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ABSTRACT

Plasma response to a piston driver has been modelled by the Korteweg-de
Vries equation. The numerical shocklike solutions are evolving solitonms,
similar to the asymptotic solutions of Gurevich and Pitaevski (1974).
Quantitative experimental agreement is found with low-amplitude shock

like structures in our DP device.

Collisionless laminar ion acoustic shock waves and solitons have been de—
scribed by many plasma models. The simplest model which can include the
dynamics is contained in the weakly nonlinear Korteweg-de Vries equation
(Washimi and Taniuti, 1966). The ions are cold and described by the dis-
sipationless fluid equations. The electrons are hot and in thermal
equilibrium with the wave potential. The Korteweg~de Vries equations de-
scribes small amplitude nonlinear waves moviﬁg with velocity near the ion
acoustic speed. Convective steepening and dispersion are included in the

equation. This model does not have a stationary shock wave. However, the



asymptotic solutions of Gurevich and Pitaevski indicate that shocklike

structures are possible with a piston driver.

If the ions have a finite temperature then some of them can be reflected

by the wave front. Moiseev and Sagdeev (1963) constructed such a model
which has a steady state shock wave solution. Their model, however, says
nothing about the time evolution of the shock waves. White et al. (1974)
considered the nonlinear ion fluid equations with isothermal electrons

and numerically solved the piston problem by modelling the potential dif-
ference between two chambers of a double plasma device. Their results
indicated that a quasi-steady shock structure was formed. That is, behind
the shock front, a small number of oscillations existed and the number

and character of these oscillations changed only very slowly with time.
Their numerical solutions, however, were not followed long enough in time
to definitely state that a quasi-steady state structure had been formed, and
to compare them with experimental structures (Taylor et al.,1970). The latter
cannot be compared with the asymptotic solutions of Gurevich and Pitaevski
(1974) neither since the observation time is too short. The question that
remains is whether the observed laminar small amplitude shocklike struc-
tures generated in the DP device are shock waves as described by Moiseev
and Sagdeev (1963) or are non-linear waves whose structure can be explained
by convection and dispersion. In our work a numerical integration of the
K.dV equation allows us to follow the evolution of a ramp perturbation
within the experimental observation time scale. The obtained result is an
evolving soliton train which looks qualitatively very much like the ob-

served shocklike structure.



The Korteweg-de Vries equation has been solved using two different ap-
roaches. In the first one we define the stretched coordinates as n= x
and -g = x~t. The piston problem is then a boundary value problem where
the perturbation density is fixed at Q'= 0. Numerical solutions are

computed using the Zabusky (1968) left moving scheme with the following

on
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In the second approach, we include in the right hand side of the Korteweg-
de Vries equation a source term which describes the injection of particles
from the driver plasma into the target plasma. The stretched coordinates
are defined as YL= t and §= x-t and the source of strength S(Yl) is

located at §= §o + YL . With these definitions, the Korteweg~de Vries

equation is written as:
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with the initial value n(§[= 0,§) = 0. Equation (1) is then Fourier ana-

lysed in § in a box of the length L and the evolution of each mode is

then computed as function of ‘l until the solution reaches the boundary,

In both cases, the boundary value n(Q-= O,g ) and the source term S(Z{)

respectively vary in real time t as a ramp with a rise time of the order
-1 . .

of 25-50 Q)pi. Both methods used give the same evolution of the pertur-

bation in the target chamber. A typical run is shown in Fig. 1. The



perturbation steepens and oscillations develope at the leading edge. As
YL(i.e. X or t) is increased more oscillations emerge. Eventually the
separation of the first oscillation is achieved and its properties,
remain nearly unchanged for large ¥ . Finally the number of oscillations
gradually increases forming an oscillatory structure behind the leading
edge. At this stage the perturbation does not depend on the rise time

of the boundary value or source term, but only on its amplitude. The
computed structure is nearly identical to the experimental shocklike

Structure reported by Taylor (1970) and Taylor et al. (1970).

In Fig. 2 we have reported the dependency of the Mach number and half
width D (measured at .42 x maximum amplitude) for the first oscillation.
There is a close fit between the numerical results and the well known
soliton's characteristics (Washimi and Taniuti, 1966). The same depen~-
dency is noted for the next oscillation for large enough T. Therefore
each oscillation can be identified as a soliton and the whole structure

is an ensemble of evolving solitons.

A characteristic feature of the observed structure is that the amplitude
of the first soliton is twice the height of the driver (Gurevich and
Pitaevski, 1974). Using other models of stationary shocks with dissipation
one finds an oscillatory structure which damps to a level which depends on
the damping rate (Taylor, 1970, Means, 1972, Whitham, 1974). This relation
has been compared with experimental data from our DP device. The machine
is operated at a plasma density of 109 cm_3, an electron temperature of 1

eV and an ion temperature of .1 eV (Hirt and Tran, 1974). The shocklike



perturbation is produced by applying a ramp to the driver chamber. The
signal from a plane Langmuir probe (@ 5 mm) is feed into a boxcar inte-
grator (PAR 162) and then recorded on XY recorder for different probe
position. For low amplitude excitation (SIIA/lO‘ZO Z) the shocklike
structure reflects only a small amount of ions so that the ions can be
considered to be cold. For these structures the amplitude of the first
soliton is twice the amplitude of the level behind the wave train as
shown in Fig. 3. However, when the amplitude of the perturbation is in-
creased ( S n A 30 7 and more), the number of reflected ions increases
and turbulence develops at the shock foot. The Korteweg-de Vries equation
is no longer applicable and one would expect another dependency between
these two quantities. Data obtained previously by Means et al. (1973)

confirm this last statement (Fig. 3).

In conclusion, it is possible to state that:

1) For the piston problem, the Korteweg-de Vries equation has solutions
consisting of a train of solitons, the maximum amplitude of which is twice
the height of the piston. This train of solitons looks like a shock. How-
ever, it must not be confused with Sagdeev's shock since it is not stationary
and does not present any change in entropy. (In Sagdeev's model, entropy

increase is provided by the ion reflection).

2) Experiments conducted in DP devices show that under certain conditions
(small amplitude perturbation so that there are few reflected ions) the

shocklike structure can be identified with a train of evolving solitons.
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FIGURE CAPTIONS

Figure 1 :

Figure 2

Figure 3

Shocklike structures generated by Korteweg-de Vries equation.

The source is at x = 0.

Comparison of numerical results with theoretical soliton chafac-
teristics. Solid line is M - 1 = 0.3 Stﬁho, where M is the Mach
number. Dotted line is D = 1/ 6 UO/STM where D is the soliton
half-width. A and 0, results from boundary value solutions.

‘ and 0) results from source term solutions.

: Amplitude of the first soliton (at large time) versus ramp ampli-

tude. Solid line is S n/nO = 2# (ramp amplitude). +, experimental
results for small amplitude excitations. 0, results from boundary
value solutions. ® , results from source term solutions. [S,

. 6
previous results from turbulent shocks .
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