-)].

a; is the normal distance between the observation P and integration point
P'. 6 and 6' are the polar angles of P and P', respectively. We write

K, in the form

Il

Kn +{Kn"5n}

S, = (—4) {h_[q +a28 Lo) +(0*- 9)]
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The first part is integrated amalytically, the second numerically.

Eliminating ¢” from eq. (3.8), we get

<})(LP _ G'F- [F(X)L. (3.9)

L

with

6 = [(a-21) - (_g_-zg)_f'iﬂfi[_zz-(g-zr) FE]

Inserting (3.9) into (2.33), we get

Wy =_)4T Z C/sL [F(X)]L G,;; [F(X>JJ 10
Y

and finally, by (3.7),
1 2 F
This {wij} matrix is added to {Aij} obtained in Chapter III.1.

3. Equilibrium and Mapping

3.1 Numerical Equilibria

We solve the partial differential equation (2.10) for ¥(r,z) by using
the equilibrium code written by J.D. Callen and R.A. Dory {29}. The
function p(¥) and T(¥) can be chosen arbitrarily. The non-linearity
of the second member is treated by a two level iteration scheme with

an adjustable drag parameter o :
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v = (%)

The boundary surface 3Q is specified and ¥(x) = 0 for x63Q. Note
that ERATO can use any equilibrium code which furnishes ¥(r,z), p'(¥)
and TT'(Y).

The link with the stability code requires that r and z be specified
as functions of ¥ and X. We proceed in the following manner. Given Y,
we localize in the (r,z) mesh all points (rk,zk) by a linear inter-
polation (Fig.3.3)
k y-¥
r = r. + ——

L ﬂ;l- qt (’1+1" re ) ) Z = Zj

and

y- ¥,
k 4 _ 3. _
Z = i]’ + yj."‘—?:j- <%J."'1 zJ) ) r - r:: .

Note that this approximation is compatible with our stability discreti-

zation scheme.



_31_

“

Magnetic surface

pd -
Ro o+

Figure 3.3

Discretization (r,z) mesh and mapping procedure

The coordinate system satisfies the relation

75

The integral is computed on the solid curve plotted in Fig. 3.3 and

4
T
X = oj 7B dé (2.16)

gives Xk at each (rk, zk) points. For a given X we have
x-x*
k - k+4 k
F(X) = v 22 (P
( ) detxk
X-x* e+
(27 - 2%) .

0 =
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. ¥ Y 32y a2y 2y o
The procedure is the same for 5r’ 3z’ 3r2’ 3320 3137 quantities

which are given at the grid mesh (r,z) by the equilibrium code and

used at a (¥,X) point by the stability code.
All quantities needed for stability are computed in this way. A

special choice of function p, T leads to an analytical solution for ¥;

the next section will treat this case.

3.2 Solovév Equilibrium {12}

We choose for the functions in (2.10)

p(¥) = —p' (K-V¥)

) PR A
T(Y) = To = =3

Yo is the poloidal flux at the plasma surface, a the length which
characterizes the plasma width, E a dimensionless parameter which des-
cribes the elongation of the plasma and d a parameter related to the
poloidal beta Bp and the triangularizati?n of the pl?sma. The half-
width of the plasma is given by (R2+2aR)5 - (R2—2aR)i, which reduces
tc 2a when a <« R. We shall refer to]ﬁ/a as the aspect ratio. It can
vary between 2 and ®. When it is 2, the plasma extends to r=0 and has

a width of IE R.

A solution of (2.10) is

2 s — . ()

Y r(41-d) + d (k- &)
y’ = ;Frk:"{ EE;



- 33 -

In the limit of large aspect ratio, the equilibrium (3.12) reduces
to the constant current equilibrium of Gajewski {30}, in which the
plasma is elliptical, a being the minor axis and Ea the major axis.
For arbitrary aspect ratio, we shall still refer to E as the elong-
ation. For d=0 the toroidal magnetic field B is a vacuum field.
The equilibrium (3.12) is referred as a Solovév .equilibrium {12}.
The equilibrium is fully characterized by 6 parameters R,, a, E, d,
Y5 and Bo. It is convenient to replace Y, by the safety factor on

axis q,

2 9,

By inspection of the various terms of the Lagrangian, one sees that

two of the 6 parameters, Bo and Ro’ appear only in the normalization

2 =

Wp

Bg/pgR%. The 4 remaining parameters are]ﬁ{a, E, q, and d.

This equilibrium makes possible a study of the effect of geometry on
the MHD spectrum. The parameters a/R,= 1/3, E = 2, d = 0 roughly cor-

respond to the JET design {31}. Note that the peak value of B on
_ (E +1-d)a?

axis 1is given by Baxis qz =2
o Mo

Figure 3.4

Solovév equilibrium. Plot of magnetic surfaces.
Geometric parameters are Rfa = 3, E = 2, d = 0.
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In Fig. 3.4 we plot the magnetic surfaces corresponding to the JET
parameters. The elongated D-shape form is evident. This class of
equilibria has been chosen {32} as a test case {9} for stability

codes {8,11,13}.

Despite this good behaviour, we must remark that the toroidal current

density is

| , 2 ¥ d
Jl¢ = P77 @RE(4-d)

’:" (3.13)
r .

This form allows a very high beta, but is non-physical. We will keep

this fact in mind in the interpretation of the results.

With such an equilibrium it is possible to make an analytical fit as
precisely as we want, avoiding problems with numerical errors in the
determination of the equilibrium. For this effect, we introduce a

variable o defined by

Yy
r* R:+ZaR,,‘/-"EcOso€.

We obtain the relation

oL ~T11L£E
— / . -
X = gdd 470[1+‘;—C:VZ'COS&:I%RO[1—:’Z+%V—Z; 605‘,(]/

The integral in (3.14) is performed by a Runge-Kutta technique.

Even for cases where the equilibrium is determined numerically, a Solovév
equilibrium is used as an approximation around the axis, the precision

of the numerical equilibrium being too low.

We are now able to describe the structure of our code.



_35_.

4. Code Structure

The ERATO code is written in the OLYMPUS form {33} and is composed of
5 programmes with specific functions. We will briefly describe each

part and give a flow chart of the code.

ERATO 1 corresponds to the interface with the equilibrium code. Two
options can be chosen : either the analytical Solovév equilibrium or

the acquisition of ¥(r,z) stored on the disk by an equilibrium solver.
The necessary quantities for stability are computed on each (¥,%X) cell

and stored on the disk. The Mercier criterion is also plotted.

ERATO 2 computes the vacuum matrix {Wij}{24} using the information
given by ERATO 1 for the equilibrium surface quantities. Here we can
prescribe the shape of the shell arbitrarily. The fixed boundary case

is also included.'{Wij} is stocked on disk.

ERATO 3 the goal of this part is to build the matrices {Aij} and {Kij}'
The matrices are treated as a block, corresponding to each magnetic

surface. Each block has a length of 8(NX+1)'

ERATO 4 contains the eigenvalue solver HYMNIA BLOCK {34}. The basic
method is an inverse vector iteration scheme. The block structure is
preserved and the eigenvalue is controlled by a Rayleigh quotient cal-

culation.

ERATO 5 contains the output procedures and diagnostic of results. The
mode can be represented either in the (¥,X) plane by normalized integer
arrays, or in the (r,z) space with arrows proportional to the projection

of the plasma displacement in the meridian plane.
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The diagnostic involves the computation on each discretization cell

of the potential and kinetic energy, corresponding to the eigenmode
obtained. This leads to a different evaluation of the eigenvalue,

which checks all our preceeding operations. Finally, a Fourier analysis

of (X, Y, V) can be performed on each magnetic surface.

Fig. 3.5 gives a flow chart of ERATO. Note that a high resolution
case Ny = 28, Ny = 28, takes 30 min on a CDC 6500 or 3 min on a
CDC 7600 {9}.

The code will now be applied to study in detail small aspect-ratio .
tokamak equilibria. It can be considered as a numerical experiment

with exploitation and interpretation problems.
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IV MHD SPECTRUM OF SMALL ASPECT RATIO TOKAMAK WITH '"'FLAT' CURRENT

PROFILE

We now want to investigate the influence of toroidicity and non-cir-
cularity on the unstable part of an MHD spectrum. To have a solid
reference basis to understand a toroidal spectrum, we choose a simple
analytical equilibrium, namely the Solovév equilibrium {12}. The

other justification for this choice is explained in Chapter III. 1In
order to have a configuration which has some interest, we choose a
fixed aspect ratioRy/a = 3 close to the JET value. This configuration
has an appreciable shear since q(¥g)/qy = 1.74. Section IV.1 deals
with axisymmetric modes. For n + 0 : in the first part, the rigid
boundary case, a conducting wall touches the plasmaj; in the latter
case, theiinfinite vacuum case, weé have no conducting shell. Details
on the position of the shell are given in Section IV.2. The parameter
d is set equal to 0, corresponding to a Bp of 1. The numerical results
shown have been tested for convergence. The eigenfrequency depends on
the density profile, but the marginal state does not. Since we are
interested in general features of the unstable mode, we choose a constant

density profile p = p,.

1. Axisymmetric Modes (n=0)

It is a common knowledge that without a conducting shell, non—-circular
plasma cross sections can be unstable to the axisymmetric n=0 modes.

Assuming that the most dangerous mode is a rigid vertical displacement,

Rebhan {26} has examined with the Sw-method, the influence of the plasma
shape on its stability. In the unstable range, he has also given an
estimation of the growth rate of the fastest growing mode. Solovév's

equilibrium is one of the shapes which we studied and the result is that
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the plasma is unstable if E » 1.23. The normalized growth rate is
nearly independant of q,- Figure (4.1) shows some numerical results.
It shows the square of the growth rate T2 normalized to w?

A
versus q, for an elongation E = 2. The growth rate is a weak function

= mlepm2
—quO

of q, which becomes a constant for large 9" The mode ig purely anti- -

symmetric with respect to the midplane which provides an aposteriori

justification of the neglect of Liist and Martensen's terms {25}.

F}/&l =3
N=0

E=2

4+ E=175
4+ E=15

E=125

0 0.5 1 1.5 2

Figure 4.1

Growth rate of the axisymmetric mode as a functien of qo(E = 2)

The variation of I'? versus E, at fixed q, is given by crosses.

Yo
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Figure 4.2
Map showing the instantaneous displacement in a meridian plane.

The mode represented corresponds to E = 2, 9y = 1l and d = 0.

The value of T'? is in a range typical of external kinks. For large
q,> the motion is essentially a rigid vertical displacement as plotted
in Fig. 4.2. The arrows represent £, which has no \p component. The
growth rate T' falls off as qgl so that the motion can be visualized as
a slow rigid displacement. For small q, the growth rate r? is large,
comparable to the toroidal Alfvén speed, so that the motion cannot
remain incompressible. The crosses in Fig. 4.1 represent the growth
rate, at q, = 1, for various values of E. The stability limit for

gy = 1 is seen to be E = 1.25 which is in agreement with Rebhan's result.
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1.1 Wall Stabilization

The only efficient way to stabilize an axisymmetric mode is to put
a perfect conducting wall around the plasma. In a polar coordinate

system centered on the magnetic axis, we define the shell by

fv () = Ap ),

where P pp are the polar distance to the wall and the plasma res-
pectively and O the polar angle. 1In Fig. 4.3 we plot the growth rate
of the most unstable mode versus the shell positionll. The safety

factor on axis q, is 1.

02

0.1

Figure 4.3

Growth rate T2 of
the most unstable
axisymmetric mode
versus the shell
position .A- .

qo = 1.
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We see a complete stabilization for A= 1.8. This demonstrates the
efficiency of the wall on this global instability. The M\-value of
1.8 is very high and imposes no technological restriction. In a real
experiment the decay of image currents due to the finite resistivity
of the shell can be compensated by an active feedback system acting

in a time characteristic of a diffusion process.

1.2 X-Point Effects

The hypothesis of a vertical rigid displacement, which was valid in

the previous case, leads to the fact that a triangularization of the
Plasma cross section stabilizes the axisymmetric instability {26}.

For a value d = -0.155 we have varied the ellipticity E looking for
the stability limit. An infinite vacuum surrounds the plasma. The
value found of 1.1 is in contradiction with {26}, but agrees with a
slip motion assumption {35}. The unstable mode is plotted on Fig. 4.4.
The move of the plasma to the X-point (+) is clear. The structure of
the mode, the azimuthal Fourier component for example, is directly
correlated to the position of X-points {35,36}. Such a mode can be
stabilized easily by a wall, for a /A-value similar to the d = 0 case,
but a feedback system without a shell, as planned in the divertor study

experiment, may not work.

In conclusion, the improvement in B through the elongation of the plasma
cross section leads to a strong axisymmetric instability easily stabilized

by a wall at a reasonable distance from the plasma surface.
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Figure 4.4

Plot of the axisymmetric mode showing the effect of

X-points (+)

2. Rigid Boundary Modes (n % 0)

Analytic calculations have shown that the MHD continuum spectrum, which
is always stable, reaches the marginal point w2 = O when a singular sur-

face ng = & (& = integer) lies inside the plasma. If the Mercier criterion
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{1,2} is violated, an infinite number of unstable modes

localized

around a singular surface are expected with eigenfrequencies accumu-

lating at the marginal point. If it is satisfied, ther
be unstable modes, but one expects a finite number of t
logy with the straight circular case {27}, and they wou

In order to gain some insight on how the internal mode

e still may
hem, by ana-
1d be global.

spectrum is

modified by the toroidicity amd non-circularity, we have made a series

of runs with a rigid boundary on the plasma surface. [E
are removed which simplifies the interpretation. The Ir
the Mercier limit and the unstable region is investigat

are considered : E =1 and E = 2.

In order to analyze the results obtained, Fig. 4.5 repr
q-value qy at which the Mercier criterion is violated,
of q on axis 95¢ The dashed region corresponds to the

Mercier's limit on axis is 9, = 1 in this case.

s ql

STABLE

—qo

Figure 4.5

xternal kinks
elation between

ed. Two cases

esents the
versus the wvalue

violated region.

Mercier's criterion (E=1). The unstable region,

limited by q, and qy is plotted versus 9%
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The square of the normalized growth rate T'2 is shown in Fig. 4.6

as a function of 4, for n = 2, 3 and 4. The line segments on each
figure, identified by an integer %, indicate that in this range of

q, the singular surface nq = % lies in the plasma. Note that, because
of the shear, there are already many singular surfaces within the
plasma in the vicinity of 9o = 1 and the number increases rapidly with

n and q,.

For n = 1 we expect to find an internal kink for 0.6 < 4q, € 1, when the
singular surface q, = 1 lies in the plasma. We do not find any unstable
mode in this range in agreement with Kerner's results {37, 38}. This
fact can be correlated with the non-violation of the Mercier criterion
around q = 1 for this range of parameter q, (Fig. 4.5). We do find
unstable modes at low 4,0 just as for all the other values of n shown

in Fig. 4.6, but the mode is basically an m=0 mode, characteristic of

Z-pinch experiments.

In order to discuss the results, it is convenient to introduce an azimu-
thal number m(¥) = |Arg X(¥,27) ~ Arg}((W,O)I/Zn. It is an integer

which reduces to the usual azimuthal number m in straight circular geo-
metry. For n=2 there are two unstable regions. The mode which peaks

at q = 0.4 is m=1 everywhere near the maximum, acquiring some m=0 or

m=2 regions in the wings. Near the maximum it exhibits an internal kink
mode structure with a step pattern for the normal displacement gw smoothed
by high beta and aspect ratio effects. The second faster growing mode is
similar, except for an oscillation of EW around the singular layer nq = 1.
The stability limit in q, corresponds roughly to qg = 1 at the plasma
surface. The maximum growth rate is down one aspect ratio from the typical
growth-rate of an external kink, as expected, but the second unstable mode
is down one more order which is unexpected. Compared with the straight
infinite cylindrical case, we see three main differences. First the un-

stable region q; < 1 corresponds to the free boundary kink mode of the
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straight case but with the growth rate typical of internal modes.
Secondly, in the region between q, = 1 and the Mercier limit q, =1

we do not find unstable modes due to the thin band where Mercier

is violated (Fig. 4.5). Finally, the toroidal component of the dis-
placement is of the same order of magnitude as the other components.
This last property is very general and applies to all internal modes.
It has been noticed by Soulé et al. {39} in their calculation of the
internal kink. The other cases n=3 and n=4 shown in Fig. 4.6 behave
analoguously to n = 2. The resonant structure of the curves becomes
less visible as n increases, due to the increasing number of singular
surfaces which lie simultaneously within the plasma. The first re-
sonance starting from the left is purely m=1, the second is mostly m=2
with m=3 near the surface. The third resonance for n=4 is a mixture

of m=3 and 4. The stability limit moves to the right as n increases,
but remains below the Mercier limit. It appears that Mercier's limit
will be recovered in the limit n + ». A very general feature of the
most unstable mode is that locally m is equal to the nearestinteger value
of nq. For a given value of n, as the number of singular surfaces in-
creases, a stabilization of the mode occurs due to toroidal coupling bet-
ween surfaces. Note that in the three cases shown in Fig. 4.6 there is
still space between the last m = n-1 resonance and the Mercier limit.

This region is filled with high n and m modes.

Figure 4.7 shows in the (q, qo) plane the region where the Mercier cri~
terion is violated. The Mercier limit corresponds to q, = 1.35. The
main point is that the q = 1 surface can lie in the dashed region for
some value of q,- This feature leads to unstable n=1, m=1 modes, in
particularly, the internal kink, but its growth rate remains much smaller

than the other n values.
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Qe /

1.2

STABLE

Fig. 4.7 Mercier criterion
(E=2). The unstable region
limited by 9, and q, is

plotted versus q,-

8 ] 12 9o

Fig. 4.8 shows the results obtained for n = 1, 2 and 3. Following

the diagram (4.7) the last unstable singular surface occurs for q,=1.0,
if n =1 or 2. This limit changes for n = 3 where we expect a small
unstable region for qo~value around 4/3. For n = 1 and 2, stable modes
corresponding to q, » 1 are called ballooning modes. The definition

is the following : unstable displacements for a qo-value above the
Mercier limit. For n = 1, reintroducing the eigenvector into the po-
tential energy Wp’ we see that the destabilizing contribution comes

from the region with strong unfavourable curvature and extending from
the magnetic axis to the surface with a safety factor q < 1. For example
when q, = 0.8, the region extends to q = 0.83 only. This is very dif-
ferent from the straight case. The destabilizing effect of ellipticity
on the internal kink has been predicted by Laval {14}. For n = 2 the
first peak on the left is still a pure m=1 mode. The second peak cor-
responds to a mode which is mainly m=2 with some m=1 at the center and
m=3 near the surface. n = 3 modes have the same behaviour with a strong
m=1 resonance at low d,- The fact that resonances become smoothed as

nq increases is clearly due to the increasing number of singular sur-
faces within the plasma. We expect very localized, high n and m modes
up to the Mercier limit, so that there is here the same problem as in

the E=1 case.
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These results are surprising since they imply that, if q, is lowered
adiabatically, it is the localized modes with n large which become
first unstable, A remarkable fact in this case is the sufficiency

of the Mercier criterion for stability against internal modes.

Thus the Solovév equilibria can have very high beta, for example
Baxis
with regard to internal stability. This is not the case for free

= 407 for q, = 1.3 and E = 2, with very advantageous behaviour

boundary modes.

3. Free Boundary Modes (n * 0)

We consider now the case where the plasma is surrounded by an infinite
vacuum region. The current density being non-vanishing at the plasma
surface, we expect the plasma to be unstable to a global motion, namely

the kink mode.

3.1 External Kink

In the limit of a large aspect ratio, the growth rate of the kink is
only a function of nq,. With a small aspect ratio, we expect to see
deviations from this simple dependence. Let us look successively at

the two elongations.

E=1

The square of the normalized growth rate of the most unstable mode for
n=1 and n=2, versus > is shown in Fig. 4.9. The curve has a regular

resonant pattern which seems to become periodic as q, increases with a
1.74 ]
n

The minima coincide with the presence of a singular surface at the plasma

period Aqofu » corresponding to n*Aq = 1 at the plasma surface.

surface. The differences in the nq dependence are visible, specially for

the first peak which is higher for n=2 than for n=1. All the modes have
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Figure 4.9.

The square of the normalized growth rate I'?2 of kink modes versus

q, for n=1 and 2. An infinite vacuum region surrounds the plasma

(no shell).
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a very small component of toroidal displacement in contrast to the
internal modes. The first peak in the growthrate, starting from

the left, corresponds to a global m=1 mode with no singular surface
within the plasma. This is the same as in a straight circular geo-

metry.

The second peak corresponds to a mode which is m=1 inside the plasma
and m=2 on the outside. The nq = 1 singular surface lies within the
plasma so that this mode can be considered as a coupling between an
internal kink m = 1 and an external kink m = 2, both of which exist

in a straight cylinder but are decoupled. This mode is presented in
Fig. 4.10 for 9y = 0.45 and n = 2. The arrows represent the displace-
ment § projected on the meridian plan. Note that because of the dif-
ference between the X angular variable and the polar angle 6 around
the magnetic axis, the modes look as if there is m=1 on most of the
area. Substituting the eigenvector into the potential energy, we have
computed the contribution of each discretization cell to the plasma
energy. These numbers are plotted on Fig. 4.11 in arbitrary units.
The last colummn is the sum over the magnetic surface. We see that the
destabilizing contribution comes from a region of bad curvature and
that each magnetic surface is destabilizing, analogous to the straight
system. Moving to higher q, the modes become more complicated. At the
surface, m is equal to the integer value of nq at the plasma surface
pPlus one. Inside, m decreases as one moves towards the center accord-
ing to the local value of nq. The destabilization factor is always

stronger near the surface.
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Fig. 4.10. Map showing the instantaneous displacement in a meridian

Plane chosen such that the mode is symmetrical about the mid-plane.

The mode represented is a kink with E = 1, 9o = 0.45 and n = 2.
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Fig. 4.11. Map showing the contribution of each discretization cell to
the plasma potential energy. The displacement corresponds to the mode

Fig. 4.10. The last column represents the average on each magnetic surface.
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E =2

A study of the elongation effect on the stability of a straight plasma
device has been achieved recently {6,23}; modification due to toroi-
dicity is now presented. The results for n=1 are shown in Figure 4.12.
The curves have the same general behaviour as when E=1. There is a
destabilization of the first peak m=1 and an apparent stabilization of
the higher orders. Among the differences, the destabilizing contri-
bution comes now from the region of strongest curvature, namely around
the vertical axis, while it came from a wide region centered around the
mid-plane on the outside of the torus for E=1. Figure 4.13 represents
the poloidal displacement in the meridian plane Y =0 for n=2, q,= 0.45.
The results presented show that the stability behaviour of the kink mode
is not affected by elongation despite the higher B-value achieved. These

results are a real encouragement for the design of non-circular tokamaks.

3.2 Unstable MHD Spectrum

We have up to now presented results concerning the most unstable exter—
nal kink mode. In fact there are unstable modes with growth rates smal-
ler than kinkmodes. We have computed next fastest modes in two cases
N=2, E=1 and N=1, E=2, in order to try to correlate these modes with

the rigid boundary case. The structure of these modes is important for
transport phenomena and has increased interest in the presence of a con~
ducting shell which acts specially on the most unstable surface mode. In
a cylindrical discharge the free boundary spectrum is well behaved, with

the fixed boundary values located between them.
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Schematically, as shown in Fig. 4.14,
T Vi V1l refers to the most unstable mode
1 VVi in the free boundary case, V2 the
second most unstable mode in the same
-1 VZ, conditions, etc. W1, W2 have the same
signification for the fixed boundary
calculation. This structure is com—

pletely lost in toroidal geometry.

Figure 4.14

Schematic plot of unstable modes
in straight cylinder.

E=1

Figure 4.15 represents the growth rates of V1, V2 and Wl as a function
of 45 Segment lines have the same significance as‘in the previous case.
Three facts have to be mentioned. If the Ew component of the second
unstable mode oscillates once more in ¥ than V1 does, the zero-line does
not correspond to a magnetic surface. This fact destroys the usual
ordering (V1, W1, ...). Secondly, the V2 curve drops when the quantity
nqg is an integer, exactly as V1. Nevertheless, the left wing of each
maximum of V2 exhibits an m+l component for Ew contrary to the correspond-
ing V1 mode. In fact, this instability can be correlated to the next
maxima of the V1 branch. V2 is a new branch of the kink induced by to-
roidicity, which splits the usual one branch kink of the cylinder case.

Note that the same phenomenon occurs in a straight elliptical discharge

{40}.
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Vi

J.

Figure 4.15
Plot of the normalized growih rate I'?

for the first two unstable modes versus 4,

(

) no shell, (-=-—- ) fixed boundary

The second maximum of V2 for q,~ 0.8 is due to this coupling. No
unstable mode occurs for such qo-values in the fixed boundary case.
Finally, the V2-curve disappears before the Mercier criterion limit,
showing a mixed character betwéen a kink and an internal mode. An

example of such a mode is shown in Figure 4.16 for q, = 0.45. This
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figure can be compared with Figure 4.10, which corresponds to the
same parameters. The mode has an internal m=1 part which looks

like an internal kink with an external m=2 kink~like behaviour in
the outside region. The map of the potential energy shows an un-
stable core and an unstable region at the surface separated by a

large neutral layer. This is plotted on Figure 4.17.

This coupling mode seems to be a precursor sign of a gross disrup-
tion in a Tokamak. An enlargement of the interesting part of Figure
4.16 is plotted inFigure 4.17. We note that V3 and W2 are very simi-
lar in shape and growthrate. The V3 branch is a real internal mode,
the plasma surface having a small influence. The fact that only the
V2 branch is affected by the coupling with surface modes is not a

general feature. Let us look at Figure 4.18.

E =2

Figure 4.19 corresponds to a toroidal wave number n=1. The V2-curve
is similar to the previous case, disappearing for a q,~value less than
the Mercier criterion limit. We remark that V3 is a surface mode,
especially before a resonance at the plasma surface. Outside this re-

gion V3 and W2 are similar.

In this case, the ellipticity increases the splitting of the kink
branch due to toroidicity and so acts at a lower level in the MHD spec—

trum.

These new aspects of the MHD spectrum of a small aspect ratio, non—
circular Tokamak, must stongly affect its transport behaviour compared
to standard Tokamaks. A theoretical and experimental study of this in-

fluence remains open.



Figure 4.16.

the second most unstable mode for E=1, qo=0.45 and n=2. The vertex

the central region corresponds to an internal kink displacement.

The instantaneous displacement, in a meridian plane,
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drawn on Figure 4.15.

the surface mode (m

= 2) are evident.

The two contributions of the internal kink and
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The simple Solovév equilibrium allows us to reach a very high beta
value with an advantageous behaviour with respect to internal modes
(Mercier limit) and to axisymmetric modes (wall stabilization).
These nice features are balanced by a strong kink instability which
destroys the discharges. A possible way of stabilization is to put
a conducting shell close to the plasma surface. Let us look at this

effect.

3.3 Wall Stabilizatipn of a Kink Mode

The definition of the shell is similar to that used in the axisymmetric
study (IV.1). 1In Figure 4.20 the growth rate of the most unstable mode
is plotted versus q, for different shell positions. The parameters are
E=1 and n=1. Analytical calculations on the wall stabilization of a
kink mode are given in Ref. {3}. If the m=1 peak is strongly affected
by the shell position (J\), the other maxima are equally affected by

this stabilizing effect (A= 1.414). On the A= 1.155 curve the effect
of the unstable fixed boundary mode is clearly visible for q, around 0.4,
The internal modes fix the q, value close to 1; for such a value we have
always a strong surface instability even for a shell very close to the
plasma surface A= 1.1. TFor higher 4, the curves\ = » and A = 1.414
are parallel; the difference corresponds to the stabilization of the m=1
displacement, common to all modes, due to toroidal coupling. This is

not so in a cylindrical case where a pure m = 2, 3, ... mode can exist.

Generally, a conducting shell, at a reasonable distance from the plasma
surface, cannot stabilize kink instabilities (n + 0). Nevertheless,
with an appropriate active shaping of the q-profile and a wall close to

the plasma surface high beta ( 210%Z) equilibria are possible.

In fact, all experimental measurements of the toroidal current density
profiles {41} show a peaked shape different from the linear function in

r used in the Solovév equilibria. Moreover, for 4g > 3, kink instability
does not occur. We now want to look at the influence of the current

peaking on the MHD stability. The price for peaking is a loss in E:
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V  MHD STABILITY OF SMALL ASPECT RATIO EQUILIBRIUM WITH PEAKED

CURRENT DISTRIBUTION

The present Tokamak experiments show very good stability properties

even when there is no conducting wall to act on the plasma. These
observations violate the results presented in Chapter IV. 1In fact
through a thermal instability the toroidal current peaks on the mag-
netic axis {41}. J. Wesson has shown that in a straight circular
system current peaking eliminates the external kink {4}, leaving pre-
sumably the internal kink and the Mercier modes as the most dangerous.
This peaking phenomenon leads to a loss of E-with respect to the flat
current profile case, or equivalently limits the toroidal current which

can flow in the device.

In the first part of this chapter, we investigate numerically this
problem for a class of toroidal equilibria. The evaluation of the

most unstable mode is obtained as a function of q at the plasma surface,
for a fixed value of q on axis. To explain the results consistently,
fixed boundary modes are also investigated. We only look at the n=1
modes, assuming they will be the last ones to be stabilized just as in
the straightcase. The different modes which fix the stability limit

are defined. Different values of the poloidal beta Bp and the elongation

E are presented.

One of the main objectives of the present Tokamak fusion programs is to
show the possibility of increasing the maximum B-value. The FCT {42,43}
concept relies on an increase in Bp; another possibility consists in
changing the shape of the plasma. The second part of this chapter is
related to these problems and presents an optimization of the average g

with respect to the profile characteristic (qs/qo).

We will now define the conditions of the calculations : equilibrium

choice and free parameters.
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1. Equilibrium

An equilibrium is characterized by the shape of the plasma surface
and by the derivatives of the pressure p(¥) and of the poloidal
current function T(Y¥) {3,11}.

The surface is given by the equation

e (- R RS

I CYL W4

where R is a length which corresponds to the radius of the magnetic
axis when the current is flat, E is a measure of the elongation of

the plasma cross section, and the parameter Ro/a is the aspect ratio.

This shape is the same as that encountered in the Solovév equilibrium
study. It corresponds to an aspect ratio of 3, and exhibits a D-shape

form. For p'(¥) and TT'(¥) we take

p(¥) = p {exp(-v¥*) -1}

o

TT'(Y)= RZ‘(% -4) plty)

where v characterizes the width of the current distribution and BJ
corresponds to the poloidal beta for large aspect ratio. The choices
of pj and BJ fix the safety factor on axis qy- The flux ¥ is norma-
lized such that it vanishes at the plasma surface. An equilibrium is
completely defined by the safety factor on axis Qy> its value on the
surface q, Bp and E. R, acts only as a normalizing factor for the

eigenfrequency ®w, The density current has zero value and slope at
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the limiter according to Wesson's prescription {4}. The equilibrium
for each case is computed with the ORNL code {29} with a 140x70 mesh
in the r and z direction, respectively. The usual Oak Ridge scaling
{44} is applied such that one equilibrium calculation can be used

for many values of q,- If the numbers (Y, p, TT') correspond to an
equilibrium, (s¥, s p, s TT') correspond to a new one, where s is the

scaling factor.

The stability analysis is performed by the spectral code ERATO {11}.

We shall now present a detailed study of the case with E=1 and Bp = 1,

2. Effect of Peaking the Current Distribution

The results for this case are shown on Fig. (5.1). The square of

the growth rate I'? of the most unstable mode is plotted versus the
safety factor at the surface 44> for two values of q,. The normalizing
is given by u,

frequency w = T2(¥,)/Rp,. The solid lines are results

T T
obtained with an infinite vacuum region surrounding the plasma. The
dashed lines are obtained with a conducting shell tight against the

plasma surface.

2.1 Kink Limit

For qS/qo < 2.5 the mode is an external kink. Each magnetic surface
gives a negative contribution to the potential energy, except near the
plasma surface where the toroidal current and its derivative vanish.

In Fig. 5.2, we have plotted the instantaneous displacement of the plasma,
projected in the meridian plan. Parameters are 9, = 0.9 and qq = 1.84.

As in the flat current case, we see clearly that the mode is mainly m=1
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around the center, becoming m=2 at the edge, always according to

the integer part of nq. The toroidal component EY is ten times

smaller than the poloidal displacement. Moreover, the mode exhibits

no azimuthal or radial localization. Maps of the potential and

kinetic energies corresponding to this mode are given in Fig. 5.3.

The negative contributions come from regions of bad curvature, but

the average on each magnetic surface is always destabilizing, except
near the surface. The kinetic energy increases monotonically from the
center to the surface. All these features characterize a kink mode.
Extrapolating the sharp drop in growth rate of the kink (dotted line)
we can défine the point where it cuts the q axis as the stability

limit for the kink (qk). It corresponds to qs/qo = 2.8. In the straight
case it is qS/q0 = 2.0 {4}. We can note that our value of qS/qo = 2,8
corresponds to the straight calculation qs/qo = 2.0 shifted by the to-
roidal shear associated with the Solovév equilibrium, qs/qO = 1.74.

We see that this shift degrades the increase in B obtained by a smaller
aspect ratio. The question of an optimized aspect ratio is still open.
In Fig. 5.4, we have plotted the growth rate I'?2 of the most unstable
mode versus q, for a fixed value of qs/qo = 2.6. This value is smaller
than the kink limit. The equilibrium is unstable for all values of Qs
independent of the value of E: The curve exhibits a resonant pattern
with minima corresponding to the presence of a singular surface at the
plasma boundary, a feature characteristic of a kink behaviour. For an
equilibirium with a value qs/qo greater than s there is a 4, value
which corresponds to a limit for MHD stability. Such a case, with 7
qs/qO = 3.6, is plotted in Fig. 5.5. As the peaking increases, the mode

changes its character, becoming progressively internal.

2.2 Internal Mode Limit

As . decreases towards 1, the:stability limit moves up from the kink
limit, and for q, < 1 the instability remains for all q,- The deviation

from the kink limit is explained by looking at the fixed boundary
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Figure 5.2. Kink. Instantaneous displacement in a meridian plane

of the most unstable mode for q, = 0.9 and qg = 1.84.
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calculations. It is surprising that peaking destabilizes first the
internal mode. This fact can be attributed to the loss of triangu-
larization around the magnetic axis through peaking {45}. As a remark,
the Solovév equilibrium has no n=1 internal instabilities. For q, <1
the residual mode is an internal kink. Such a mode structure is re—
presented in Figure 5.6 and the corresponding map of the potential
energy in Figure 5.7. Parameters are 9, = 0.9 and qS/qO = 3.8. The
destabilizing part of the potential energy comes from the region inside
the q=1 surface and from plasma volume near the q=2 surface. This mode
can be construed as a coupling between an m=1 internal mode and an m=2
mode. Comparison with the V2 mode of Figure 4.6 shows evident analogy.
The kinetic energy is concentrated inside the q=1 surface. Note that
the toroidal component E? of this mode is comparable with the poloidal
component, characteristic of internal modes. The internal mode is

another limitation for MHD stability.

2.3 Ballooning Limit

For q, ® 1 and qs/q0 > 2.8 the remaining unstable modes are called
ballooning, because they correspond to q, larger than the Mercier limit.
In Figure 5.8 we show such a mode, projected in the poloidal plane. The
parameters are q, = 1.1 and qq = 3.6. Figure 5.9 represents the corres-
ponding map of the potential energy. The negative contribution comes
from the region between the g=1 and q=2 surfaces, contrary to the qo'<1
situation. As they correspond to q, greater than the Mercier limit,
these displacements are called "ballooning modes'". The toroidal compo-
nent is comparable to the poloidal one, the normal displacement being
the smallest. Ballooning modes strongly depend on Bp and E-and are a

major factor in determining the MHD stability domain.
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For each case characterized by a fixed value of 95 the stability

limit in g corresponds to a maximum value for B. For example, if

9, = 1.1, the marginal point at g
of B = 1.17%.

= 3.8 gives an average E.limit
In Figure 5.10, we have plotted the stability fron-

tier in the (qS/qo, 4,) plane. The three types of limitating modes

are clearly represented. We shall now investigate the influence of

Sp and E on these modes.
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Figure 5.10
Plots of the minimum qg/q, value for stability
versus ¢ . The upper region corresponds to MHD

stability.
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3. Influence of Bp on the Maximum Average

The question of a critical equilibrium Bp’ essential for progress in
Tokamak research, is somewhat intricate. In particular, Mercier {19}
found that Bp had to be limited by R/a in order to avoid the entrance
of the separatrix within the plasma, i.e., the appearance of a second
magnetic axis. Dory and Callen {29} have obtained higher Bp equilibria
but they are characterized by a reverse current at the inner edge of
the torus. Recent calculations {42, 43} have shown it to be possible
to avoid this limit by the creation of a series of equilibria with a
fixed q-profile (FCT) and arbitrary Bp. The problem of the stability
of such equilibria has been investigated preliminarily. This shows a
limiting value of Bp or B for a given qS/q0 value {15}. We can also
obtain information on such FCT "transitions' by studying our "Maxwellian"

equilibria for different values of Bp.

B, =2

Figure 5.11 represents the growth rate I2 of the most unstable mode as

a function of q for three different values of q,- We note a shift of

the whole curve to higher 44 values compared to the BP = 1 case. This
fact corresponds to a loss in Bwith regard to the simple linear scaling

B = Bp 'EXBP=1). The saturated behaviour of the dependance is clearer

in Figure 5.14. The results shown can be interpreted with the same

scheme as the preceeding one (Bp=l). The difference between the kink
limit and the ballooning one is enhanced. Ballooning modes are destabi-'
lized by an increase of BP. For a given qs/qo, an FCT transition can lead
to a destabilization of the plasma (Figure 5.11). Nevertheless, stability
is achieved for q, = 1.25 and q4 = 5.7 with a g = 1.3%, greater than

B =1.1% corresponding to Bp = 1. We have shown that an optimization of

B with respect to qs/qo is a crucial point for the relevance of the FCT

concept. The shift of stability to higher qg values can be a crucial
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advantage for the design of a Tokamak. Stability, with a sufficient
high E-value, is achieved with smaller toroidal current, inducing a
decrease of the E-coil current and less ohmic losses in its circuitry.
The problem of a Bp limit has shifted from equilibrium to stability

considerations.

4. Influence of the Elongation on the Maximum Averagelg

Elongation is proposed as an efficient way to increase the total E:
Experiments performed in the Doublet II experiment {46} have shown
this trend. We have computed the MHD stability of equilibria corres-

ponding to E=2 and Sp =1,

With peaking, the ellipticity around the magnetic axis decreases and
the Mercier criterion limit remains close to 1 for peaked equilibria

{16} as shown in Fig. 5.12.

Clg‘

-

STABLE

- - B T T ———

Figure 5.12. Mercier's criterion

The unstable region, limited by

q, and q, is plotted versus 4.

The internal mode limit is close to that obtained for E=1. We do not
loose B with this limitation mechanism. In Figure 5.13, we have plotted

the growth rate T'2 of the most unstable mode versus qg for three different

m—
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values of 9,- The dotted line corresponds to the kink limit. We
see that this value qs/qo43 2.8 is not affected by the ellipticity.
The kink mode is not perturbed by E and depends only on q4, as seen
in the Solovév study. For q, = 1.1 comparison with Figure 5.1 shows
that ballooning modes are affected by the elongation of the plasma
cross section. The stability limit in 9gs 9g = 4.2, is higher than
qg = 3.8 obtained for E = 1. The maximum B achieved is 2.1%. For
an elongation up to 2, the gain in B is proportional to E, instead
of E? as obtained in a simple flat current model (Chapter III, 3.2).
The problem of an optimum in E remains open, but the trends obtained
show its existence. The three curves show different structures. For

do, = 1.1 the kink limit is smaller than the ballooning limit. For

%

active. We see the resonance of the curve around qg = 3, characteristic

1.3 the two limits coincide and for q, = 1.4 the kink limit is

of a kink behaviour.

In conclusion, as long as E is less than 2, elongating the plasma cross-

section is a wvery efficient way to increase its B.

5. Optimization of B

Sections 3) and 4) have shown the existence of an optimum for B as a
function of q,> due to the competition between the ballooning and kink
limits. Moreover, the different behaviour of these frontiers with Bp

and E make the existence of an optimum as function of Bp and E possible.

We have represented in Figure 5.14 the optimized average beta value E}
determined by MHD stability, for different values of Bp(O.S, 1, 2) and
E (1, 2). Optimization is performed with respect to the current profile

parameter qS/qO.
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Figure 5.14
Representation of the optimized average beta
value E.versus qo for different values of Bp and E.

R/a=3. E=1 (-——-- ). E =2 ¢( )¢

We see first that the (1/q0f dependence of B8 at large q, is stopped
by the appearance of the ballooning modes. The optimum in q, lies
around q, = 1 for E = 1 and shifts with the elongation E. In our range
of parameters the dependence of E-with E is roughly linear. The rela-
tion between E.and BP is more complicated. The function is linear for
small Bp (Bp < 1), and saturates at high Bp (Bp > 1). These results
show the limitation of the achievement of high BP. Nevertheless, cold

gas injection and supplementary heating are necessary to push a device
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to its maximum B value. The value of Bp reached in a pure ohmically
heated Tokamak (Bpas 0.7) gives a E'less than the maximum value
possible in a given geometry. We see that in a circular case this

value lies around 1.5% and for an elongated D-shape (E =2) 3%.

The study presented refers to Maxwellian current profiles, an optimi-
zation with other functional forms is necessary to obtain a whole

view of the MHD stability of peaked current equilibria.

High E.achievement is a subtle play between peaking, shaping and

poloidal beta. The geometric parameters have a determining influence.
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VI CONCLUSION

A finite "hybrid element'" scheme has been used to generate a general
purpose 2-D toroidal ideal MHD stability code : "ERATO". This method
is easy to implement and well suited to treat numerically determined

equilibria {10,11}.

The first application concerns the analytically tractable Solovév
equilibrium {12}. A device with a small aspect ratio of 3 has been
chosen. Non-localized modes couple different singular surfaces, which
leads to a stabilization of the displacement. The toroidal coupling
can also act between an external kink and an internal mode {47}. Strong
kink instabilities destroy the plasma discharge, in contrast to experi-

mental results.

The effect of peaking the current distribution in a small aspect ratio
Tokamak is investigated. The safety factor on axis q, is kept fixed,
its value at the surface qs being progressively increased. Above a
minimum level of qS/qo, the kink instability does not occur. At large
q, the kink limit is the stability limit. For q, in the vicinity of 1,
another type of mode, induced by the toroidal coupling, determines the

stability frontier.

The negative contribution to the potential energy comes from the plasma
region lying between the q=1 and g=2 surfaces. As they correspond to
qp greater than the Mercier limit these displacements are called
"ballooning modes". In contrast to other calculations {48}, they cor-
respond to small n and m numbers. For q, < 1, internal modes become

unstable.
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We have obtained the optimal E; dictated by MHD stability consider-
ations, versus 9> for different values of Bp and elongation of the
plasma cross section E. Up to an elongation of 2, g varies propor-
tionally with E. This is not the case for the Bp dependence where

a saturation occurs for Bp > 1.

The work presented here does not complete the study of linear MHD sta-
bility in axisymmetric devices. An analysis of field profiles obtained
by a transport code is necessary in order to be sure that our pessimistic
results (E-%=BZ) are not linked to the Gaussian shape. A simple analy-
tical model which computes the toroidal coupling between two singular
layers is an important point to support our numerical results. It is
also essential to remember that one can tolerate linear instabilities
which are removed by a minor change in the configuration or whose non
linear consequences are benign. A full understanding of the ideal MHD
stability of Tokamaks requires non linear theory as well. Moreover,

the influence of finite resistivity on the linear and non linear develop-
ment of MHD instability must be investigated, in particular the island
formation and evolution in presence of toroidal coupling. The MHD be-

haviour of a Tokamak is still an open field.

The theoretical predictions presented in this work have not yet been
tested in present and short range projected Tokamaks; nevertheless they
can strongly affect the efficiency of a Test Fusion Reactor. An experi-
mental Tokamak with a variable elongation and an auxiliary heating source,
which can push Bp up to 6, is an important step towards the achievement

of a thermonuclear reactor.
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APPENDIX

Table of Symbols

A

{A; .}

|

dQ
do

de

1Y)

oW
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vector potential

plasma potential energy matrix
total magnetic field

vacuum magnetic field

poloidal magnetic field

average beta = (jpdﬂ)/ (%Sg?dn)
poloidal beta = (Spdﬂ)/ (%prdQ)
growth rate

ratio of specific heat

triangularization factor (Solovév

equilibrium)
volume element
surface element
line element
perturbation
partial derivative
plasma surface

wall



G(x, x")

GF(x, x")

sy
13+3
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elongation of plasma cross section

basis function for derivative ¥ with

respect to point (Wi+%, Xj)

basis function for single variable
quantity at point Xi

3
operator 12 +n

q 39X

basis function for function value at

point (Wi+%’ Xj+%)

vacuum scalar potential

vacuum scalar potential at plasma surface
vacuum scalar potential at the wall
toroidal direction angle

1/ |z-x'|

Green's function projected on the toroidal

direction ¢ -
Green's matrix

basis function for derivative with respect

to point (¥;, Xi+%)
¥ mesh counter
total current density

toroidal current density

Jacobian
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Yo

o
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X mesh counter

destabilizing factor

elliptic integral (vacuum treatment)
kinetic energy matrix

poloidal coordinate

poloidal coordinate (orthogonal system)
Lagrangian

ratio of shell to plasma radius
dominant poloidal Fourier component
unity vector normal to flux surface
peaking parameter

number of ¥ intervals

number of X intervals

toroidal wave number

total pressure

derivative of p with regard to ¥
poloidal magnetic flux

Y at plasma surface

normalization factor for V¥

perturbed magnetic field Q = Vx(ExB)
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safety factor
safety factor at axis
safety factor at the plasma surface
upper limit of Mercier's violated region
position of magnetic axis
aspect ratio
distance from the main axis of the torus
total mass density
normalization factor for denisty
polar distance of a plasma surface's point
polar distance of a wall point
toroidal equilibrium magnetic field
time

X
non orthogonal factor = sﬁ.ln
polar angle in poloidal plane
polar angle of a wall point
component of § V = quBpgw—gY/r—-Tgi /r2Bp
up~down symmetric component

up—~down anti-symmetric component



(1)

(2)
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V component for X derivative

V component for function value

fluid velocity

vacuum region

vacuum energy matrix

perturbed vacuum energy

plasma region

eigenfrequency

2 T2
normalization factor for W™ = =R
2, 2
w
/%

perturbed kinetic energy
component of £, X = rB £

= PV
up—down anti-symmetric component
up—down symmetric component
X component for X derivative
X component for function value
X component for y derivative
displacement vector
normal displacement component

poloidal displacement component

(

(o)

¥

(o)

)

§—0l
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toroidal displacement component
Ly
component of £, Y =<
up—down symmetric component
up~down anti-symmetric component
Y component for X derivative

Y component for function value

distance along the main axis of the torus
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