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ABSTRACT

The stability of coupled Langmuir and ion-acoustic solitons has been
investigated by means of numerical computations. Using the Zakharov
equation to describe the envelope of the oscillating electric field,

and the Korteweg~de-Vries equation with the ponderomotive driving term,
to describe the low-frequency electron density variation, we found

that (1) Langmuir waves and short scale sound waves do not affect the
soliton, (2) two solitons destroy each other when colliding, and (3) a
long scale sound wave or ion-acoustic soliton break up a coupled soli-
ton in the interaction. Moreover, we did not find any initial condition

far from a soliton state which would create a coupled soliton.



INTRODUCTION

It is widely recognized that the concept of weak turbulence is
inapplicable to the theory of Langmuir turbulence associated with

the heating of a plasma by high-current relativistic electron

beams or powerful lasers. Rudakov1 and Kingsep et al.2 suggested

that the strong Langmuir turbulence which arises in this case

could be described by randomly distributed Langmuir solitoms, which
can interact with each other as well as with the plasma particles.
These solitons are entities which store high-frequency electric

fields in regions of local density depression. The latter are pro-
duced by the low-frequency ponderomotive force on electrons expelling
them (and hence ions as well by ambipolar effects) from the region

of strong field intensity. Formally, the solitons are one-dimensional
localized stationary solutions of a Schrodinger-like equation for the
envelope of the oscillating electric field, with an effective potential
proportional to the low-frequency electron density perturbation. This
perturbation in turn obeys an equation for linear ion-acoustic waves

driven by the ponderomotive force

It was pointed out by Nishikawa et a1.4 and Makhankov5 that for solitons
moving with a group velocity close to the ion-acoustic speed the non-

linearities and the dispersion of the ion-acoustic waves become important.
In fact, the results of particle simulations performed by Pereira et a1.6

indicate that the ion dispersion and nonlinearities may have a significant

effect even for slower solitons. In the simplest way, this effect can



be taken into account if the low-frequency electron density perturbation
. s . 7 . 5 . .

satisfies a Korteweg-de-Vries' or Bousinesq~ equation with the pondero—

motive driving term, while the envelope of the electric field obeys

the same Schrodinger-like equation as in the previous case. The equa-

tions of this model admit new types of soliton-like solutions which

correspond to coupled Langmuir and ion-acoustic solitary waves — C soli-

tOIlS4.

The main difference between a Langmuir soliton and a C soliton consists
in the magnitude of their density depressions. The density depressions
are proportional to the second and to the first power of the electric
field amplitude, in the former and latter case respectively. It follows
that for the same amount of trapped high-frequency energy the density
hole of a C soliton is much deeper than that of a Langmuir solitonm.

Thus, the C soliton is actually a negative sound pulse loaded with a
high-frequency field. In our opinion, this is a reason why the C soliton
is a relatively "fragile" entity, since a negative sound pulse is no
stationary solution of either the Korteweg-de-Vries or Bousinesq equa-

tionss.

Although the dynamics of the formation and interaction of Langmuir soli-
tons has been extensively investigated (see e.g., Degtyarev et a1.9,
Pereira et a1.6), at present little is known about the dynamical beha-

viour of C solitons. This problem is of great importance in comnection
with the previously mentioned model of strong turbulence. The solitons

should be reasonably stable entities in order to be used as 'quasi-

particles'" in that model. Recently it has been shown10 that the C soli-



tons are unstable against perturbations transverse to their motion.

The present paper is an attempt to answer, by means of computer
calculations, a number of questions related to the dynamics and sta-
bility of one-dimensional C solitons. The plan of the paper is as
follows : Section II gives a brief mathematical introduction leading

to the numerical method discussed in Section III. Section IV discusses
the results of the computations of different elementary processes, viz.
the formation of a C soliton, the collision of two C solitoms, the
collision of a C soliton with an ion-acoustic soliton, and the inter-
action of a C soliton with ion-acoustic and Langmuir wave packets.

To a great extent our conjecture concerning the fragility of the C

solitons appears to be confirmed by the computations.

DYNAMICAL EQUATIONS AND CONSERVATION LAWS

The basic equations describing the nonlinear dynamics of one-dimensional
Langmuir and ion-acoustic waves, in a system of coordinates moving at
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the ion-acoustic speed, can be given in the form
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where N is the low-frequency density perturbation and E is the electric

field of Langmuir oscillations with exp(-iw ot) factored out. Equations

P

(1) and (2) are in dimensionless units; the units of time, space, density



perturbation, and electric field are, respectively, (ewpe)"l, AD’ Do,

1
and 4(mn,T )6. Here w A T , and €? are, respectively, the
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plasma frequency, Debye length, average density, electron temperature,
and the electron-to-ion mass ratio. Equation (1) is just the Schro-
dinger-like equation derived by Zakharov3 whereas Eq. (2) is the Korte-

weg-de~Vries equation with the ponderomotive driving term.

The convective term in Eq. (1) is removed by the simple transformation
E > E exp {ie(x+t/2) /3}. Henceforth, instead of Eq. (1) we shall con-

sider the equation
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It can easily be verified that the set comprising equations (2) and (3)
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has the following integrals of motion :

the number of plasmons

T, = JIEPae @

the momentum of the oscillations

L= /{ V*+ie(E %%i F*35) b, ®

the energy of the oscillations

L= [ Mo 0 {3 e,

and the number of particles

T, = [Vae . ik

Equations (2) and (3) admit a stationary travelling localized solution

- C soliton - given by4
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and

g 2 (9)
L
where £ = (a/10)*(x+at), and a is a free positive parameter. Evidently,

if E=0 equation (2) has a stationary solution in the form of a loca-

lized density hump - ion-acoustic (S) soliton :

V=3a Seckz[(a/z )’/2(X_az¢)]. (10)

The substitution of the C soliton solution (8) and (9) intoEqs. (4) - (7)
yields the following relations :
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Similar relations can be obtained for the S soliton, and for ion-acoustic
(SW) and Langmuir (LW) wave packets. If we now assume that only the C,
S, SW and LW entities exist in the plasma, we can derive the selection
rules for the interactions among them requiring that the quantities

I, - I, be conserved in the interactions. An analysis of this kind was
first time performed by Gibbons et al.11 for a system consisting of
Langmuir solitons and linear ion-acoustic waves. Considering, for example

"two—body" interactions we find that the following processes are forbidden:

Cre, e Ge X, X=SSWuw. o
These rules indicate that two C solitons cannot merge while emitting only
one entity of type X. Thus, if two solitons collide they should either
pass through one another or three entities at least should appear after

the collision. Likewise, one soliton cannot be broken up into two solitons

in a collision with only one of the X entities. It follows that a soliton



and an X entity should either not interact in a collision or three
entities at least should appear at the end of the process. In the
same way one can analyze three-body interactions. However, the num-
ber of possible final states of a process increases in this case so
that it is difficult to conclude what will actually happen. In our

opinion one can answer these questions only by means of numerical

computations.

THE NUMERICAL PROCEDURE

We have solved Eqs. (2) and (3) by a finite-difference method. The
.. . 2
explicit three-time-level Zabusky—Kruskal1 scheme was used for the

density equation (2)
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where £ and j number the spatial grid-points and the temporal levels,
respectively : X, = fh, 0 < & < L3 tj = 3jk, 0 < j < J. The electric

field equation (3) was discretized according to a standard Crank-

Nicholson13 scheme
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which necessitates the solution of a linear system of algebraic equations.

Ideally one would like to solve equations (13) and (14) in infinite
space. Since all the processes considered take place in localized
regions of space we have imposed, for numerical purposes, the simplest

boundary conditions
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As regards the electric field, these conditions correspond to reflecting
boundaries, whereas for the density they have no physical meaning since
a sound wave or C soliton cannot be reflected at the left boundary, and
an S soliton cannot be reflected at the right boundary. For this reason
one must take care that the phenomena in question never approach the
boundary. Without additional refinement to the numerical code, large
grids, wasting the computer space, have to be used for long-lasting runms.
Therefore the two following features were built into the code. Firstly,
we have used a sliding grid moving with the "center-of-mass-velocity" of
the process under consideration. The zero values of N and E were intro-
duced at the front edge of the grid while the actual values of these
quantities at the rear edge were discarded. Secondly, in some cases we

allowed for an artificial damping in a small region near to the sliding



edge, which permitted suppression of less localized, emitted sound or

Langmuir waves.

The accuracy of the numerical approximation was checked by following

the variations of the integrals of motion (4) - (7). The most pronounced
variation was that of the energy integral, and was typically 17 for long
runs. An additional test of the scheme was the propagation of a single

C soliton. By comparison with the exact analytic solution (8) and (9)

we found that the code preserves the amplitude, shape and speed of the
soliton, whereas the description of the phase of the electric field is

less accurate due to its fast variation.

RESULTS OF THE CALCULATIONS

In the first study we considered the collision of two solitons. We
varied their relative velocities, and consequently the ratios of their
amplitudes and widths. In all sets of computations we have observed
essentially the same behaviour. A typical example is shown in Fig. 1

for the case where the soliton velocities are a; = 0.45 and a, = 0.15.

One can see that as soon as the solitons start to overlap at t 160

the Langmuir field flows out of the density well of the larger soliton.
Since the effects of the ion dispersion ans nonlinearities are no longer
balanced by the ponderomotive force the density hole of the larger soli-=
ton begins to emit sound waves. Precisely the same process occurs (Fig.2)

when an isolated negative sound pulse breaks up into wave trains as known

from the theory of the Korteweg~de-Vries equation14. Inasmuch as the



_10_

characteristic time of this process is much shorter than that of the
interpenetration of the solitons, in a later stage of the collision
the emitted sound waves interfere with the density depression of the
smaller soliton in a destructive way. In turn, the electric field
leaks out also from this soliton. Thus, at the end of the observation
time both solitons are broken up into series of sound trains, positive

and negative sound pulses, and the Langmuir wave packets.

Next, we studied the collision of a C soliton with an S soliton. This
process proceeds differently for different signs of the total density
integral (7). Figure 3 displays the course of the collision in the

case when I4 > 0. We observe that as the S soliton passes through the .

C soliton the Langmuir field becomes untrapped due to a deformation of

the density well. The S soliton reappears unchanged whereas the re-
sulting isolated density hole spreads out into a sound train as was al-
ready discussed. If the total density integral is negative, both the

C soliton and the S soliton are destroyed in the collision. These results
provide additional evidence that the dynamics of a C soliton are essentially
governed by the ion nonlinearities and dispersion as described by the

Korteweg—de-Vries equation.

The interaction of a C soliton with a sound wave appears to be very much
dependent on the ratio of the spatial scales of these entities. The sound
wave packet with width smaller or comparable to that of the C soliton
passes through the latter without affecting it. On the other hand, a
large scale sound wave destroys the C soliton in a way very similar to

that in which the S soliton does (Fig. 4).
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Also we have investigated the collision between a C soliton and
Langmuir wave packet. As can be seen from Fig. 5 these entities do
not interact with each other. This fact indicates again that the
sole of the Langmuir field is not very important in the dynamical

behaviour of the C soliton.

Finally, having observed the fragility of the C soliton, we tried to
establish under which initial conditions this entity can be formed at
all. It turned out that the initial conditions must be '"tailored" in

a very special way. Figure 6 shows such an example. Here the initial
state was chosen in the following manner. The electric field was given
by formula (8), and the density by formula (9) where the amplitude "a"
was replaced by "1.25a". We notice that the self-consistent shape of
the soliton is established after the excess of the density depression

is emitted in the form of a sound train. A similar behaviour was ob-
served in the case when the initial state was represented by a C soliton
with a slightly-deformed electric field. On the other hand, if the den-
sity well of the soliton is made shallower the barely-trapped Langmuir
field starts to flow out almost immediately, and consequently the well
decays into a wave train. As demonstrated in Fig. 7, the soliton is not

restored in this case.
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Fig. 1

Fig. 2

Fig. 3

Fig. 4
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FIGURE CAPTIONS

The evolution of the density perturbation (solid line) and
the amplitude of the electric field (broken line) for a colli-
sion between two C solitons, as a function of x at different

times. The initial parameters are : a; = 0.45 and a, = 0.15.

The evolution of the density perturbation for an isolated ne-
gative sound pulse of the form given by Eq. (9), as a function

of x at different times. The initial parameter is a = 0.45.

The evolution of the density perturbation (solid line) and the
amplitude of the electric field (broken line) for a collision
between a C soliton and S soliton, as a function of x at diffe-
rent times. The initial parameters are : a, = 0.15 and

ag = 0.3.

The evolution of the density perturbation (solid line) and the
amplitude of the electric field (broken line) for an interaction
between a C soliton and large scale sound wave, as a function of
x at different times. The initial amplitude and wave number of
the sound wave are : N, = 0.2 and ko = 0.05, respectively, with

a, = 0.45.



Fig. 5

Fig. 6

Fig. 7

_15_

The evolution of the density perturbation (solid line) and

the amplitude of the electric field (broken line) for a
collision between a C soliton and Langmuir wave packet, as a
function of x at different times. The initial amplitude,
width, and wave number are ]Elo = 0.025, A = 40, and k, = 0.33,

respectively, with a, = 0.15.

The evolution of the density perturbation (solid line) and the
amplitude of the electric field (broken line) for a C soliton
with a deeper density well (by the factor 1.25), as a function

of x at different times. The initial parameter is a = 0.45.

The evolution of the density perturbation (solid line) and the
amplitude of the electric field (broken line) for a C soliton
with a shallower density well (by the factor 0.8), as a function

of x at different times. The initial parameter is a = 0.45.
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