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ABSTRACT

In the double plasma device ion acoustic waves are generated when the
potential difference between the two plasmas is varied as éo sin & t.
This perturbation affects at first only the ions since the electrons
are repelled from the grid that separates the two plasmas. The analysis
of the ion orbits near the grid leads to a source term in Vlasov's equa-
tion for the ion distribution function. This source and therefore the
ion acoustic wave depends nonlinearly on the exciting potential. Ana-
lytic and numerical results are given which show that the nth harmonic

of the wave potential is proportional to §2 but is independent of (®0

when (WO << wpi'



I. INTRODUCTION

The double plasma device, known as the DP Eﬂ has been used for many years
to excite ion-acoustic waves in low density plasma. In spite of this, the
mechanism of excitation has never been explained satisfactorily. Various
models of wave excitation have been proposed but none of them resembles

sufficiently the experimental situation found in the DP.

Gould [2] examines the excitation of waves by a dipole layer whose strength
is controlled externally. Hirshfield et al [3], Andersen et al Eﬂ,
Christoffersen et al [5] and Grésillon [6] analyse the excitation of waves
by one, two or three grids. For a pair of grids biased at plasma potential,
both ions and electrons are affected by the potential @B applied between
the grids. The model is equivalent to the dipole layer and yields an ampli-~
tude of the wave potential is proportional to the square of the applied
frequency [7]. In most experiments the grids are at floating potential, so
that the electrons cannot enter the gap between the grids. They are there-
fore unaffected by the driving potential. This fact has been taken into
account by Andersen et al [4] and by Hirshfield et al [3] in their analyses
of a three grid exciter. In this case the amplitude of the wave potential

increases linearly with the frequency.

White et al [7] consider the propagation of ion acoustic shocks produced in
the DP. These authors are primarily concerned with the formation of the
shock during propagation rather than with the kinetic effects near the
grid. The excitation of the wave is modelled by assuming that the elec-

trons follow a kind of Boltzmann's law
N = n, expleU-)/T,

where U is the self conmsistent potential, while l? is the exciting poten-

tial, which is assumed to have the form



\?(x,{:)=-j: [4- tauk (x/L)[$_<&).

In this equation éo(t) is the externally controlled potential difference
between the two plasmas. The results are independent of the choice of the
width L of the ramp. This model however is unrealistic since in a DP the
electrons are repelled from the grid and therefore are not accelerated by
the imposed potential. In reality, the applied potential modifies primarily

the orbits of the ions.

Taylor [9] and Ikezi [10] have given qualitative descriptions of the exci-

tation mechanism.

The analysis presented here is based on the following picture of the wave
generation. The DP is treated as two infinite plasmas filling the half
spaces x » 0 and x € 0. In the plane x = o lies a grid which is trans-
parent to ions and electrons. This grid is biased at a strong negative
potential so that it repels essentially all electrons and thereby prevents

them from passing from one plasma to the other.

If the potentials of the two sides of the grid differ, the ions crossing
the grid are accelerated or decelerated, while some others remain trapped
near the grid. Thus the ion distribution is first disturbed near the grid.
The perturbation then propagates away from the grid. We assume the imposed
variation of the potential difference to be of the form éo sin@dt with
much below u’pi' The electrons then follow simply Boltzmann's law. Thus if
one wishes to understand the mechanism of excitation one must first inves-

tigate the motion of the ions near the grid.

Results

The excitation mechanism is nonlinear even at relatively modest values of



?\= e éo/Ti. Acoustic waves at the fundamental, (1), and at the harmonic

frequencies are generated which have the approximate form

W(x t) = C“ () s (k x - nwt+d ) eocp(—[?nx) ,

For ?\ £ 1 the amplitudes of the wave potential, Cn’ are small, so that
the propagation, as opposed to the generation, of the wave can be consi-
dered, and has been treated, as linear. In other words, the nonlinear
effects due to the excitation appear first and dominate the nonlinear
effects due to propagation. Beyond A% 1, the results are no longer

accurate but may still be of qualitative value.

For very small values of A » the following analytic expressions for the

amplitudes of the wave potentials have been obtained

. )
Cmt2” U+3T/T) ¢,

A, A ‘-3/2 e
C--@E)@n)" @) W) @y

Not surprisingly the fundamental is proportional to éo while the harmonics
increase as &2 The amplitude of the wave potentials are independent of
the exciting frequency in agreement with experiment [9], but in contrast

to the theories discussed before.

For larger values of } numerical computation was necessary. Figures 1 and
2 give the potential amplitudes for the first two harmonics for Te/Ti= 10
and 20 respectively. It is surprising to see that the analytic values ob-

tained for small % are in fact accurate up to 7\ ~ 1.



II. ANALYSTS

A. The Perturbation of the Ion Distribution (due to the grid)

The scale of spatial variation, A s of the potential near the grid is of
the order of the Debye length, S . Therefore the time of tramsit, "Cg, of
an ion through this potential is of the order of an ion plasma period,
(.O;l. Since both this length and this time are much smaller than the
wavelength ?\ and period (D_l of the acoustic wave one may treat the ions

as moving in a prescribed potential, L? (x), as shown in Fig. 3a.

One does not need to know the precise form of the potential q’ (x) which
is in principle determined if the potential difference, @ , across the
two sheaths is given. Arbitrarily we put @ (x) = 0 for %(4 X <& A and

L{ (x) =éo for —x <ex <<--S

As shown in Fig. 3b there are three types of ion orbits: depending on its

energy an ion may cross the grid, be reflected or trapped by the grid.

+ p—
Let £ (v) and f (v) be the distribution function of the ions to the right
and to the left of the grid but out-side the sheaths. Since f(x,v) is
constant along each orbit it is possible to obtain formulae connecting

+ -
f (v) and £ (v). Assuming the unperturbed distribution to be

2 o n (m__ )“ m v
o — —
o /o P ST W

one finds

[mp(e%/']:)—fl] ?o(v) 5 V>max (o»@)
?"(V)'%—(V): [—.Q‘{P(.Q é/"rl )+4] ?o (v) , V< mn (o, Vé) (2)

0 ? elsewhere



The velocity v§ is defined as

e

vy = oign @) Celdlfm) .
In the following we assume a sinusoidal variation of
JOEK N owm wt 0

and introduce the function

h(t) = apled (6 /T -4 &

and

o) 1 V<maX<0,ch)
4=

(6)

O elsewhere,

)

With the help of these functions the relation (2) can be written in the

. %Q(v) k() cd(\/,é) , V>0
Pl)-PW)- N
-P(v) h¢t) (3(4/,-1:) , V<o,

B. The Excitation of the Acoustic Waves

Compared to the scale of the acoustic wavelength the perturbation of the
ion distribution in the vicinity of the grid can be considered localized
at x = o. The relation (7) thus becomes a discontinuity condition for the
distribution function at x = o. Let F+(x,v) and F_(x,v) be the distribu-

tion functions for x 5 o and x & o respectively, satisfying Vlasovs'



equation in each half space, but not at x = o. By means of the step func-

() 4,%x >0
™=

O,X70

we express the distribution funection for the entire space as
+ -
Pev) = ) F(xv) 4 [/1-Q(x)] Tx,v) .

This distribution function obviously satisfies the equation

%E Zi ? o m(, E 73% =V ::F+(OIV)-:\:- (OIV)JS(X)

(8

v[pw) - g‘(v)] $(x)
where ]
(V) = F(ov) =P xo) -
v«}(v,t) Rt) , v=o

DP/ot -5 f, W) N
~vc}(—\/,—k) het) , v<o.

(8) one obtains

The source term to the right of equation (9) describes the excitation of
the acoustic waves. It is the particular form of this term which charac—

terizes the DP excitation mechanism. It must be supplemented by the equa-



tion n=n exp(eU/Te) governing the electron density and by Maxwell's

TU=e [ne- s?dav] .

The unknown functions shall be represented by their Fourier components,

equation

lL=/Z;_ 5@(&) eocp(iﬁx-yxwt)dﬁ/zv.

Since much of the necessary analyses is standard we may simply write down

the Fourier transform of the potential

uﬂ@)= 3/1(%‘) [k 5(& /‘“D):I . (10)

In this expression € is the dielectric function and S (k) the driving

charge density due to the source term of equation (9). If we write
~tuwt
w(t) 3(V k) Vi (v)e’u

then

A o 2/
—-ley) e ([¥ W) YW | -4%
3,(K)- em) e [ - ye Aj;u%] adb. oy

In this expression
Iy
2 =("‘L/T() ((D/&) (12)

and

/
A-_-le-/TL)l vV . (13)



The Fourier components TP' are obtained from the convolution
Y
wz; /Z U—/A?}A

h5)= ogp(h omot)-4 - % %/ueocp(—ijuwt)

where

with

?n°=1°(’»\)-4,

h

- M
)A = | .¥}‘ (j\) ’ //& + 0,

The Fourier coefficients of g(v,t) are computed directly from

T/w
"‘/u(v)=(w/2w) ( eAcp((/uwt) (J(V)e) df
by simply remembering that -T/w
1(\/’&): {Of s T m vf 2 e mmowt
{4

Hence

S N
o‘o—‘L+'|T

b= [ew & e t] /(2 Tx)

(14)

(15)

(16)

(17)

(18)

(19)
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where

- 2 7
0<t(v)= axc amm(m vzed )= 7
or, expressed in terms of the variable s =(mi/Ti)%v,

’L’(A) = OXC /)d/l (Az/'z ?\) ’ (20)

Introducing these results into (-11) one obotQains
o W-i 2 ¥ g [t
-G g, | B

(o]

3 mo(: () epCa's)ads

"/“ A+Y2

This is the driving charge density due to the source term of equation (9).
Equation (10) must now be Fourier inverted using (21) to give the wave
potential U(x,t). Before doing so we write S (k) in a more convenient

form.

We are not interested in the Fourier component 2 = 0 which describes a
time independent perturbation of the sheaths. For VZ 1 we may develop

the denominators of the integrands of (21) in powers of s/z. This yields

' P "z ol o4 x o
3 (R)- L }: ([“) 76| 20, 1/‘-(-) b, fl})

where (22)

d

A ol
%}: q‘ﬂ(/s) %CP(-A/)A db .
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Using the expressions (18) and (1.3} for gm(s) we find
Y SR ¢ e  @-Ne
%:Q "1 (52)-2 (£ -F eplramt)fcomt) wstde
o (23)

PR "/2 . -4k
) (QTDu [ e Ya ] (Rawnt)awt)  catde,
o (24)

o
When these expressions are introduced into the series (21) for the charge

density one notices that only the even (odd) terms in Ol contribute to

the odd (even) harmonics.

1
Provided that z = (Te/Ti)6>> 1 the leading term in d suffices to obtain
approximate expressions for the source density 3”’ . In this approxima-

tion the fundamental and second harmonic become

3(&)--(2/17) P nT&ZIm( » j;)

(25)

and

“h 4 5 4
3 (W)=iln) en,(/m) o' Z Relb §) o

These expressions further simplify in the limit of small excitation, in
which it is possible to evaluate the integrals (23) and (24). In this

limit, that is for 'A = e éo/T &£ 1 we obtain for the source densities

’4/2 2 2
§4(&)=-2 (e “o/"‘.') (%/w)‘io (27)
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and

1 2
3,(8)=-{(7-4) (2 i (on /o) (T i) 8, /%) .,

The expression (23) obtained for.ng(k) or the approximations (25) and
(26) must be substituted into Eq. 10. The Fourier inversion of this equa-—

tion thus yields the wave potential

@
4 8, (R)exp LRx
S ) L

\]
The dielectric function obtained from the Vlasov equation is

e(tRw)=4+(s, &)z 1’;" —%—z'(«:% £ ) kzo

where Z(s) is the plasma dispersion function [1i]. It is well known that

€ (k,W) cannot be continued into the complex plane as a single analytic
function. Thus the inversion is not simply a sum of residues but contains
a contribution of a branch cut integral. Nevertheless it has been shown [2]
that the residue of 1/§ at the ion acoustic pole k, is the dominant term
for x not too far from the source. Thus the wave potential of the ) 4

harmonic becomes

U. G t) = {ig(R) b 'ac/@& tho((&x - (ywt) X
R=%
2»

|

C)" M(ﬂyx -vat +d ) Q"‘f’Q/?y")

The amplitudes C_  are independent of @), to the extent that one may as-

b4

sume k__ = cslraJ, where cg is the ion acoustic velocity.

) g
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Except for ?\ << 1 numerical computation was necessary to evaluate the
amplitudes Cy. The results are plotted in the graphs of Fig. 1 and Fig. 2
which give Cl and C2 as a function of ’x for Te/Ti = 10 and 20.

For small values of Q\analytic expressions for C1 and C2 have been ob-

tained using the dielectric function from the two fluid theory
2 [ 2
QW ye
et T

Dy

{
€ & (l) c't" ﬁz-wt

The amplitudes then become

cor =i i Uaam) (<8, /M)
-9 -3y .
ecz/‘I; -~ (Vz-1) (22 m) (Te/T)l+3T:/1) (e8,/7)

It is surprising that these coefficients agree very well with the nume-
rical results up to values of ?\ A 1 where a large number of terms are

needed to evaluate the series.
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FIGURE CAPTION

Figure 1 ¢ Variation of the eC./T, and eC./T. in function of ejp /T.
—_—— 1"71 2° 71 o i
for T /T. = 10
e’ i

Figure 2 ¢ Variation of eC1/Ti and eC2/Ti in function of ejPO/Ti for
T /T, =20
e’ i
Figure 3a : Spatial potential in a DP device

Figure 3b : Ion orbits in phase space near the grid
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