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ABSTRACT

The transient behaviour of the build up of Alfvén waves in the continuous
spectrum caused by the density and current profile of a plasma column

is calculated. It is shown that the amplitude pattern of the azimuthal
eigenfunction is proportional to the momentary spectrum of the exciting
force, until saturation occurs. The thickness of the resonant layer and
the maximum amplitude, limited by ohmic and viscous dissipation, are
deduced for a typical tokamak case. Heating time and power input are
also considered. Ideal MHD theory and rough approximation are used in

order to give good insight with a simple analytic scheme.



1. INTRODUCTION

In a nonuniform plasma column the axial speed of shear Alfvén waves depends
on particle and current density. When the plasma is excited with a per tur-
bation at given wave number and frequency, the cylindrical surface having
the same eigenfrequency resonates and forms a singular surface. Near this
surface the plasma executes a beating motion. The radial eigenfunction
tends to a logarithmic singularity and the azimuthal component tends to

a hyperbolic singularity. Kinetic energy accumulates and resonant absorp-
tion sets in when the amplitude reaches a certain limit. Heating by this
phenomenon is very efficient, and one advantage lays in the fact that the

energy is released in the interior.

The continuous Alfvén spectrum has been computed numerically by normal

mode analysis /1/ and represented in a particular case for them = 1

mode /2/. Normal mode analysis /3-11/ and Laplace transform technique

/12-14/ has been applied on ideal MHD plasma. Kinetic theory leads essential-

ly to the same absorption /15-17/.

Our aim is to calculate the energy accumulation process of torsional Alfvén
waves in a diffuse density profile. The equation of motion is deduced from
ideal MHD and applied on the m = 1 case in the approximation for great wave=-
length. By perturbation method we are separating the kink motion which turns
out to be a source term for the local Alfvén waves. The phenomenon is consid-
ered as an initial value problem and is solved by Laplace transform. The
amplitude saturation occurs when ohmic and viscous dissipation reaches the
injected energy flux. Simple analytical results are obtained and applied

to a typical tokamak case.

2, SOLUTION OF THE EQUATION OF MOTION

The basic equations of the ideal MHD theory are reducible to a second order

differential equation for the radial motion /18-20/., We consider only the
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m = 1 mode in the long wavelength approximation k' r ¢ 1. The equation

may be put in the following form:
'y ) 2 ,2p2 g _
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Efr is the radial component of the eigenmode

g = (Er)§e>§z)""’°“(9*kz“°"t> =

The prime denotes partial differentiation with respect to r. A means the

Alfvén determinant
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The density‘F and the axial magnetic field Bz are functions of r, and
Y which contains the axial equilibrium current j is also a function of

r. The definition of V¥ is
v = ~By/rkB, (4)

We specify parabolic density and current profiles

Jo_-:fo(/—zr’/az) )

£ = b [f—)\r"/a") =

2 and A are constant coefficients. The azimuthal field and ¥ become
5 7
. S [ - y —\r2fy a2
B, = 42 [yrdr = S fodo v (1 - Ar7jaa®) )
0

-t
2 2 .

=v(7-—/\r 2a w(th YV, = — 8
4 [o] // ) 9 Zz(igz (8)



The differential equation (1) possesses a singularity at the point
A(r = rl) = 0. This means that a wave can propagate with the local Alfvén

speed &J /k given by
2 B* 2
w
— = ___z._(, - l;) (9)

I¢ fsand Y are monotonic functions of r the Alfvén spectrum spreads out

between the following limits
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where the indices O and a indicate the values at r = 0 and r = a. It is
further legitimate to neglect the last term of equation (1) when /5 is
small. From the pressure balance and the relation (9) the ratio of the

last two terms is
)
K(BS) _  F
Ho w0 £ (1-p)(1-»)*

This value is effectively small, expect in a region near ¥ = 1 which is

(11)

always avoided in practice.

We are considering the phenomenon as an initial value problem and will
use the Laplace transform method for solving equation (1). By writing
w=id/d¢t = is, where s is the Laplace variable, the transformed equa-

tion becomes
A Ay A A) ) 2 ”~
r(rA fr) + 2rAE  + psrg =o0 (12)

The circumflex indicates the Laplace transform.

The initial value of §r is the eigenfunction of the kink, as we will see.
+ .
We replace then gr by ?k Er where fr holds now for the perturbation

of the eigenfunction. Following perturbation theory, we neglect the per-



turbation itself in the last term of the equation, and we are able to

write

(rA fr')’ + Z(rA ')
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The integration of this first order differential equation is immediately
. . . 22 . . .

fulfilled if §k 1is known. In the second member s gk 1s the initial ac-

celeration, and multiplied by -9' it forms the driving force. Therefore

a density gradient must exist for exciting the Alfvén waves.

The kink eigenfunction may be obtained by the following argument: exper-
imentally the plasma is set in motion by a helical winding having an

m = 1 configuration and a wavelength 2 7i/k. The sinusoidal driving current
J sinwt is switched on at time t = 0. This corresponds to an infinite
value of the Laplace variable. Setting s —» o© equation (12) yields

2
di‘ [(rfg,,’), + 2f§,,) +f)frJ = 0 (14)

It is easy to verify that the same equation is a consequence of the
incompressibility condition div&= 0, and of the equation of Newton

£ §. = ~ grad p (by eliminating p and 9° and knowing that §z is
negligeable for long wavelengths). Thus the non singular solution of (14)
gives the initial eigenfunction of the kink. By introducing the profile
(5) we find the expansion

?r v 1 + zrz/4_a2' + oo (15)

We see that the initial acceleration is weekly dependent on r. That al-
lows us to assume a rectangular E?k profil without loosing much in

precision:

gk = go sinwl (16)



or

A
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The first integration of (13) can now be fulfilled

g’fr’ §, Hws?

= _S (18)
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By identifying the transformed Alfvén determinant
A * kB (1-9),
A = gt r kB, (1-) /s (20)

with

A

H

f(s"-t-w:')

(21)
and using formula (9) we define a frequency
B /=D
zf £ 1

which is the Alfvén frequency at radius r. The expression (18) becomes

é‘) _ § Hews?
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(23)

The obtained solution behaves like an oscillator with eigenfrequency W,
excited by a force proportional to (,Eb H/rJv )sinwt. When Cd}= &J the
amplitude grows linearly in time, and a singular surface sets up at
radius r, after a very long time. The plasma column is comparable to a

juxtaposition of independent oscillators laying between r, and T+ dr and
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resonating at a)r(ri). Their displacements correspond to §r' A well
known mechanical analog behaves the same way: the frequency indicator

for motor generators consisting of vibrating lamellas.

We have still to execute the inverse transform of (23):

¢ _ _EH
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It is useful to expand this result for a small frequency shift

a o ::Cdr_—Cd Kw :
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The rms value of (25) is given by

<87 = ﬁgﬁﬁfw sin (acwtf2) (27)

The function (25) represents a beating motion with the nodes travelling
towards the singular surface. The depth of the singular layer may be

defined as follows: it is the spacing of the two nodes closest to the

surface
T
[ TE

We remark, in addition to this, that the Fourier spectrum g(cd}) of a

wave train sinewt with duration t is

g (@) = sin (W, ~w)t/2

Wy - W

(29)



The above function has the same form as (27), except for a slowly varying
geometrical factor. This shows in another manmer that the plasma responds

like a Fourier analyser.

1
In the figure 1 we represent the normalized function a§r/§0 calculated
with formula (24). The chosen parameters are o = A = % and Da= - 0.75,
= a/ V2. We show an eighth

period sequence going from wt = 20T to 20.75T , and on the same scale,

and the singular surface is placed at radius r
a sequence going from 100 T to 100.75 T .

It is not necessary to know the eigenfunction fr’ but we calculated it

for interest. The figure 2 shows <§r> /_?O at the 50th period.

3. ENERGY ABSORPTION AND SATURATION

When the depth of the singular surface gets smaller than the plasma radius,
the azimuthal speed exceeds the radial speed, and therefore the kinetic
energy is mainly localized in the azimuthal motion. Thus we only need to
know EG for calculating the accumulated energy. By solving the system

of equations (57) in Gruber's thesis /19/ we find
. ) A~ » )
So = L(§r+r§r) = irE (30)

. 2 2 . .
The energy density '/zfa)zr < ?;) can easily be integrated over the
volume, because the expression (27) contributes mainly in the region near

. The accumulated kinetic energy per unit length becomes

)' (31)

The energy increases proportionally in time, so the absorbed power is
constant. From the outside the plasma appears like a constant ohmic

resistor.
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As H contains  at the first power, and as the term containing § in
(26) is dominant, the absorbed power is nearly proportional to the

density gradient.

(31) may be written in a more explicit form by introducing (5), (9) and

(26), (B; is negligeable):

kow By V 82
R

Here W is the absorbed power, V is the plasma volume and the new quantities

(32)

k. and q, are defined below. C

0 is a geometrical factor:

2
7 ee(n /a)"”q"({—u,)"

s(1-=2r%a*) C,
V'at(1 - 2r*/ab)

(1-v,) ®n

Cz =
(33)

C, =1~

The absorbed power is strongly dependent on the position ry of the singu~
lar layer. The formula (32) is only valid when a - r
depth (28).

1 is greater than the

We have the following useful relation

7/‘0 = qolc (34)
4@ = safety factor for a tokamak
q =1/ L% per definition (see (8))
ko = - 1/R where R is the major radius of the tokamak
k = wave number of the exciting coil

From (8) we obtain:
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The saturation of the accumulated kinetic energy occurs when the dis-
sipation level caused by resistivity and viscosity reaches the power
input. (Other energy conversion processes are not considered) . The heating

thus begins after a certain accumulation time which we shall calculate.

Concerning the ohmic dissipation, we take the Spitzer resistivity
2 . . . .
n= me/0.743 ne 'Ce. The axial component i, of the current is dominant

near the singular layer. From Gruber's thesis we find
, ) ) ~ , §”'
Hotz =-—(1-—U)k(3 §r+l"§r )Bz_ = "-(I'-V) r rBz (36)

Let El be the thermalized energy density

95/ - 2
d[' = .7(2 (37)

By introducing (9) the ohmic dissipation per unit volume is

” 02
9 2 9P (rg)) (38)
Jt o

Further, the viscous dissipation /21/ is determined by

252_ ~ 91’9)2
dE T M3 ar

(39)

where /-L3= 0.513 nKT 'Ci(l +.Q§'C§)_1 is the transversal coefficient of
viscosity, and Ri ti is the product of the ion gyrofrequency and the
collision time. From (30) the azimuthal speed is IVeI =wr§;, and

we can write

22 e (wr))’ “
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The expressions (38) and (40) are similar. Their sum can be put in cor-

relation with two diffusion coefficients

dE ~
% 2 (1 ) (orsl)

the classical ohmic diffusion coefficient

D, = (42)

and viscous diffusion coefficient

y”
D, = —F’- (43)

Recalling (25) and taking the rms value, we obtain
272 4
RS P =(.D +D )f 5 HCJ,J [/-casux + o®x¥2 —«xs:’nax]x (44)
ot T2 2P Wy

. ' . .
with & = Cdrt and x = r - - For a narrow singular layer the integra-
tion over the volume becomes elementary, and the dissipation per unit

length yields

JE
dt

The accumulation time ta is now defined as the time obtained by equating

-2 3
= (o) g

(45) with the input power E/t:

(wl‘)g _ 3w | B g p! -
* 2(D,+D,) | B, z2¢ Y (46)

The depth of the singular layer is given by the expression (28) at t = ta

D 1/3 ) / ) -1/3
ar = ur(2/3)" (Bt 2s) ﬁz _ zf; _ /VV]
X .

(47)
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The two expressions above are similar to the results cited by J. Kappraff,
J.A. Tataronis and W. Grossmann /16/. The term containing V arises from
the fact that we treated the m = 1 mode instead of the zero mode. The

quotient of the diffusion coefficients is

D, 006’? - ( )l/z (48)
5, = A (%)=

In the case of a low /9 tokamak thermalization by ohmic dissipation is

dominant. (The nonlinear processes may modify the situation).

4. NUMERICAL RESULTS

We quote the results for a tokamak having the following typical data:

major radius R = 1m

minor radius a = 0.2 m

magnetic field Bz = 2 Vsec/m2

temperatures KTe = 1000 eV KTi = 500 eV
axial density n, = 2.1019 m--3

axial B (computed) A = 3..10_3

safety factor Q@ = 3

The same parabolic profile is assumed for the density and the current:
% = A = 4. The excitation frequency is chosen in order to resonate at
r,= a/ V2. The excitation coil has a periodic structure around the
minor and the major circumference, expressed by the coordinates 8 and z.

Its surface current is given by

fo €05 (9 +Irz) sthwit
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If the coil is formed by N turns wound at a radial distance r, and fed

be a current J, the transverse field near the axis is:

B = Ho J;e sinwlk — La_"_Ni.S('na.)['

Shielding effects, helicity and toricity are neglected. We take a
positive wave number k = 1/R, that means the coil and the field have

opposite helicity. In this case q = - 95

For the calculation of the heating power (32) we assume a kink amplitude
§B= 10_3 m. We deduce the related current producing this amplitude by

means of the dispersion relation with second member

%_&))2 -2 -1 il /an"e 9o (I-Q)
<ko A 7(7 ) §o B, k,

This equation is valid for great aspect ratio, and we assume steady state.

(The damping should be included, but can be neglected in our example).

. . . 2 2 - _
v, is a velocity defined by v, = Bz//uof’. From (34) we have q = ~ 3 and
qo/k0 = - 3 R. The current-amplitude relation becomes

NJ = 5-10° §0 = 500 Amp.turns
for a coil with radius r = V2 a. The resonance term, in brackets in the
dispersion relation, provides a favorable enhancement effect of the
kink amplitude.
The angular frequency and the heating power
© =11-10"° gect W= 2.3°10° watts

are within the existing RF technology.

It is useful to know the reactive energy Ei of the circuit. Estimating
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the coil inductance to be L & Z/Ab RN2 we obtain
Ei = 0.31 Joule

The low quality factor Q of the circuit

wE;
= =t = 75
¢ o, !

reveals very strong coupling to the plasma.

For the accumulation time and the depth of the resonant layer we find

£, = 55.10"% sec Ar = 12:10 0 o

Finally, the heating period t2 necessary for the injected energy to

reach the thermal energy is

- 10”3
t2 = 1.8°10 sec

Here are some other important quantities:

field at the plasma surface = 11 Gauss

- maximum field in the resonant layer: b g - (1 -V) kr Ex'_ Bz = 1400 Gauss

]
— enhancement of the field = 0.21c4.>ta = 127

- maximum azimuthal speed in the resonant layer: v

= 0.083 wtawfo =
0.55-106 m/sec

0

- sound speed c, = 0.38-106 m/sec.

5. CONCLUSION

We present a simple analytical calculation of the energy accumulation

mechanism of shear Alfvén waves in a plasma column having a diffuse
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density and current profile. The equation of motion is obtained from
the ideal MHD theory and formulated in the long wavelength approxima-
tion k2r2<K 1. By a perturbation method it is possible to separate the
movement of the kink and to consider it as a source term for the Alfvén
waves. The equation of motion is handled as an initial value problem

and solved by means of the Laplace transformation /14/.

The kinetic energy of the Alfvén wave is carried essentially by the
azimuthal speed, which increases linearly in time. The depth of the
resonant layer varies inversely with time, and consequently the total

energy increases linearly.

Assuming thermalization by ohmic and viscous dissipation, we obtain
saturation of the energy after an accumulation time of the order of
50‘/csec for typical tokamak parameters. With a helical coil having one
wavelength in the toroidal direction, a current of 500 Ampere-turns
gives rise to a plasma amplitude of 1 mm at a frequency below 2 MHz. The
power input is 2 MW. It is favorable to wind the coil in the opposite
direction to the field lines, because the driving force is greater, and
the frequency can be set closer to the eigenfrequency of the kink. So
the coupling to the plasma is improved, but exact resonance should be

avoided for reason of stability.

In the calculated example the azimuthal speed exceeds the sound speed.
Furthermore the calculated electron drift speed in the resonant layer
is much greater than the ion thermal speed. It is to expect that non-—
linear processes and turbulence reduce the accumulation time. In order
to avoid a dangerous energy concentration, the frequency must be swept

over the Alfvén continuum /10/.

The periodicity of the excitation coil fixes the working point in the
diagram of the dispersion relations /2/. It is important that at this

point the Alfvén frequency increases with radius. The reason is the



_16_

following: from Vlasov theory and taking into account finite Larmor
radius effects, A. Hasegawa and L. Chen /7/ demonstrate the creation
of a new modified Alfvén wave by mode conversion in the resonant layer.
This wave propagates in the direction of decreasing Alfvén frequency,
thus, in our case, towards the interior. Otherwise the wave would be

partly reflected and would heat the outer part of the plasma column.

This work was supported by the Swiss National Science Foundation.
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Figure 1: Formation of the singular layer.
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Figure 2: rms. value of the eigenfunction at the 50th

period.



