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LECTURE I

In this set of lectures I will choose a few of the many things that could

be discussed. The selection will be based on what I know best, in parti-
cular, analytic MHD theory. We all understand that MHD theory is incomplete,
and that analysis is only one way to understand the theory. Analysis tends

to emphasize certain phenomena simply because they are easy to calculate,

and sometimes the methods of analysis become confused with the reality of

the physical system. Nevertheless, it is useful. T hope to show the strengths
and weaknesses of the theories, some of the results, and perhaps also indi-

cate areas that are not well treated in analytic theory.

Analytic MHD theory is the study of singular perturbations. This is a slight
exaggeration, but close to the truth. There are many kinds of singularities

in MHD. This course could be made into a mathematical egamination of singular
perturbation theory. However, the physics is also interesting, so I hope

to concentrate on it.

Before starting the discussion of the physics, I would like to devote this
lecture to an examination of a basic mathematical technique that will be
used throughout this course, a technique known as boundary layer theory
and asymptotic matching. To motivate this discussion, consider a typical
MHD problem:
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These equations should be well known here !1i, as describing the small
amplitude oscillations of a circular cylinder plasma colummn. Today I

only wish to point out that this is a typical MHD problem, and that D can
vanish in the domain of interest, 0 £ [] X a. When this happens, the
equations are singular, and Y and P are badly behaved in a small nearby
region. This bad behavior actually turns out to be good for analysis.
Something like half the known results deal with this singularity. This

bad behavior both requires and permits small effects, that are generally
discarded in the MHD approximation, to play an important role. It requires
other effects, because in nature nothing is infinite or exactly vanishes.
It permits othef effects because, for example, perturbations tend to be
large there, so inertial effects can be exaggerated. Also, currents are
frequently much larger in this region, so that the true effect of resisti-

vity tends to be localized. Viscosity and dispersion effects, frequently

dropped from MHD, may also be dominant in this vicinity.

In general, analysis likes the limit of an infinitessimal thickness. The
technique for dealing with these thin layers is well developed, though
not without some controversy |2,3,4] and is called boundary layer theory.
Today I would like to do a couple of boundary layer problems to illustrate
the method.

First, consider the equation
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with the boundary condition

T@)=0 (4

Physically, this equation represents the response of an inductive and
resistive circuit to a voltage that isvapplied impulsively, and then
decays away. We are particularly interested in the case where the induc-
tance is small, and is important only for the initial transient response
of the system. In this case we will want to treat the initial response
and the steady behavior separately. This is the basic motivatién for all

boundary layer problems.

In Eq.(3) the inductance has been multiplied by a factoré to indicate
that it is small. There are two ways of handling Smali parameters. One
can either form a dimensionless inductance and use this directly as the
small parameter. Or ome can multiply various expressions‘by functions
of‘6~as a reminder that they should be small. These expressions can then
be evaluated after the solution is found, with é; set equal to unity
since it has no physical meaning, and the magnitudes confirmed. The latter

convention has been adopted in these lectures.

Thus, we expect that a term multiplied by 6} is small, and a term multi-
. 2 . . .
plied by EZ 1s somewhat smaller. It is more convenlient, however, to

consider ¢ to be, not a number or a magnitude, but the process of taking



a limit. Thus a term that is multiplied by & will be expected to vanish
linearly in the limit as, in our example, the inductance vanishes. A term
multiplied by 652 will be expe;ted to vanish quadratically. Generally a
quantity that vanishes quadratically will be smaller, for a given induc-
 tance, than one that vanishes linearly, but that is not the real point.
In the rest of these lectures the work '"small" will be more of a verdb

than a noun.

It follows that our interest is not in calculating the results for some
particular value of the inductance, but in calculating the dependence

of various quantities on inductance. This is true even when the small
parameter is a known quantity, such as the ion/electron mass ratie, or

the fine structure constant. It is an hypothesis that the resulting series
are also particularly useful for obtaining results applicable to real

*
physical systems .

With this background, we set to work examining Eq.( 3). We assume that

the current can be expanded in powers of the small parameter & :
= m
I:Z & Im(f) (5)
m=0Q

and stbstitute this into Eq.(3). It is expected that this solution is valid
for a range of inductances, therefore it is appropriate to equate the

coefficient of each power of E'to zero. Thus we are led to

*
See Sec. 1.2 of reference 2 for a good discussion of this.
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This shows that the natural dimensionless small number in our expansion
is L/R.
This can not be the whole solution because we are unable to apply the

boundary condition at t=0, and indeed, our prescribed boundary condition,

Eq.(4), is not satisfied. There is an initial transient that is not treated
by this approximation. The time scale of the transient depends on the induc-
tance, and vanishes as it vanishes. To treat this, we consider a new variable,
R

Tz clol t , (8)
We will then consider limits with the inductance going to zero, but ke-
epingirvfixed. Thus consideration of smaller and smaller inductances is
coupled to consideration of earlier times. The behavior of the transient
is nearly invariant in this limit, but the decay of the applied voltage
appears to be slower and slower. In particular, substituting Eq.(8) into
Eq.(3) we find
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Again, we assume that the current can be expanded in powers of the
inductance:
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and equate coefficients of power of € to zero:
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The solutions of these equations, with the prescribed boundary conditionm,

Eq.(4), are
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We now have two separate solutions, one describing the initial transient
response, the other describing the effect of a slowly changing applied
voltage. The theory of asymptotic matchine says that these two solutions

can agree somewhere, so that together they can describe the whole solution.



In our present problem, this would be a time span not far from the end

of the transient response. Thus it would be a regime of 1arge‘3“and

small t. If we consider the first solution for small t, it is natural

to expand each term in Eq.(7) in powers of t. This leads to a double series

for the current in powers of (ot and o L/R. Thus:
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Similarly, the transient response can be evaluated for large T in
powers of 1/¢o3 . Here the exponential terms are smaller than any power

of T, and thus can be neglected. The resulting double series is
n
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Here the nonvanishing terms fall in a triangle opening to the left.

These two double series can be seen to be identical: The upper line of
the first series is equal, term by term, to the upper, left trending
diagonal of the lower series, on using Eq.(8). The other terms can be

similarly identified..

This state of affairs is a bit like analytic continuation in the analysis
of complex functions. We have two series representations of a given
function, each valid in its own domain. The problem is to establish that
these are both representations of the same function. The analogy should

not be pressed to far. Here we only ask that these two representations

asymptotically approximate the same function, a much weaker requirement.

With a little thought, we can see why these two series matched term by

term. We can rearrange Eq.(3) in the form,
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We now apply the limiting procedure used to produce the double series of
Eq.(14); both 6 and t are small, but E is smaller than any power of t.
Then both terms on the right hand side are small, so that the equation
can be solved recursively. A given approximation for I can be used on
the right hand side and the solution for I from the left will then be a
better approximation. Each term in Eq.(14) can be seen to be driven by

a lower order term on the right. For example, the top line of Eq.(14) is
produced by the expansion of the first term on the right hand side of

Eq.(16). Equation (15) is also generated by the same kind of recursion



on Eq.(16), differing only in the assumed relative magnitudes of the two

terms on the right hand side.

Thus the two series agree because both are generated by essentially the
same recursion. Termé generated by each part of the right hand side of
Eq.(16) are independent of those generated by other parts, and so the

resulting series are independent of the assumed rélative magnitudes of
the generators on the right. Thus it is not surprising that Eq.(14) and

(15) agree.

It follows that any of a series of limits,
o p_. n</
6—9()) 't/E ‘Prmf@ o< P

will again yield a series equivalent to Eq.(14) or (15), but with a dif-
ferent ordering of the terms. Thus in some sense the double series covers

the entire space between the inner and outer regions.

How should one choose an ordering to obtain the most accurate results for

a particular case when both € and t are small ? It seems clear that one
would want to pick up as many of the larger terms in the double series
expansion as possible. It would appear to be best to pick some intermediate
limit of the form of Eq.(17), and choose n to pick up these larger terms

most efficiently.

What if the algebra is done correctly, and matching is not achieved ? Then
it always happens that one of the intermediate limits, of the form of

Eq.(17) is non trivial. This new region with its limiting equations can
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then be solved and matched separately to each of the two given regions.
This happens in resistive instability theory much more often than appears

in the published papers.

It should be noted that the outer region is determined completely by
Eq.(3), according to Eq.(17), but the inner region depends on another
constant, the boundary condition of Eq.(4). How can we get agreement
when one solution has more independent constants than the other ? The
answer is that this additional degree pf freedom is lost in the decay of
the exponentially small terms going from Eq.(13) to Eq.(15). This pheno-

menon occurs universally in boundary layer theory.

The model equation, Eq.(3), is a greatly simplified problem in many ways.
Perhaps the most significant simplification is that the series in 1/¢9y §,
occuring in Eq.(15), is truncated. In general each I: will have an infinite
series expansion in powers of I/COir'. Then the nonvanishing terms of the

double power series will fall in the hatched regions

These are pleasingly symmetric.

In order to demonstrate the usefullness of asymptotic matching for the

solution of more complicated problems I will modify Eq.(3) by operating
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on it with

\ o
c/f te (18)

This yields 0/
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We now give two boundary conditionms,

— EiZ; =0
L(o) =0 dt/t=0 (20)

The physical meaning of this equation is not clear, but it provides a
second order differential equation that is useful for the next point

that I want to make.

We first consider the outer limit, e small and t finite, assume a Taylor
series expansion for the current I in powers of &€ » and equate coefficients

of en to zero. The solutions of the resulting differential equations are,
-2t ) -t
I,= A€ () g e @
where the An's are constants of integration.'
That is, Eq.(21) is Eq.(7) plus terms that are annihilated by Eq.(lS).

Similarly, we take the inner limit, € small and T > defined by Eq.(18),

finite. To lowest order we find

e (22)



.alz..‘

and so
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from Eq.(20). The next higher orders yield
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Expansion of the outer region for small t yields
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and expansion of the inner region for large ir‘ yields,
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If these two expressions are to represent the same solution, they must
match term by term. This provides a series of conditions that must be
satisfied by the undetermined constants in Eq.(25). First, the terms
independent of botﬁ € and t must match; the upper left cornmer of Eq.(25)
and the zero on the top line of Eq.(26). Thus matching can only be

achieved if

/‘\0‘: - § | (27)

With this choice each term in the top line of Eq.(25) matches the cor-—
responding term along the appropriate diagonal of Eq.(26)! In the same

way the leading terms containing higher order constants determine

Af'l((%:)%
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It appears to be a miracle that many more terms are matched than there
are free parameters. Again, as in the previous example, the reason in

that each series is generated from the same recursion form,

i dr wt
Rjﬁ -CLCI{-’* lécaé‘dt - 2oRL -V E (29)

Higher order terms involving A0 are generated by inserting lower order
terms that are proportiomal to A0 into the right hand side of Eq.(29).

Thus higher order matching is automatic.

In this case matching determines boundary conditions to be applied to
the outer region. Two boundary conditions are applied at the origin and
determine the inner solution. Information from one boundary condition
decays exponentially, while the information from the other condition,
modified by its journey through the inner layer, is then ready to be ap~
plied to the outer -solution. At this point it is much like the problem

of matching across an internal boundary, such as a plasma-vacuum interface.

This is the most common, but not the only use of asymptotic matching. It
can also be useful when exploring a complicated, multidimensional para-
meter space. It can provide a check that all interesting region have been

covered.

The greatest difficulty with this theory is the very large impedance
mismatch between the number and complexity of the terms in the double
series, and the person generating these terms. Indeed, one is frequently

doing well in practice to obtain matching of the first term in each series.
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In these cases the theory is invoked to justify this single term matching,
and place it in the context of more accurate, higher order results. In
any case, one should pay some attention to the recursion form, so that

obvious failures of matching are not overlooked.

The basic concepts of this lecture I have learned from Martin Kruskal.

The broad outline of his ideas on asymptotics is contained in reference 5.

In the rest of these lectures we will find many more practical examples

of this theory.

~,



- 16 -
LECTURE 1II

In this lecture I will discuss the Mercier/Suydam instability. This
instability is described by ideal MHD, but its growth rates can be
calculated by the same methods as the resistive instabilities that will
be discussed in subsequent lectures. Because the basic methods can be
developed for an ideal system, with somewhat fewer parameters than the
resistive system that will be studied later, it makes a good introduction
to the more general theory. Furthermore, the results are of interest in

themselves.

The ideal MHD equations are

'?*f‘f‘.?‘fgto | 30
(31)

- Y'Y
2 R = ‘\—/X?X@ (32)

2(p/ev) r y{Pr/e )0

(34)

v8=0 U8

—

The dependent variables are the density f’, the velocity of the fluid v,

the magnetic field B and the pressure P. The quantity 4 need not be defined

—

as the motion of a charge in these equations, but is another way of writing

{7 x B. It is often convenient to substitute

—
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Then all the equations are written in conservation form, including Eq.(33)
for the entropy. These equations can be changed from conservation to

convective form by use of Eq.(30).

To analyze these equations we consider small motions about a steady state.
Thus we first calculate a steady state and then evaluate the eigenfrequen—
cies of small perturbations. Clearly, this is rather artificial. If we
undertook to examine a pendulum in this way, we would first find two steady
states, one down and one up. Then we would, giving equal weight to these
two possibilities, calculate the small amplitude motion. If we understand
the limitations, however, this can be a good way to start examining the

problemn.

For the present lecture, we take a steady state with O/ 2t = 0 and v = 0.
Then only Eq.(31) is not satisfied trivially. We now choose a particularly
simple geometry, a circular cylinder in which the equilibrium depends only

on the radius r. Then Eq.(30) is satisfied if

i _
i(Pf-LB:i"J" @‘O (36)

vz a_{/at‘ | | (37)
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Since the equilibrium is independent of 8, z, and t, the eigenfunctions

depend on these quantities exponentially,
f e exp (gm(—)-[nkz-éwf) (38)

A couple of comments can be made on this exponential function. First, taking
opposite signs for the 6 and z terms makes lines of constant phase follow
right handed helices. This helps intuition. Second, taking the coefficient
of z to be nk is significant. Here k = 27 /L defines a length over which
the system is strictly periodic, and thus has the topology of a torus. The
factor n allows variations that are harmonics of this length. The straight
system studied here has little or nothing in common with a real straight

device because the boundary conditions are very different in the two cases.

After considerable algebra, the equations for the perturbed quantities can

be written in the form familiar here Il{,

Djns, = 05, )- 2G P
(39

Dg; P=ycsf,)-G P
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and Be and Bz are components of the magnetic field B. These equations
differ slightly in detail from reference 1 , because the dependent
variable P has been altered by adding (Bg/rz) n j} to it. The chief
effect of this transformation is to eliminate derivatives of equilibrium
functions from all of Eq.(40). One of the nice things about this set of

equations is that it is Hamiltonian, P is the conjugate momentum to N fﬁ .

The other nice attributes of this equation have been given in reference 1.

Now we wish to look for the Mercier/Suydam instabilities. We will first
sketch a line of reasoning used by Suydam to show that such instabilities
exist. Then we will go through the argument again in more detail and

calculate actual growth rates, using matched asymptotic expansions.
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First consider Eq.(39) wit&xC&32= 0. This is reasonable because it has

been shown that the eigenvalues Quz are always real. Thus any modes going
into the unstable part of the complex (J plane must pass by(&)2= 0, making
this a good place to watch. The resulting equations are singular where the

quantity F2= 0 vanishes, that is, where
m-'ﬂg(ﬁs) =0 (41)

This equations selects a given m and n, and defines the singular point

n= fzs. To ﬁnderstand the reduced Eq.(39), then, we must understand

the nature of the solutions near the singular point. This introduces
another theme in this set of lectures; understanding a set of differential
equations means finding all the 'singular points, and analyzing the behavior

of the solutions in the vicinity of each such point.

There is a slight algebraic problem in the present case because the right
hand sides of the two parts of Eq.(39) are nearly proportional to each
other as D vanishes, as can be seen from the last part of Eq.(40). One

could beat through the algebra, but it is easier to eliminate P and find
/ : 2
d D < nf)-[sf.. c ), ¢ -C2C3] )-
= =7 — n3, =0 (42)
Jn ﬂCz‘T’;( v Ldlnc, )T e D "5

In the limit of vanishing(4)2,
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2 . .
Thus when both&)2 and F vanish, near the singular surface,

2 ’ 12
J/C n*k 4o 20mk’B
== | =~ A ‘YI"'K‘L/?‘L dan 2 1./("—”‘),
ds nc m ot m-+n "
2 B
Cll-cng - L_fﬂ:_/{_.—w B_,Q
R Py .n*\.k“-n‘\ N
nec,D ™
When Eq.(41) is satisfied, the components of the equilibrium magnetic
field are related, and
TLLAML *
ANEBT | Be
- (45)
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To obtain the leading term in the coefficient of the derivative, F is

expanded in a Taylor series around the singular surface,
.8@ - 4
Fg_\:-._ﬁ__.‘n ), s g ' (46)

where the prime denotes derivative. It has been assumed that q' does not
vanish at the singular surface. When q has muitiple roots the nature of
the singularity changes, leading to a variety of different problems. Here
we treat only the most important of these problems. Then the appréximation

for Eq.(42), or Eq.(39), valid near the singular point is

C%(nms)zjg(n 5,)+Dy(13) 20 N

where
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and use has been made of Eq.(36).

This equation will occur over and over again in this set of lectures and
it will be derived in many different ways. The parameter Ds is a measure
of the destabilizing force associated with the pressure gradients. Its

significance will be further elucidated as we go along.

Since Eq.(47) is hdmogeneous in the independent variable, it has a

powerlike solution

where

S(s+0)+D,=0

or
1/

s=xl? (1-40:)] " =
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When DS<: %, the two solutions for s are real, and flfﬁ diverges near
the singular point. This case will be treated in subsequent lectures.
Here we will be concerned with the case DS;7 % so that s is complex. The

meaning of a complex exponent is

" N exp[i‘f -‘:;:»(403-!)% [n x]

- x'%‘ cos[f’f(l{Ds' f)yz' In X:] =
t [X'%Sf”[—éﬁ(ﬁﬂ)g l)[/" In XJ

That is, it oscillates infinitely rapidly as one approaches the singular
point. This is really messy behavior. However, Suydam and others have
shown that reducingAthe frequency a small amount reduces the number of
oscillations. Thus this behavior implies the existance of instabilities.
Rather than follow the formal procedures used previously in showing this,

here we will derive formulas for calculating growth rates.

Now, having established the probable existance of localized, weakly unstable
modes, we can consider how to calculate their growth rates. We wish to study
2, . 2,
cases where (J 1s quite small. Over most of the range of r, &  is much
2 . .

less than F~ and can be neglected. However, near the singular point where

2 .. 2 2 ;

F'= 0 this is not true. In a small layer near where &) and F  are compa-
rable, different equations must be used. Thus this problem is of the

boundary layer type. Inertia is important only in this boundary layer, so
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both the physics and the equations are different in the two regioms.

Now we consider the outer region in more detail. The solution here is

. . . 2 } .
determined by Eq.(39) and Eq.(40) with (W = 0. Near the singular point,
these solutions have the form given in Eqs.(49-52). In particular, since

we desire real solutions, we can set

(53)

. - 1A r.‘.{_l-//_;ﬂih [+cc
03;’36/57‘/73/ exp e /TXJ

(,(E(—{D;I)Vl (54)

a is a length scale so that the argument of the log is dimensionless, and
c.c. stands for the complex conjugate. This is another way of writing a
solution proportional to two arbitrary constants Geos ¥ and Gsiny s the

two constants of integration of the second order differential equation,

ﬂfﬁ".:’ l[ﬂ'ﬂsl'}i[GcosY C.OS(%(:‘ /71/)%}1‘5-»/)

-G sim¥ sin (% In /%)J

The differential equation satisfies a regularity condition at r = 0, and

(55)

a boundary condition at some radius r = a. For example, if there is a rigid

boundary at the edge of the plasma, we have the conditions

fn(o) =0 ) fn(a) =0 (56)



- 25 -

These boundary conditions define the solution up to a multiplicative
constant on either side of the singularity. That is, G is undetermined,
but quantities X+ and X_ are determined for solutions that approach

the singular surface from /1 2 ns and N} £ Ns

S, ItA

Note that

: d
l: - o —
Y= n:;?s Lo h[<70 (I

(57)

J+ iU Wy
+ S )2

Equation (53) is the small /ﬂ‘ ngl limit of the outer solution

that will be used for matching. This is just one term of the double series
that was described in Lecture I. Other terms come from continuing the
expansion of Eq.(53) in powers of n- ﬁs » and from higher order equa-
tions that calculate corrections in powers of C.L)z. Thus the full double

series would have the form:
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L
73 = C,os(%(j /'nx) 26, cos¥ X * [HO(”'HS)]

1 G, ()t .

This is an example of the very large impedance mismatch between the

desires of matching theory for a reasonably large number of terms so that

the structure of the matching can be seen, when it is coupled to the

strength of the person generating these terms. In the present case we

will only match the upper corner terms of the double series. Matching

theory shows that this is a precise requirement when considered in a

larger context.

Now consider the solution inside the boundary layer. First we must choose

a scale for the expected radial dependence of f . This is chosen so that

2 V2 . . .
l F [~ " . Thus we define a transformed independent variable t,

'718: e Nl |
1= A(ﬂ'n‘> A= BC-)/n:nS
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When Cc)z is small, t is finite when /7--)75 is small. When t is large,
wZ << lel and the solution should approach that of the outside

. . . .. 2
region. The leading order terms in the limit as €&~ goes to zero, but t

is held constant, are:

(&) =1y reslie)
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Then Eq.(42), or (39), reduces to

d e, 4k1/5,z =0
FU+t)dxy + [ Ds- W]y (€1

Note that for t large, this equation reduces to Eq.(47), the approximation
in the outer region valid near the singular surface. This implies that

matching can be done successfully.

Equation (61) appears fairly simple. However, it seems to have somewhat
more singularities than can be treated with hypergeometric functions. Thus
it appears that solutions must be calculated numerically. A given solution
depends only on three numerical parameters, Ds’ Bz/xf‘ , and 4[(1/%,1

and boundary conditions. The three parameters do not depend on t since
their variation across the boundary layer is a higher order effect in the

expansion.

Since Eq.(61) has the form of Eq.(47) for large t, the corresponding

solutions will have the form of Eq.(53):

NE [Hf Vo @x{at[“ [nfﬂf‘?ﬂ
-I-CCJ ([‘{' O(I/f)] (62)
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Hence matching is accomplished by

G+ i H’* ‘ng‘ﬂ (63)

| a | |
U —_— Tl—

1yl

6'5 ["ll- ng‘a (65)
W[4 -4, T
X - - T/n/ﬂ%(ﬁl jl (66)

for' Nn< Ng - Here j 1 and j , are arbitrary integers. Since exp(ij T =
* 1 matching is accomplished equally well for any \jl,z' The logarithm

is formally large as(k)z becomes small, but it diverges very weakly. It
is generally more a;curate to consider such logarithms as approximate
constants in the limit of smal].ch)z, rather than to modify the asymptotic

series.

We now count conditions and variables. There are two boundary solutionms,

one each at f = 0 and N =Q . In addition there are the four matching
conditions given above, yielding a total of six conditions to be satisfied.
There are six independent constants. of integration, coming from three

second order differential equations. One of these equations describes the
outside region f?(f])s » one the boundary layer; and one the outside

region [} 2 flg - The equations and boundary conditions are all homogeneous

and linear, so we have properly defined an eigenvalue problem.
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Two expressions for the eigenvalue are

2 Y-
.amg’a ExXp J(ﬁ"’ £ J,TT) (67)

from Eq.(64), and

%l— (TZ’ o jlﬂ-) (68)

’
0 =mq4a EXp
from Eq.(66) . Hence, equating these expressions, we find

(L )T

which is a condition that must be satisfied by the various constants.

It remains to calculate the relation between 7z+ and 77_ implied by the
differential eq;ation, Eq.(61). We do this by introducing a technique
taht will be used throughout the rest of these lectures, representing an
arbitrary solution as a superposition of an even and odd solution. Since
Eq.(61) is invariant under change of sign of t, it does have even and odd

solutions. Each of these solutions has the form of Eq.(62) for large t,

with phases denoted by 7?e and 7?0.

Now consider a mixture of the two solutions, with & the proportion of the

odd solution. Then, for large positive t,
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>/~ y[H exfbt( nt+7e)
((4 it +T) | +ec

+ o Ho &P
f—t- %-[(He Cos?Zc‘f' O(Ho cos 7[0 +(/"{¢ n y(c (70)
\ '796- ' {E

o tam -,(M )J +cC

where

Ho

g z ! _/_}7- (71)
é
Then 7?+ is given in terms of ?Ye and 7?() by
o Si‘nn¢+%5""’y{° )
77'{‘ - T Cos Me t & Cox (@ (72)
and similarly, 7? is given by
N ?YC’ Zsim 7{
- tam™ """'"/—7?*

77» = Cos Me— € COS o (73)

These can be substituted into Eq.(69), and the resulting expression solved
for Z, the mixture of odd and even solutions. This expression for Z can

then be substituted back into Egs.(72) and (73), yielding,

- _ ‘f mn (X.(- Y)
;Lf??‘-_—?Zc-{—??at’(_ﬁ"? l[faﬂl(ﬁc 770)+ ;o (Me- ) 74)
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The * sign arises from the fact that the equation for Z is a quadratic,
with two solutions. Multiplying Eq.(67) and (68) together, we find

QreNg AT exp RGOSR AN

(75)
J = j) +jl

Now we have an expression for the growth rates, we must determine its

meaning.

First, j is an arbitrary integer, so Eq.(75) describes an infinite
sequence of unstable modes, accumulating to zero frequency for j ap-
proaching infinity. The frequency of each of these modes is a constant
multiple of the frequency of the preceding mode. In fact, in general,
these localized stability criteria of the Mercier/Suydam type are

conditions for the existence of an infinite sequence of unstable modes.

Next, j cannot be completely arbitrary. The basic approximation used in
deriving Eq.(75) was thatilqﬁi%‘a is small in Eq.(59). Then the varia-
tion of the equilibrium over the range of finite t is small, and can be
neglected. This reduces to the requirement that the argument of the

expoﬁential in Eq.(75) be negative, thus determining the range of vali-

dity in terms of j.

Actually, there are two sets of unstable modes, corresponding to the two
solutions of Eq.(74). These are something like a set of even solutions,
and a set of odd solutions, but they can be mixed if the boundary condi-

tions are not symmetric.
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It is too bad that we could not calculate the quantities 7Ze and 720
analytically. Thus the problem of finding actual growth rates still
requires a fair amount of numerical calculation. However, we can calculate
an infinite number of frequencies from the four numbers 3,+, B’_, ?ZO and

?Z . Further, the latter two parameters depend only on the three constants
e

D, 82/¥P , and ‘{31@‘/%'l

Analytic results for growth rates of Suydam modes were first given by

. The discussion here follows more closely Appendix D of |7].

Kulsrud 16

Now we should consider where these results fit into a larger context. Let
us consider a one parameter family of equilibria, with differing values
of Ds’ the instability driving parameter defined in Eq.(48). Then the growth

rates of the unstable modes might have the following dependence on DS.

A&J

N W D.

NV
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In this figure there are an infinite number of unstable modes for D PR
and all but two converge to zero frequency at DS = %. In this figure the
lowest mode is a kink mode, driven by currents flowing parallel to the
magnetic field, and is more or less independent of pressure gradients and
D_. The remaining mode, as drawn here, seems related to pressure gradients.
However, for small values of DS at least, it appears to associated with a
mode for which the argument of the exponential is positive in Eq.(75). This
figure is speculative, and not based on a specific calculation. Nevertheless,
it reflects the results of a considerable amount of thought that has gone
into speculations into the nature of localized instabilities. The trend of
this line of thought will now be discussed. Considerablely more detail is

given in reference 8.

In that paper the energy driving ideal instabilities has been written,

Sw-/Jdr{ [yxgx8F L pvr]”

FVPE3)™ L2 518 pxe3)
-2(3-vP)(3 1)
7(57[54 @XQ(2P+BL)JXB_ a7

cp——.
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is the curvature of the magnetic lines of force. The first two terms in
the energy are stabilizing. The third term is related to the destabilizing
force associated with parallel current flow, and is not treated here. The

last term is related to destabilization due to the curvature of the field

lines, and is what this lecture is all about.

When the curvature points in the same direction as the pressure gradient,
it is destabilizing. However, whenever the pressure gradient and curvature
are not exactly antiparallel, there is a range of directions of § for
which the curvature term can be destabilizing. Two facts prevent this

term from always producing instabilities. First, the average of the compo-
nent of the curvature lying in the surfaces always vanishes. Thus, if the
average of the curvature normal to the surfaces is stabilizing, ? must
wind and twist to produce an instability. Then the second fact becomes
important, that variation of along lines of force produces stabilizing

energy from the first term of Eq.(76). Thus, instability of this type

results from competition between the first and last terms of the energy.

The quantity DS in the Suydam criterion is an average of the normal
curvature over a field line. Since in the straight case the curvature

is constant along a field line, the average is equal to the local value.
In more general systems, however, there will be deviations from the local
value. It is worthwhile to discuss these, though they are slightly outside

the scope of the present lecture.

These slowly growing modes are nearly divergence-free, so they can be

represented by a stream function. For localized modes, this stream func-
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tion will have the general form,

Y

where the solid outer lines represent magnetic surface. That is, the
convection cells are aligned along magnetic surfaces. Small changes in

the perturbation lying in the surface, resonating with changes in the
curvature lying in the surface, can produce destabilizing energy. This

can be comparable to that produced by the much smaller normal perturbation
working against the normal curvature, without significantly increasing
magnetic field energy, the first term of Eq.(76). This effect is already

included in the general Mercier stability criterion.

On the other hand, variations in the normal perturbations are coupled
strongly to variations in the surface perturbations, through the diver-
gence condition, for modes of the form of the figure above. This gives
strong stabilization in the magnetic energy term of Eq.(76). Thus for
modes of that shape, it is difficult or impossible to obtain additional

destabilization by varying the normal perturbation.

However, it is also possible to arrange for convection cells aligned

perpendicular to the magnetic surfaces. Cells of this type can vary along
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field lines with a diminished, but not negligible, effect on the magnetic
field energy. These cells can be formed by considering perturbations with
large values of n. That is, we have been considering integers m and n,

and a magnetic surface where
m-Nn %Cﬂs) =0

We can equally well multiply m and n by a large integer and the above

equation is satisfied at the same singular surface.

The result of this discussion, then, is that larger deviations from the
localized Mercier/Suydam stability criteria are to be expected when n is
large. These deviations should have the form of a finite number of unstable
modes when the locélized criterion does not predict instability. This
deviation should be enhanced when there is considerable variation of normal

curvature following a magnetic field line.

It is also possible that there can be an infinite number of unstable modes
as n approaches infinity even when the localized criterion predicts stabi-
lity. Since these localized criteria more exactly are criteria for an ac-
cumulation point of unstable modes, this implies that the criteria do not
work when n is coupled to the integer j of Eq.(75). In that case other
accumulation points of the spectra may arise. Both Mikhailovsky i9[ and
several French groups ElOl have attempted such calculations, but the

results have not been entirely satisfactory.

One case is known where large n is required to obtain a satisfactory lo-

calized stability criterion, and this was the first realistic MHD stabi-
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lity calculation ever done |11]. They treated an axisymmetric example
without shear, corresponding to a general tokamak with q = 0. In that
case, the curvature of the lines of force is strictly normal to the

magnetic surfaces.

Other cases that have been treated are those in which the average of the
normal curvature is very small compared with local values. Then non-
constant perturbations, with large n, must certainly be more unstable
than constant perturbations. Such calculations were the original moti-

vation for calculating ballooning modes.

Alltogether, this discussion illustrates a weak point in analytic theory.
There appear to be significant deviations from Suydam/Mercier criteria
that are difficult to calculate in an orderly way. This means that prac-
tically there may be curvature driven modes that are unstable over a wider
ranger of parameters than indicated in the ldcalized theories, and there
may even be different accumulation points if somewhat different orderings
are taken. To me, all these effects can be called ballooning. The analogy
is with elastic membranes that tend to suffer their largest perturbations

where they are weakest. They thus tend to be unstable pressure containers.

It appears that these ideas will be most fruitful when they can be coupled
to the results of numerical calculations. These will be difficult because
they involve the most marginal of instabilities. Some idea of the way
numerical results can complement analytic results can be seen from the

following table, taken from reference 7.
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_wz
Finite element Eq.(75)
2.28.10" 3.62-1072
1.78-1073 1.78-107°
4.92-107° 6.56-10 °

Finite elements lose accuracy for very localized modes, and Eq.(75) 1loses
accuracy for larger growth rates. Thus the ranges of accuracy tend to
be complementary. In this case it is fortunate that there is a region

where both are sufficiently accurate.

Returning to Eq.(61), we have discussed the parameter DS at some length.
A few wordé can be said about the last term in that equation. This has
been derived and discussed in more detail in reference 12. Most important,
it represents the inertia of fluid driven along field lines by inhomoge-
neities of the perturbed pressure. It is larger when the shear, q' is
small, and also when the fluid is nearly incompressible, or has a large

pressure.

Finally, some attention should be paid to the validity of the matching
used in this lecture, since it has not been carried beyond the lowest

order. However, inspection of Eq.(42) shows that the matching region,

127 |F*]>> [0

can equally well be approached from either side, where F2 is near the top
or bottom of the above range. Thus matching can be obtained to as many

terms as one can manage to calculate.
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LECTURE III

Now, in the third lecture, we are ready to consider resistivity. Basical-
ly, the story here has been forcast by the previous lectures. We will be
considering unstable modes with slow growth rates, and the region of si-
gnificant behavior will be localized, as in the Mercier/Suydam modes
treated in the previous lecture. This localized region will be centered
about the same singular surface that was treated there. The small terms
that are important here include inertia, as before, but will include
resistivity also. The chief difference between this lecture and last

will be a modification of Eq.(61), the equation determining the behavior

in the boundary layer, to include the effects of resistivity.

" A number of other small terms could also be important in the boundary
layer. Among these terms are viscosity, heat conduction, and the dispersion
associated with gyration effects that is often called FLR terms. However,

I find it easier to do one thing at a time. The simple addition of resisti-
vity will give new insight into the nature of the boundary layer. Then

other terms can be fit into the scheme according to taste and necessity.

Before considering the boundary layer, I will first set the stage by

considering the problem from the beginning.

The full fluid equations Eqgs.(30-34), are modified by the addition of

resistivity,



= yx(?xg-f'?l) | (78)

This differs from the previous equations only in two terms involving
resistivity; one inﬁolving the induction equation, the other the heating
of the fluid. They also differ in the addition of source terms for mass,
momentum, and energy. The sources have been introduced so that it is
possible to have a steady state, analogous to that used in the previous
lecture. The problem is that resistivity allows fluid diffusion, and there
are only a few special configuration that do not diffuse. One such confi-
guration has a constant current in the z direction, with the associated
pressure distribution, so that the curl of the current vanishes. We wish
to consider perturbations around more general configurations. Then the
steady state will have a nonvanishing velocity. This velocity, and the as-

sociated sources, will vanish linearly with the resistivity when it is small.
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Now we consider the limit of small resistivity. Always in doing such things
you have to use intuition or make some guesses about the nature of the
interesting behavior. Now I am going to tell you that we want to consider
time variations such that 2)/4?’f ~ 7? 943 in the limit of small
resistivity. In fact, an MHD fluid wiggles and oozes in many ways. Ideal
modes are independent of resistivity when it is small. Diffusion modes

1. ~ Sl ”V3

is limit. So the statement that ¢&//2T ~ /f

PN P
vanish linearly

T

will in
is a way of focusing on a particular type of behavior that may be interest

at a particular time and place, perhaps here and now. We will cut the cloth

of the theory to calculate this type of mode.

First we calculate the equilibrium in powers of the resistivity. To lowest
order the results are the same as those obtained in the previous lecture.
To next order there are terms that are linear in resistivity, but they
will not affect the much faster growing perturbations that will be calcu-

lated in this lecture, so they can be ignored.

In calculating the perturbations around this equilibrium, we again intro-
duce the integrated velocity § as an independent variable, and also the

perturbed magnetic field

@:@.{-é (79)

Henceforth we will not dear with the total magnetic field, so we will not
distinguish it from the equilibrium field. Again, the equilibrium is

independent of t, 6, and z, so we can introduce
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.{:;(Q)@XP(X{‘%‘(MQ‘ith) (80)

The factor 3, is introduced because we are interested primarily in
calculating real growth rates. Thist should not be confused with the
ratio of specific heats, since the latter is always associated with the

pressure P.

The equations for the perturbed quantities can then be written

PY's :(?Xé) X8 + x4 +?[YP(E/'£)+E:Y’°J

(81)

b'%?"?xé’?x@?‘@) (82)

When the resistivity vanishes, this reduces to the equations for ideal

modes.

We now consider the limit in which the resistivity and growth ratear both
vanish. The limit takes us right back to the equations for the outer
region in the previous lecture, particularly Eq.(47). In that lecture

we were primarily interested in the case DS'> %. Here we are mostly
interested in the case DS & %. Resistivity may have a strong effect on
weakly unstable Suydam modes, but we will first want to show the existence
of unstable modes in regimes that are Suydam stable. Thus, near the singu-

lar point we find in the region N < fz;
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A} -j-3
ﬂfﬂﬁ«AI/ﬂ‘ﬂs/ + Briﬂ‘ﬂsf (83)

where

so-gex(i-40.)"

and AI and BI are constants determines by Eq.(39) or (42) withc;)2= 0,
and the boundary condition of Eq.(56). In fact, only the ratioc of the
constants is determines since the equations and boundary conditions are
homogeneous. Similarly, for the region f) > flg ,

-I-S
I (85)

ﬁ;n"’ Aﬂ/n‘nsls + Bj}'_}n'ﬂs

This is very similar to the outside region discussed previously,-but
perhaps simpler because there are no complex quantities. The ratio of the
constants here is equivalent to the phase parameter‘)( that was introduced

in Eq.(53).

We now consider the inner layer, where the length scale will be ordered
to the resistivity. First, we will want to order the length scale and
growth rate so that all three terms of the induction equation, Eq.(82),

are comparable,

Y (9-05)~ 7 @

This says that the boundary layer thickness is about a resistive skin
depth on the growth rate time scale. We now need ancother relation to

determine the length and times scales in terms of the resistivity. It is
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convenient to use the relation of the previous lecture,

P m BU(GY)~(F ) ns)" =

so that the present boundary layer is a modification of the previous ome.

We then find
C ALY~ ~ €& (88)
)l_)s X W M s

fﬂuaé has been introduced as a tag to keep track of the size of various

things.

We now consider the projections and magnitudes of the perturbation

quantities,

7= (€30 )en

» B x€
+ (§50)+ e ) qu (89)

+(§g)+.“> 8/[3:L

w—

b= (esz:){, o) En
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+ (téi t;i;ii*. ..‘> éi‘//£3:~

(90)
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Furthermore, we will find,
V.{: EK_/‘?-) + oo (91)

The reason for taking the above ordering for the components of the per-

turbation will be discussed below.

First consider the divergence. According to Eq.(91),
() .
)
( )°¢£+W(WB%+hkns8)§ =0 (92)

» ’I . . I3 . o
since Zb/é)f)" 65 . This relation explains the relative ordering

between and in Eq.(89). The condition that +b =0 yields a
n L v

relation similar to Eq.(92).

Next consider the radial component of the induction equation, Eq.(82). To

. . 2,
lowest order, the coefficient of e is,

(2) 72 o* (u V a)
b" Xamb = ’ (93)

- Be ng’(ﬂ'ﬂs) 5
ns

This tells us why ﬁ)n is one order smaller than f

We now consider the momentum equation, and take X’P very small so that
this term is negligible. Part of the reason for doing this is that the
pressure is small in tokamaks. As we will see later, however, dropping
this term is not completely justified. In any event, the effect of the

XP term will be saved for Lecture V.
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First consider the radial component of the momentum equation, Eq.(81).
We can see immediately that the term o) (f QP)/C()n is much larger
than the inertial term. The other lowest order term can be found by

writing

+68- 84 T)

~~
1<q
e
o
>
0
4
e,
>
1O~
1
N
10
10~

Q) (94)

Thus, to lowest order, the momentum equation tells us

b(z) - ?0’ ":I_E-

(95)
2} n <Jil

This says that the perturbed fluid and magnetic pressures approximately
balance perpendicular to the field lines. If it were not so, fast magne-
tosonic waves would be excited and would dominate the fluid motion. Since
that is not what we wish to study today, we assume by Eq.(95) that they

are absent, or have damped out.

The perpendicular component of the momentum equation, e, x B, yields the
same information as Eq.(95). That is, the two components of the momentum
equation become proportional to each other in the limit as € vanishes.

To obtain additional information from this equation we must go to higher
order, and subtract the two components from each other. A convenient way
to do this is to find an operator that annihilates the lowest order infor-
mation, apply it to the full equation before ordering, and then take the
lowest order terms. This is the concept of annihilation introduced by

Kruskal, and will be used in many different ways in these lectures.
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The most convenient form of the annihilator for these equations seems to

be

o2 6
V'R

By vector identities, this is closely related to the parallel component
of the curl, which is the obvious annihilator of a gradient. The largest

term inertial is then

Uk B xErT )=t 2erni/a]
~ 6€X (97)

. anL

3*

LB 5
~ . .m_rm Y o A
The remaining terms of Eq.(81) reduce to
V& Bxlrxb)x8 +gxb]
) .
yopydil ogy®dE
7l B x U3 vP)] - £ 1-9(3-7F) )
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The lowest order of the first term of Eq.(98) combines with Eq.(99) to

yield,

__.._..- by
B,.(lj + ) .

(i)
R P+RY-Vhp
Bq 3xu(2

In deriving this we have used Eq.(95) to express everything in terms of

ey

, expressed the current j as
B -

Bx2P 3-8
- + ol
I=7@ " B

and dropped a gradient parallel to the field lines since it is small. The

significant thing about Eq.(100) is that the quantity {/ (2 P + BZ) is
proportional to the curvature of the field lines by Eq.(77). It will thus

represent the destabilizing force in terms of field line curvature.

The second term of Eq.(98) is small in the expansion, while the third

term yields, to lowest order,

. x@ (1)
B'(Z(@'gfé)z@z~%8 e x 9/:

.

[ EN J bm] (1o
Q.Y - mB +hkn580 Dn

since only the term with the radial derivative will be sufficiently large

to make a significant contribution. The expression for {/- b = 0 has been

—

used in the derivation.
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Combining Eqs.(97), (100), and (101) yields,

kﬂ /3 )l (i)
(n [3 +MN 2,
Cy 9n‘§ S 34(7"‘ LR
B@ n ‘?__,_JL_ :
M% -1 on* (102)

- 2%‘39 bﬂ'

where we have used the relation between Be and BZ at the singular surface.

Now Egs.(93), (95), and (102) are closed, so we do not need to find any more
equations. In some way, we found a closed set of equations without finding

a full solution of the problem. A number of quantities have not been cal-
culated, and a full check of the ordering has not been made. This will be
corrected when we return to the problem of the effect of the ‘B/P term in
the fifth lecture. Until then, we will concentrate on the closed set that

has been derived here.

Before analyzing these equations, we will scale out a lot of parameters.

First we define a dimensionless growth rate Q.

ntg 85 )

B/ E (103)
215
and a dimensionless length x, l
z{p)ﬁ /é
s =lex LRF{ SigARE
N-1s R R Tlmz © (104)
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Further, it is convenient to scale the perturbed magnetic field,

SO, 43_%3_§Q g (105
Ly

n

Then Eqs.(93) and (102) become,

g//:Q(g-Xi) (106)
@";”=—Ds§'>(—@
:_Dsf,f_clef"@xg | -

where prime denotes derivative, and DS is exactly the same quantity defined
in Eq.(48) and used extensively in the previous lecture. Examination of
the algebra shows that it comes from Eq.(100), and is a measure of field

line curvature.
Several things could be noted about these equations.

Sometimes in fluid dynamics one constructs dimensionless variables and
small parameters before starting the problem. The method uéed here of
waiting until after the equations have been put in final form makes it
clear that all the factors have been put in the length scales. For ex-
ample, the dependence of LR on the shear might not be obvious until q'’
had been scaled out of the equations. Here everything has been scaled

out except the growth rate and the instability parameter Ds'



_52_

The most important approximation in this lecture has been that the inner
layer is localized, that is, LR<< a , where a is the diameter of the
plasma. In fact, in tokamaks LR turns out to be of the order of milli-
meters. This is indeed very localized. There is more worry that the layer

is so localized that fluid equations are not valid than that localization

is a poor approximation.

Finally, these equations are a straightforward generalization of the inner
layer of the previous lecture, Eq.(61). Indeed, the only term that arises
from resistivity is the left hand side of Eq.(106). When this is dropped
we recover the first two terms of Eq.(61). In recovering this result we
must remember that the last two terms in the second form of Eq.(107) is
inversely proportional to resistivity, so the first form must be used

to recover the correct result. The approximate form of Eq.(106) is then

used together with .
/ VAN
X(xj’) E(X 3—) (108)

The remaining term in Eq.(61) is small when B/P is very small, as has been

assumed here.

Now, what can we learn about the solutions of this set of equations ? It
is a fourth order ordinary differential equation whose only singularity

is at infinity. In the vicinity of this singularity these are solutions

that behave algebraically, and for which the resistive term is small.

These solutions then behave as those in the ideal boundary layer,
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where s is defined in Eq.(84). Then indeed, _45 ~ X << . These

solutions can then be matched without difficulty to Eqs.(83) and (85).

The other two solutions for large x are exponential,
I
2 Ya
s~ exp (£X/2@Q )

The terms that decay exponentially have no affect on the outer region, so
they are no problem. The exponentially large terms are linked to resisti-
vity for all x. They can not contribute to the behavior we are interested
in here. This leads to additional conditions that these exponentially

large terms vanish.

Now we count conditions and constants to see if the problem is well posed.
There are now eight constants of integration, four coming from the fourth
order inner layer equations, and four coming from the outer regions as in
the previous lecture. Again there are two boundary conditions, as those in
Eq.(56), and four matching conditions from the algebraic solutions on
either side of the inner layer. The remaining two conditions are that the
boundary layer solution not diverge exponentially on either side, for

x —> X oC . This gives eight homogeneous conditions for the eight constants
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of integration, and thus yields as eigenvalue problem for the growth rate.
- To conclude this lecture, we will get an estimate of these eigenvalues.

A very useful technique in resistive theory has been the use of Fourier
transform. Note that the equations are fourth order in d/dx, but only

second order in x. Thus, introducing,

Py, . \
7=/ du ) exP (4%)
- ok
Egs.(106) and (107) reduce to,

“ 1 [)s -
d U f{_ T -Q (;l% B 2553>) J=0 (110)
,:9,4 U@ au

This equation is singular at small/xl s where it behaves as

T, M

with s given by Eq.(84), again, and also singular for large with behavior

1= exp(* 6707

-1-5

The condition that :f not diverge leads to a well posed eigenvalue problem.
The singularity at/u = 0 is a bit of an annoyance. There is a relatiomn
between this behavior and the matching condition for the real problem in

configuration space, but we do not need to go into that here.

For now, we can just point out that there is a sequence of exact solutions

of Eq.(110),
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j-/t,{ exp ("1 M 2 d
J =0
where the summation is truncated. The resulting eigenvalues are given by

D

(112)

\
|
>
“+-
Pk
+
™|

Here n is an integer that depends on the number of terms in the truncated
series. The procedure only works when Ds is positive so Q% is positive
and the solution deqays at infinity. This again is an infinite sequence
of unstable modes as was obtained in the previous lecture for the ideal
Mercier/Suydam modes. Here, ﬁowever, the instability criterion has been

extended down to DS 7 0. Further, higher modes decay less rapidly to

zero with increasing n.

Direct numerical integration of Eqs.(106) and (107) reveals that there

are even and odd solutions,

g
\__é( )

AS)

_ =
\/ - d
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Further, the eigenvalues of Eq.(1l12) are degenerate, that is, they are

valid for both even and odd solutionms.

In this lecture we have given short shrift to the boundary conditions.

That will be the main subject for next time.

The results of this lecture were all given, in some form or other in the

. We found that paper extremely difficult to understand in our own
terms, and after working it all over, wrote a paper applying the theory
to a stellarator, the configuration of interest at the time 1131. A stel-.

larator is a difficult configuration to use, so we then wrote a paper

using the straight circular pinch configuration of these lectures |14

Most of this lecture has been taken from the latter paper.
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LECTURE IV

In this lecture the effects of the matching conditions on resistive modes
will be considered. In the previous lecﬁure, equations for the resistive
layer were derived, and the existance of instabilities was demonstrated,
but the matching conditions were hardly treated at all. By treating the
matching conditions; we will gain a more precise understanding of the

stability criterion.

The overall form of the perturbation can be sketched as follows,

iz
g

= -

QA
N n

Region I is the outer region closest to the magnetic axis. Generally, when
treating boundary layers, the boundary layer is called the inner regionm,
and the rest is called the outer region. Here, however, we have two outer
regions, one of which is in some sense inside the boundary layer. We can
just call it region I. Region II is then the inmer, resistive boundary

layer, and Region III the other outer region.

The solution in region I near the boundary layer approaches the form
s N -3
n-As + R n-"s
§::AI_ a I/ a | | (113)
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where the length scale a has been introduced to make the constants AI
and BI dimensionless and s is given in Eq.(84). Similarly, in region II

the solution approaches, for large negative x,
s =S
~ X} + BT!’L [XI (114)
§”AEL1 =

where

X z(n-9s)/Lg

and LR is defined in Eq.(104). The matching conditions then are
s
Ar=(0/r) AL
I
-]-S
BI’(Q/LR) Rre

(115)

Since the equations and boundary conditions are all homogeneous, the
magnitude of g— can be scaled in each region, and complete matching can

be accomplished if

1541 —
Az_' q ,é:‘ff-

r—
-

BI Z;Q BEL (116)
where

25+] f(]":(DS),/" 2

This is equivalent to the situation in the previous lecture where only

the matching of phases was important.

We expect that for most cases AI/BI will be some finite number. It de-

pends on the parameters of the outside region, and not on the growth
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rate. To obtain matching, the growth rate must be adjusted in the

resistive layer so that A 2 0. The exceptional case occurs when B
y

ITL I

vanishes. According to Newcomb's stability criterion IISI, this is the
condition for marginal ideal stability. It is not surprising that a
system that is close to being unstable in the ideal theory will have

a strongly modified resistive instability.

Similarly, there is a matching condition between regions II and III of

the form,

p—

Ap oyt AZR ‘
:<LQ BER (117)

Bx

These matching constants can be calculated numerically from the resistive

layer equations as the limit

d [, H+s
ALL _;liw - _4s-2 é;(x 52

cnm—

Br. " x| 5;(X'5§)

i x‘f)
lim 'X—LIS’I ,_CEE_.-——""

X -x d ”’SSZ)
L

These forms are something like a logarithmic derivative, particularly

when s is small, but it has its own character.
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We are now prepared to tackle the main subject of this lecture. First,

we wish to consider Q and DS both small, to see how they depend on each
other in the limit. The motivation here is to examine the stability
criterion more closely. It turns out that in this limit, the growth rates
are equally affected by the matching conditions. Thus it is possible to

derive stability criteria that involve the matching conditions also.

The limit of small Ds and Q is singular. One can see this by looking at

the behavior of the exponential solutions of the resistive layer equations,
Eqs.(106) and (107). In the previous lecture it was shown that for large

X there are solutions that behave as
|
(* X2 \/9.)
§~ exp (T X/

Thus as Q becomes small, we must also consider the length scale becoming
small as Q%. Otherwise, the exponential would try to grow infinitely
rapidly, and the equations would become impossible. That is, there is an
inner layer of significant behavior that is even thinner than the resistive
skin depth, by another factor of Q%. Further, it is clear from Eq.(112)

that we wish to assume that DS becomes small as Q3/2 in the limit of small

Q.

There are two kinds of solutions in this limit, one with

g ~xs

and one with
3A
x§

Y~Q
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These two solutions corresponds to the even and odd modes discussed at
the end of the previous lecture. In the present theory these are not
degenerate. It turns out that the fastest growing modes that determine

marginal stability are of the first class, so we will concentrate on them.

With these approximations the leading term of Eq.(106) becomes

—ray
T,0) " _ .
S =0 (119)

with solution

)
7@ R + AT X
‘% b (120)
(o) q

= By 24 AT (T

o
D\P

We have taken DS small, so that s approximately vanishes, and there is

agreement with Eq.(ll4). To obtain matching to arbitrary conditions in

(o)

the outer regions, A must be very small. In fact, the method here works
I

by calculating A__ from higher orders in the expansion in Q. It is then

II

small, and can be used to match to the outside solutions.

(o)

—_ This is the origin of the

To lowest order, then, é? is a constant, B
so-called constant Q?‘approximation, that has become something of a cliché

in the field.

This is a case where it not really obvious that matching between the inner
and outer regions should work. Here the inner layer is completely dominated
by the resistive term. Thus, it will not necessarily merge with a region

where the resistive term is negligible. In fact, one should include an
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intermediate layer, scaled to the resistive skin depth, between the solu~-
tion calculated here and that in the outer regioms. However, it turns out
that everything is constant in this intermediate layer. Thus, its existance
is necessary, particularly in higher orders, but it has no affect on the
present calculation. One does need to watch this sort of thing to make

sure that the calculations are correct.

Using the approximation for<9? > Eq.(107) can be solved for lowest order

approximation to‘f ,

Qlfco)”— sz ;(0)_"_ DS f(a): -Q X ._‘1?

(0)

(121)

(o)
= -RX BZ

With the present ordering, each term on the left is the same order in Q.
The solution of this equation that does not diverge exponentially for

x ~—» ¥ ol is odd, and approaches §«~9 B§§)/x in the limit.

s

Next, we examine the higher approximation for &? . The equation for the

first correction is

_ —(0) (c)
__(_/_/(U”:C?(»(’é —Xf ) (1229

where .2?(1) is smaller than gg(o) by a factor of Q3/2 in the limit of

small Q. For large x, the important terms are the corrections to Eq.(120),
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(1)
GLVBTf+AIL X -2

() CI) +°e
X X2

X Brg tAZR

Thus
()
/
(7/'1(1) / = A;’IL (123)

X -

and similarly on the right. Equation (122) can be integrated to yield

x= +X +X _
@(U/ = Q (‘(k(o)—-x j(”))c/x , (124)
b Y- -X /x

.s/{ B(o)

when Q is small, since the integration variable also scales with Q in

this limit.

It follows that the constant AII of Eq.(120) will be of order Q5/4. Thus, if

:2‘5‘4
the right hand side of Eq.(116) and (117) will be of order unity. Then

change: in the matching condition will affect the modes significantly.

That is the object of the present lecture. With this ordering we find
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)//5' (125)

5/"’ 773/{ / (126)

Thus these the modes considered in this lecture grow much more slowly

than those considered in the previous lecture, when the resistivity is
small. When we find a limiting process that is distinctly different from
those considered before, as in the present case, it is necessary to go
back to the original equations and see if the new limit will give rise

to new terms. This has been done, for example in reference 14, and nothing
significant shows up. Thus we can continue to push on from our present

position.

It turns out that Eqs.(121) and (123) can be evaluated explicitly. This
was done in reference 12, and is also sketched in references 13 and 14,

The process will only be outlined here.

First consider Eq.(121). The left hand side of this equation is a Hermite

operator. Thus if we expand

j{O): ex[A (‘- Xz/lel) Zo:ch H“ (X/Q%{) (127)
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where the Hn's are Hermite polynomials, then

’ -5 O 0)
Ql’j’g -+ D5

(128)
: QS/zexP (.. X’/QQ%.)
XZ(%% dn- )u‘ o
Further, it can be shown ol l"l";h{.
222" exp (-2/1)Z T o) az

Equating the coefficients of Hn to zero yields equations for the s and

(o)

hence a formal solution for ?' . This solution can be inserted into

e 1 1
Eq.(123), and the integrals evaluated, so that g?(l) 5 - ‘g?(l) (-X) is
given in terms of an infinite series. This can be identified as a hyper-

geometric series, and thus evaluated, yielding,

§= 8“” V- ¥ m(,‘)o]

i)
-QTTQ F[Lf( “D. /623/1)J

Now we come to a complicated argument to show that CS is the only quantity

needed from the inner layer to evaluate the dispersion relation. First we

note from Eq.(123) that to lowest order
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(131)

‘- A Aze
— Oom——————————
BJLR Bre
According to Egs.(l16) and (117), the individual terms of the right hand
side of the equation above must be matched to the outside regions. How—
ever, solutions of the homogeneous left hand side of Eq.(124) can be added

(1)

in, in particular a solution A ,X- Then

) _ 254!
AR _ ¢ Ary _ AL (Lg
— 79t — Q3

Bgr £y 1

(132)

(] ' S+l
Ag LS4 Azu éE(%\ﬂ)

(1

Eliminating AII H yields the dispersion relation

A = A/ (133)

where

p A% Jen g TLEEDA]
&) s G [[4(1-Ds/R%)]

(134)

since s is approximately zero, and
. Agx Ar
A T - (135)
Bm B:
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/
Thus [1 depends on parameters of the inner region, and Zﬁ depends on the
outer region. The result is an equation for the growth rate Q. We now
analyze this to obtain information on the dependence of the growth rate

on DS and A/ .

When DS is positive, the gamma functions have an infinite sequence of poles,
accumulating at Q = 0. Thus Z& alternately vanishes and diverges, so it
. . . / .
passes through all values many times. That is, for a given Zﬁ there 1is
an infinite sequence of growth rates that satisfy the dispersion relatiom.
/ . ' .
When Z& vanishes, these growth rates are given by

H1-Do/@7) =7

7/

This agrees with the result obtained in the preivous lecture, Eq.(112),

when s vanishes.
The result is, that when DS is positive, there is always an instability.

When DS is negative, Z& is always positive. Thus, there are no unstable
- , . . 3 - .
solutions when Z& is negative. A more detailed examination shows that

/4

L
é& diverges as Q5 for large Q, vanishes as (-DQ)* for small Q, and is

¢
monotonic. Thus the result here is there is an instability only when £3;>C2

The two kinds of instability, for DS positive or negative, have quite dif-
ferent character. The first kind depends only on the parameters within

the singular surface. Furhter, there is an infinite sequence of unstable
modes, as in the Mercier/Suydam instabilities discussed in the second

lecture. Both of these modes depend only on the local average field line
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curvature. It seems reasonable to call them by the same name, so they are

known as ideal and resistive interchanges.

It should be noted that the quantity DS is strongly affected by toroidicity
in a tokamak. While it is nearly always positive in a straight system, it
is multiplied by a factor l-q2 in the most straightforward tokamak approxi-
mation. Thus in the latter case DS is nearly always negative and there are
no unstable interchanges. This conceivably is an important reason for the
successful operation of tokamaks, though there is no eXperimental confirma-

tion.

In the unstable modes with DS negative, matching conditions from the outer
regions play a crucial role. Thus these modes appear to be driven by forces
in the outer regions. The role of the inner layer is to permit motions that
would be excluded in ideal theory. For this reason, such instabilities are
called tearing modes. In ideal theory,f'umst be bounded. As a result,

. .. . o 4 -1 .
Newcomb obtained a condition for marginal stability that ( A\ ) vanish.

’
In resistive theory this has been relaxed to the condition that A = 0.

There is an instructive calculation along this line that can be made‘
concerning the region outside a plasma column. The region between the main
plasma column and the conducting wall, where currents and pressure gradients
vanish, can be considered to be a vacuum, a perfectly conducting fluid, or
a resistive fluid. In the former case, f has no meaning, and the solution
is given in terms of the perturbed magnetic field. This is equivalent to
H?Tof the present lecture. The quantity 9?' is regular at the singular

point. Thus the condition for marginal stability is continuity of 9? and
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!
its derivative, or Z& = (0, exactly the same as the condition for a

resistive plasma.

Thus there is a close relation between tearing modes and the kink modes
that can be calculated for ideal systems that have a surrounding vacuum
region. The approximation that the entire column is filled with a perfectly
conducting fluid yields much more optimistic results, since then there is

an additional constraint that f' be finite at the singular surface.

In this lecture, and the previous lecture, we have assumed that the pres-
sure, z/ P is very small. This approximation will be considered in the
next lecture. It will turn out that the chief effect of this term is to
modify the tearing criterion Zﬁ[;> 0. In some ways this correction is

[y

small, but it can be quite significant.
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LECTURE V

In the previous lecture, we found the stability criterion
I
D <0 A <O (137)
s /

Here DS is a measure of the average curvature, that drives interchange
instabilities, and

Az _ Ar

’ e .
A= Bar Bz
is a measure of the destabilization arising outside the resistive layer.
In that lecture, we dropped the X’P term, assuming that the plasma pres—
sure was small. According to further calculations that have been made, this
neglect of the plasma pressure caﬁ be miéleading. Inclusion of these terms
can lead to significant corrections to the stability criterion given above.
/

In particular, some range of positive Z& can be stabilized. This will be

discussed in this lecture.

In addition, the calculation here helps to fill out that of the previous
lecture. Then we found a set of equations that could be solved, without
calculating every quantity. Here we will get aéproximations for every

component of the perturbation. It will then be possible to show that the

solution is completely consistent.

We now review the development of lecture III, and add the new terms where
necessary. The orderings assumed there are valid here also. Thus the

divergence condition, Eq.(92) is unchanged.
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The radial induction equation, Eq.(93), is not affected by the pressure.

The balance of total pressure, Eq.(95), now has a term representing pres-

sure changes induced by the perturbation,

()
bU) - fﬂmé—& + XP(V?) (138)

do not have to rederive it.

The new term that has been added to the total pressure balance equation
prevents us from closing the equations. We now have to evaluate the rest

of the equations in order to obtain a complete set.

The quantity Y?»f is related to pressure balance along the lines of force.

The parallel component of the momentum equation yields

. @ . tfm 1)
(JX §U An b ¢ E;Q”Z(“ s) }313 (139

Thus the parallel perturbation is zero order in the expansion, as assumed.
Finally, we must evaluate the parallel component of the induction equation.

From reference 8 we can evaluate
3. Ux(xR) BY(605-73)-19(°+8)

Thus the induction equation becomes,

| () - -n
b()-_g..a_}.)_ ( =< ‘ng(ﬁ s)f

o 2\ s0)
-3‘(\7'5)(')-— jl;(p+8)§n (141)

()
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This establishes the divergence of the perturbation as a first order
quantity. This completes the demonstration that the assumed ordering gives

a consistent set of equations. We now have a closed set of equations for

biz), fil), b}gl), éo)’ and ([_/‘}:)(1}., Note that (?:_f )(1) is indepen-

~dent of fil) since it depends on a higher order correction, fE;-Z)' We
again introduce the same scaling as before, Eqs.(103-105). We also define

a scaled parallel perturbed magnetic field,

o)
G dP
bB dn

(142)

gl=a(f-x3)
ngu: Qxlf - QX%“ Dst)n (144)
| X 81
,_f]tt-,— &(1+ é—l'!‘ 8,—}3)7\
3" L - (145)
+Q(§5s’l' /3 G?X'(é

RVSVY
Sz Yk A (146)
We can obtain the results of lecture III by making XP very small. Then

T=7



from Eq.(145), and Eq.(144) reduces to Eq.(107).

Further, we can obtain the results of lecture II for the equation of the
. ) . . 74
inner layer by making the resistivity vanish. The resistive terms are

74
and rr1 . We further remember from lecture III that Eq.(143) must be used
together with Eq.(144) in this limit. When the proper terms are dropped,
and SZ; and qr\eliminated using the resulting algebraic equatiomns, Eq.(61)
is obtained, exactly. The pressure terms that have been added in this
lecture are just those that were treated in the second lecture on ideal
interchanges. The method used here is thus an alternate derivation of

Eq.(61).

Now we have a new set of equations. We need to look them over, understand

their character, and determine the type of boundary conditions they require.

As before, the only singularity of these equations is at infinity. Near
this singular point, as before, there is a pair of algebraic solutions that

asymptotically approach ideal solutions. For these, again,
s --s - L 9[ %:
fMX)X SE 7 |+ [ - Ds
There are also four exponential solutions,

fuexp(i‘XVJO%“)Xn(l'['“‘)

and each solution has a different value of the exponent r. This provides
conditions that two exponentially large terms vanish on either side of

the resistive layer.
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Now we can count conditions and variables. Compared to the counting that
was done in the third lecture, there are two more free constants of inte-
gration, because the resistive layer equations are now sixth order. There
are also two more conditions, because there are more exponentially large

solutions. Thus again we have a well posed eigenvalue problem.

It is difficult to calculate these equations numerically. The exponentially
large solutions dominate everything. One can choose initial conditions to
minimize the exponential terms, but, because of roundoff, they can never

be eliminated.

We can, however, carry through the tearing ordering again. The calculation
is very similar to that of the preceding lecture, but somewhat more tedious.

The ordering for small Q is the same as before. Now we also assume that

so that it remains in the equations. To lowest order

(o)

g(o).._— BII:

again. The approximate equations for f(o) and ‘Yk(o) are coupled,

o/ " o (o)
sz() - QX f(o)—l' DST():’CQXBI

" @ 38 0
(:Pﬁ./rq().— <;2)< ’7“ - (32 873 ’y“
3/ 3 _ @: (0)2' (e)
Q5,7 v5)3" - @xBr

(147)
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o) (r(a)
but the two equations have the same hermite operator. Thus ;Cand can
be expanded in Hermite functions, as in Eq.(127), and the constants

evaluated. The dispersion relation again is

A=A

with

and A\ is evaluated as an integral, as in Eq.(130), with the result,

a_ TTDS }_,(0(13)5)

A= T % (148)
M]

«—[x
f[f(:uocé T’)J
FH—(@M&T)]

‘i‘[o(-] - Lﬁw_] (149)

F{ﬁ(3+xé+?ﬂ]
xfiﬁ($+xé+70]
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where

With patience, a lot of information can be gathered from this formula. For
example, it can be shown that when DS is positive; Z& takes on all values
for real, positive Q. Thus the growth rates of the interchange instability
are altered here, but the mode is not affected in a fundamental way. The

tearing mode is more interesting and will be comsidered further.

The results of the previous lecture are obtained when <S is large. In that
limit the second term in F becomes very small because the denominator

diverges faster than the numerator, while the first term approaches

F=1 g*_ ) PG D« /2%)]
5 ) Pla(6-D./c%)]

This is equivalent to Eq.(134). This again yields the stability criterion

A< o.

(151)

The other limit, E{P large so that <§ is small, can be evaluated. Then,
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L (67) —

F QKA[ [,L(Q {-,.,,4)]

(152)

foCOSATA/4'S'nh A/‘{
*|cosh® Taf + simb*Tald |

where

4
4=5"

The resulting Z& is positive when Ds is negative. Further, it diverges as

5/4

for small Q, and as Q for large Q. It has some minimum, nonvanishing

Q

S

value for some finite Q.

Up to this point we have always looked for real growth rates, and they have
always turned out to be real. One day we were discussing this pérticular
dispersion relation with Paul Rutherford, and he suggested that perhaps

this was one place in resistive theory that the growth rates might be complex.
Somehow that possibility had been overlooked here, after having been examined
for all the other cases. So we need to examine the dispersion relation in

the whole complex plane. This is most easily done by employing a Nyquist,

or Cauchy plot. One takes the following contour in the Q plane,
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and calculates its image in the ZX plane, as above.

The unstable Q half plane is mapped into the inside of the contour in the

Zl plane. Real values of ZX satisfying
A<d, (153)

can not be achieved by unstable values of Q. This then provides a stability

criterion.

The quantity [& . can be evaluated for large pressure using Eq.(152). At
marginal stability, Q will be purely imaginary, and A real. The frequency

of oscillation can be calculated from
1

A CIor T0s

Lm Lr Yo%

G+#p) CoshTAK
x ]—ﬂ’fi (1 H‘Aﬂ/ L (osh* A/ + Sinh* T4/

(154)
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[D QC 5:‘%577/?
] tanh(Ta4) e

or

PR 7 p’{' faﬂh(\ﬂ%/@ Tan TI'/X (
Xe A

where Q = chxp(iTT/Z)
This is positive, since we are taking DS negative here.

The real part of A& can then be evaluated,

* (1+
A= Re A(Qc )= fg _g Ifﬁ‘([“s)_]/

%

(156)

Cosh Ta/4

X 2 20
coshTald +simh™ TA/Y s.-nn’/g

The conclusion is that for very small pressure, the results of the previous

lecture are obtained, and

A=

while for large pressure [&C is given by Eq.(156) above. Then the question
is, which is more accurate for some particular pressure ? As a partial

answer to this question, we return to consider the small pressure case.
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Another theme in this set of lectures is that nothing physical is infinite
or zero. We have met a number of cases where quantities diverged in some
simple approximation, and we have found improved approximations that have
allowed us to find how large it is. One example of this is the size of

the perturbation near the singular surface. It is much the same with small
quantities. Ultimately we want to know, not just whether something is large

know

mall, but how

. e s . .. A "
or s ’ big it is. Now we want to the magnitude of [\, When

the pressure is small.

The previous calculation for large (5 must be modified along the lines of
the calculation for large pressure. First, we must determine the way the
critical oscillatory frequency scales with pressure when they are small.

It turns out that we need
3I <L
Q ~YP/BT << (157)

In this limit, [& can be expressed in terms of

7Z - Q3 Ba. /XP Ds (158)

3,
afflta e

L 1 K
+):/‘ ;«%—1 1 7«[{+(7(+1) ]

Jis 2/3
A“%} Y Ds

!
/i (159)
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Again, we find the pure imaginary value of 7? for which the imaginary part

of A vanishes. The quantity A o is given by the corresponding real value

of [l .

The important point is that Z} . scales as the one sixth power of the pres-

sure, for small pressure. It goes to zero in the limit, but very slowly.

Here is a case where the large pressure limit may be more accurate than
.. . 2
the small pressure limit, even when the pressure is small. When EIP/B

is of the order of 17 the high pressure limit may be off by a factor of

two or so, while the low pressure limit is in error by an infinite factor.

- . A - P . - . . .

The quantity Llc can be significant because it is multiplied by the large
factor a/LR. This is a case where it is important to estimate the size of
quantities, rather than dismiss them simply as large or small. Recent

calculations indicate that this effect could stabilize Mirnov oscillations

in future devices |16

s

Finally, I should make a comment on the validity of these equations. In
general, MHD works best for motions perpendicular to the magnetic field.
The long mean free paths of typical experimental devices have a strong af-
fect on parallel motions. Viscosity and ion Landau damping have a dominant
effect on the slow magnetosonic modes that are calculated in ideal theory.
Here is a case where the equations for parallel motion play an important
role in a mechanism for stabilization. We need to check to see that the

results are reasonable.

It appears that ideal equations may actually underestimate this stabiliza-
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tion. Raising the pressure allows‘f and 7ﬁ to differ in Eq.(145). The

term in this equation that comes from the parallel motion of the fluid is
(XM x¥)

These terms, when combined with Eq.(143) also force 3.=lyﬂ when x is large.

Thus if they are reduced, by forces impeding parallel motiom, ir and ﬂr‘are

less constrained to equality. Thus there is no reason to expect this sta-

bilization to disappear when nonideal effects are included. In any event,

this is being looked into.

Most of the basic results of this lecture were obtained in reference 1l4.
The specific results involving complex growth rates were given in refe-

rences 16 and 17.
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LECTURE VI

In the previous three lectures we have covered resistive instabilities

in a straight system. Here we examine the modifications that arise in
toroidal systems. Now there is only one ignorable coordinate, so we will
have to deal with nontrivial partial differential equations. In spite of
this complication, with the more complicated algebra that it produces, the
character of the results is not strongly affected by toroidicity. A good
part of this lecture will be spent deriving the toroidal form of the
various constants, particularly the Ds that played the decisive role in

interchange instabilities.

The calculation is much simplified in a convenient coordinate system. The
most convenient of such coordinate systems are the class known as Hamada

systems. Our first task will be to construct an axisymmetric Hamada system.

We start with a coordinate system in which magnetic suffaces are used as a
coordinate. Then 90 is an arbitrary labeling of the magnetic surfaces; 8
is an angle like variable that has a period of 2Tl . Surfaces of constant
6 are axisymmetric surfaces that radiate from the magnetic axis. Finally,

¢ is the angle around the major axis of the torus.

¢




- 84 -

In terms of these quantities the magnetic field is given by
R:=1 -,L’Gﬁ) V¢X_V_¢ + R, 3, EG@Q¢ (160)
o X

where Bo is the toroidal magnetic field at a distance Ro from the major

axis. The quantity f is related to the flux the short way by

X =278, [ c/LIb (161)

so that if one changes ones mind about the arbitrary way 9&alabels the

magnetic surfaces, the change is absorbed in f.

It follows directly that the Jacobian of the coordinate system is given by,

TRt
E/%X_V@'\?gé) = é’@"’@ (162)

Then the flux the long way is given by

- .17-{;//_3.\_7(; JdT
r B Jydodg

5 VO

(163)
= oam

so the safety factor q is given by

g fsvoﬁ
% l‘lT/A@ B Ve (164)
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The first requirement of an Hamada system is that the Jacobian be a
function of yb only. We can choose the coordinate 8 to accomplish this.
If, for some reason, an angle like variable has been constructed for which

the Jacobian is not constant, a change of variables can be constructed so

that
é =95 _,/__c{@/@‘:/@ (165)

RF [de

£ T 2o (166)
(V¢ xvo-vp) = 37 /3o
We now drop the hat on 8 and assume that the Jacobian is constant on magne-

tic surfaces.

The final requirement for an Hamada system is that the contravariant
components of the mégnetic field be constant on magnetic surfaces. Then,
in some sense they can be represented as straight lines. To accomplish
this we have to wrinkle the constant @} surfaces. Now these are planes

radiating from the major axis. If we introduce a new coordinate :f,

J @ +fc/0[z(‘/’)“ ,'39@ e

surfaces of constant J’will not be planes, but each such surface will
have the same shape as all the others. Thus they still nest, and radiate
from the major axis. Axisymmetric quantities will depend on Sé’ and 6
but will be independent of Jﬂ Thus this is a good axisymmetric coordinate

system, and the Jacobian is unchanged by the transformation.
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To evaluate the magnetic field in this coordinate system, we note that

the gradient is given by,

RvY
Y\I:S/Sb'f(%'é'\;/ﬁ)g@f ( )Q‘/ (168)

Fortunately, we do not need to evaluate the component in the EZ%V direction.

It is then straightforward to show that the magnetic field is given by,
R-= 05, f(lﬁ)[V\T‘ ‘6(‘)0) _{,79])( ‘Z¢ (169)

Since the coefficients of this equation are functions of yb only, we have
an Hamada coordinate system. Then the operator B: E{, that occurs so often
in MHD, is given by,

Now we make another coordinate change, from ¢>, 9,:f to ?y, 8, U with
(/(E}'Ij'm@ (171)

Axisymmetric quantities are independent of u. Other physical quantities are
periodic in u with period 2 nT[ . In fact, we will assume that perturbed
quantities are periodic over the shorter period 27 , just as we have used
n in the previous lectures to indicate periodicity in a harmonic of the
fundamental period. Also, the Jacobian of Eq.(166) is divided by a factor

of n in the new coordinate system. Now
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InTt

/a/r’—/c/‘f[lif@o/ du%
;nfclsﬁzmc/@fﬁ uf

when all quantities have the harmonic period. Thus we use period 27]

(172)

for u, and the Jacobian of Eq.(166).

In the new coordinate system

3= [yu+(m="d) ve[xv¥

As before, we will be working near the magnetic surface where m - nZ(k)
vanishes. Then we can approximate
n

ey, o
37 j‘[@’% () 5

(174)

' ’ 0
~ f._ 2—)% +’ng (SL‘%) oY

¢

Quantities that are constant on the closed field lines of the singular

surface are independent of 8.

The present coordinate system seems a bit complicated in structure, but

it can easily represent the two types of functions we will be most interested
in. Axisymmetric quantities are independent of u, and perturbations constant
along closed field lines on the singular surface of interest are indepen-
dent of 6. My experience is that it is much better to have a complicated

coordinate system and simpler equations, than the other way around. It
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should also be noted that the coordinate system is completely nonortho-
gonal, there are no vanishing elements of the metric temnsor. That is no
worry here, because we need only a few components of that temsor in

these lectures.

The general considerations regarding resistive instabilities in this
geometry are almost identical with those given in Lecture III, for a
straight system. We start from the general equation, Eq.(78). The equili-

brium, to lowest order in resistivity, must satisfy
vt *‘
D L 2o 2 xe-4rt (R4l RB. 3
R 5% R or X tor” R xt T dx

rather than Eq.(36). Perturbations around this equilibrium must satisfy

Egs.(81) and (82). Now, however, only t and u are ignorable, so we set

7=5(40) exp (Y- )

The vector perturbed quantities are projected along three directions, in

a straightforward generalization of Eqs.(89) and (90),

TR T

(176)
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In this lecture we will only consider the inner, resistive layer. Most
of the physics is contained here, and most of the progress has been made
here. Further discussion of the outside regions will be given in the

next lecture.

The size of the various terms in the inner layer in the expansion in
resistivity is exactly the same as that given in Eqs.(88) to (91), with
y& replacing r. For now, we will assume that this is true, and then show

that it leads to a consistent set of equatioms.

Now we consider the induction equation, Eq.(82), to lowest order. Ac-
cording to the assumed magnitudes of the various quantities, the only

first order term in the radial component is

(I) (l) (177)
V3, f

Thus j;p must be'approximately constant along the closed field lines
of the singular surface. Returning to the 94, e, :r coordinate system,
this says that one Fourier component in 6 dominates all the others. In
the straight case we could exclude all the other components by symmetry.

Here we can only argue that certain components will dominate.

A similar argument from the perpendicular component of the induction
equations yields,
2 57 =0

(178)
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and from the parallel component we find, using Eq.(140),

(__r\:/'[@x@."@)])(o’=o (179)

The parallel component of the momentum equation yields

(5o[rreD)] o

when the pressure is taken to be finite.

. . o
These last two equations are two separate relations for parts of (‘7Qf)( ),
Since the magnetic field is not constant on a surface, they can only be

consistent for a particular parallel motion. We will now solve for that

quantity.

To lowest order

(V [BX;XB)]) B 0‘/’§ +va¢ Vf(v) (181)

since v (B x Y%) = 0 from the equilibrium, and

) _ w  BXY¥ (o)
( ) 990 Y * T S_L,

o 22 4 g (5 /)

1 R*

(182)

so that

v
(f(o)/B) (") Q 1'373:_ =0 (183)
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We can evaluate the second term by returning to the equilibrium. Starting
with
JxB=9P
we can write
)
Xv!
PR LA ciso
J 3* -
where
g8
O_. e (185)
A
Then the condition that {/+j = 0 yields

[7- = (186)

B
(o) ’ (187)
- 3957 0/p)
from Eq.(178). This can be integrated to yield
=g & s@ 4 Comst)
3 pr L
—=() (188)

5@, 2rB_

L }6‘0(9 3/1’3

2 Bde
) %—,((T- ?I;‘AQ )
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where
(o) )
)3 * T }{ § cl & (189)

Thus we have solved for the variation of the parallel motion over the
magnetic surfaces in terms of two functions of 9b . It is not constant,
but can be evaluated for each equilibrium. The only approximation that

has been made is that the modes have low frequency.

We have now calculated the 8 dependence of f to lowest order, using the
components of the induction equation. We now wish to do the same thing
for the perturbed magnetic field b, using the momentum equation. The

first order parallel momentum equation yields
() <I) =0
BV[? .UP +¥P V] (190)
and the radial component again yields

t DN oY . ¢ | 191)
B = U P YP(vs) asn

as in Eqs.(95) and (138). Combining these yields

Q] -
58/89 O (192)

To evaluate the 6 dependence of bi}) we must annihilate the momentum equa-
tion with v"B“z Bx, and keep terms of zero order in € . This goes as
in Eqs.(97-99). The inertial term of Eq.(97) does not contribute in this

order. Only the last term of Eq.(98) is sufficiently large to survive.

To leading order it is
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(193)
[wi™ 2
=-§‘Z[*§W}%
The term in Eq.(99) is more conveniently expressed as
B (1) DZ}
'%xzb] V- )
v Gokf=(1 55 5
(194)

/0__ ab(”\
| P’ a%/

where Eq.(191) has been used to eliminate the perturbed pressure, higher

!(70

‘\7

order terms have been dropped, and Eqs.(186) and (192) have been used to
achieve the final form. Remember that in lecture III, and Eq.(99), the
K,P(§7'f ) term has been dropped. We thus obtain

Q) T Q)
B (L’ 96 )1'-8 V(P' ?@_%,) O (195)

RB* p¥¢

)
o) 8 g fVM o |9bg
[lvtﬁ}" [V‘M/JB C/@ oY

5___ = L (196)
*lWJ‘;{,@— .30 ¥
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(') (l)
b Q‘T- (197)

. 1) . . . . .
Again, bi_) is not constant along field lines, but its variation can be

where

evaluated.

In previous lectures the important quantity was the radial perturbed

1 4

magnetic field. We can find an expression for it in terms of b

using (/- b = 0. We use

‘Zé:j{a%@ é-?_x¢) +@%Q b VQ) +t £ OQ 6 )] (198)

To lowest order the Jacobians drop out of this expression, since it is

nearly constant in the resistive layer. Then

$dovb =0
yields Cﬂ

x9¢

5(1) c/9 ‘____.--—-- . ?u "‘"““‘—a U = O (199)

(2)

whereﬁ5¢, is again the average value, and the invariance of the equili-

brium with respect to u has been used. Now to lowest order, Eq.(173) yields

B-U¥XEU _m

= - = (200)

R f

so that finally,

) (.n @) =0
}3 ‘F bl— (201)

oY
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Similarly,

(/) (o) _
g N =0 (202)

oF ¥

We have now examined the leading order of each component of the equations

for the perturbed quantities, and have evaluated the 6 dependence of

$(1)

3.2 L4
r

. That is, we do not have the analog of any of the

everything. Still, we do not have equations for the average values

§(0) -(2) g(l)
B

equations that have been used in the other lectures. Examination of the

equations shows that we have not used all the leading information they

contain. For example, the portion of the parallel momentum equation we

have used is given by Eq.(190), but this does not have a component indepen-

dent of 6. To obtain the rest of the information in this equation we need

to project out the component independent of 6, in other words, average it

over 8. This again is an annihilation, eliminating terms containing 9 /&8.

Averagingvthe parallel momentum equation yields to second order

- —-(2) L‘n-P ()
[Dzrxf(a): ‘;Lb “& $(¢ ¢)b (203)
where Eq.(191) has been used to eliminate the perturbed pressure, and
Eq.(174) to expand the operator §.‘EZ to next order. This is essentially

identical to Eq.(139). The density has been assumed to be constant on a

magnetic surface.

The average of the radial component of the induction equation yields, to

second order,
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. Q)
By + E—é}—{g'ﬁﬁ'@% ,
=—§T%j[c/@ v Oxuxh

(204)
) l—fc/@ - (9¢X‘Zxé)
wy¥J
We use Eq.(198) to evaluate the average of a derivative, and keep only
"the leading order terms to finds,
$do T (74 Wé)
»—/@( )(W V‘WW
1. (1) Bx ¢ V%XV“
}ao 05 [y x 25 ) TFxE
Pid%e
0}
=- -———-fafcy
(205)

- i‘n[ C/@Q"B1

0‘8 Jo 19654
4B ,ﬂf’,——’]
8 de
o Lo
}QB @ or T(x)
+ 20 =T, lw{, \JQ a(lpl b

In the last step Eqs.(196) and (201) have been used.



_97_

After substituting Eq.(205) back into (204), we can compare it with the
radial induction equation for the straight case, Eq.(93). Aside from the
inevitable change of constants appropriate for the new equilibrium, the

important difference between these two equations is the first term in

(1)

B This has no counterpart in the straight

Eq.(205), proportiomal to b
system. A good part of the next lecture will be devoted to a discussion

of the effect of this term.

Note from Eq.(204) and the first form of Eq.(205) that the resistive term
is proportional to the parallel perturbed current, and thus to the parallel
electric field. It is the existance of a parallel electric field, forbidden

by the ideal Chm's law,
F+UxB=0

that permits these instabilities to form. Other nonideal effects that give
rise to parallel electric fields also cause instabilities of the same

general type.

We still need two more equations to complete the full set. The derivation
of these equations is more tedious than the derivations done so far,
without having any intrinsic interest. One is formed from
x(?#a A »
[ T Bx¥ T ion £ *) =
dom B+ oupn /" Indve v/ =0 (206)
B~ P |u¥l

This involves two components of the induction equation because the paral-

lel component, from the argument between Eqs.(181) and (187), yields a

term
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; B-Y/P)
to annihilate this cleanly by averaging over 6 we need to add a term

(G/p’) B VL

P PR

Finally, by the same kind of argument, we take for the next equation

a 2 y =
fc{(? Q L%x (Ho‘mcm‘{'v‘m) - ‘,’5/5— § (Mo'me'n‘f 'M)] © (207)

The last two equations involve the average
a E(' ! o/ 2] (208)
L

However, a differential equation can be obtained for this quantity by an

appropriate average over Eq.(196).

This lecture has been devoted to consideration of how a complete set of
equations could be obtained for resistive instabilities in toroidal

systems. In the next lecture the equations will be collected and discussed.

The calculation given in this lecture was started in reference 18. In that
paper we barely got further than this lecture. Some years later Glasser
took up the problem from that point, and put it in good form in reference

17. That latter paper will form the basis for the next lecture. I would

like to thank Alan Glasser for help in preparing these two lectures.
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LECTURE VII

In the previous lecture equations were derived describing the inner layer
behavior of resistive instabilities in toroidal, axisymmetric systems.

In fact, only the method of derivation was given. Here we pull together
the results of that lecture, and discuss the resulting equations. Because
there are many factors, we will do this slowly, and discuss them one at

a time.

It turns out that the appropriate scaling for these equations, equivalent

4

to Egs.(103) and (104), is
nrbe 4 8'de

JeM g7 Ly

“ | 210
M”@@‘[EZ : Lo X -

E - ( (209)

($ede)
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The quantitycg is the Jacobian, defined in Eq.(162). It can also be ex-

pressed as
' vV
# - L CL—— (212)

where V is the volume inside the surface labeled by 99 » since we have
takenbﬂ to be constant over the magnetic surfaces. The quantities f, q,

and O have been defined in Egs.(160), (164), and (185).

This reduces to the scaling for the straight case if we take ?9'= 1 so
.

that /V¢/ = / ’d" = ﬂ/}( and f = Be/k where k was intro-

duced in Eq.(80). Note that in this limit (T'is a constant, so M reduces

to unity.

The dependent variables are also scaled as in lecture III and V,

?(’) - f

. EE
/)(/, =L ﬂ
‘;}g - (dp/d¥) T

2 ”A'C!
v‘H‘C{@[P ;8 Al

~=
\

R & (213)

—

P\

and also

%T[
(214)
lfflﬁ"@ o7 q—A"’J@]
J 480 Y, F7bs



- 101 -

. . 1) .
The latter quantity contains the average of G'Ei.) in the last term.

Then the radial induction equation becomes, collecting Egs.(204) and (205),

S’& =Q§—C\)Xf+/~1'};‘ (215)

- XX

with 1
N 8 4o

$ggnc@| pTBEC S Tgare”
H,}____z;__,, .. @16

by | f5de Fgpdl

This is the same as Eq.(106) for the straight case, with the addition of

the term containing H.

This constant is the only completely new term arises from axisymmetry. It

appears to be a rather strange term, whose physical meaning is not apparent.
: /2. .

Note that it vanishes if [‘7 Vb 1s constant over a magnetic surface.

Further, if the pressure gradient vanishes, § is a constant by Eq.(186),

and H vanishes. In reference 16 it has been evaluated for a large aspect

ratio circular cross section tokamak, with the result,
2
/ 2R, dP )
o - L
H= 1 04 Jﬂ R0 dN (217)
% o |
Since generally, JP/dﬂ < 0, it appears that H will tend to be small
and positive.

Pushing on to examine the other equations, the annihilated momentum equa-

tion is given by, after evaluating Eq.(207),
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QS -QXT+ET +@x ¥+ =0 -

where

0“810{.@ (219)

If the r’ term were absent, this equation would be the same as Eq.(144)
for the straight case, with E taking the place of DS. Thus E is a measure
of the average normal curvature. We will see later that the r‘ term
introduces some corrections. Of the various quantities entering E, V"

is the second derivative of the volume with respect to 90 » and X andji;
are the fluxes introduced in Eqs.(161) and (163). The quantities I and J
are the current fluxes, given by

TzaQﬁj{,lgg!J@

a—

(220)

Jz-)rk. B, ‘(}(‘M

Together they satisfy the equilibrium condition |19]

r = / ’ /
PV:JAé'IX (221)
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Very early the CTR program the quantity V" was recognized as important
in determining stability, for example in reference 1l. Thus the quantity

call E here is often referred to as V" .

The parallel induction equation can be represented, after carrying out

the operations indicated in Eq.(206),

™

Cn - S r-croeke)ir G g klro @

Q

The constant

Q'L

ch{@
G*= 2rM M YP

is the straightforward generalization of the factor Bz/aiP that appeared

(223)

in earlier lectures. The constant

<z ;{Bc/@
Mpﬂcy /sib/ /5 4o

absorbs some other factors.

(224)

Finally, the equation for [1 is obtained by averaging Eq.(106),

Pong,+F 7.

where

.4 /B Jo|p’dEdo
F—flﬁ"f? 22k [ 8

gt t
a8 do - (}5 Ig‘f}“/ OA),.# (226)
‘U{E—%—)—‘ f 8'/jz | J
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The set of equatiomns, Eqs.(215), (218), (222), and (225), has the exact

solution

P

g=x §=T=I ['=-¢& (227)

e

It appears that this does not match to the outer regions. The condition

that it not appear is that the integrated form of Eq.(225) vanish,
[’:H_l? +FT (228)
X

This seems like a reasonable thing to do. Then [‘ can be eliminated and

we find,

IXX‘Q—%‘{.QXE—H}/"(:O (229)

e o FA(EHF Uy .
G5y @x'f +(E+ )T‘*CZXY‘FH_%X-O
(230)
T - @ (6 +kFXT5)
_QGK(E‘!"F){*QK'(Z; (231y

a—

@ kH Yo

Q"

Comparing this set with Eqs.(143) to (145) of lecture V, each equation of
the new set has a term proportional to H that did not appear in the pre-

vious set. The other factors can be identified; E + F replaces Ds’ G



2 . .
replaces B‘/Xl’as mentioned above, KF replaces unity, and K(E+F) replaces
S/DS. Each factor reduces to the proper limit when evaluated for the
straight case. The effect of H is the only new and interesting thing in

these equations.

Following previous procedure, we now consider the solutions of these equa-
tions near the singular point at infinity. The exponential solutions are
not changed from lectufe V. The leading terms for each equation, in the
approximation that yields the algebraic solutions, is

—

7-xj=0

O -xHR+EtF)TtH ¥,=o .
XX

-
(*V]
3]
~—r

_(k-x’r =0
As before, the middle equation is derived from a combination of Eqs.(229)

and (230). Eliminating yields

T +(E+E+H)E/x=0
XX

or _ [/1
('[/’?XSH X-S SE_%+—£—I/“4(,’:H’+H)J (233)

Now the generalized Mercier stability criterion |20| for ideal interchanges

in axisymmetric systems can be written

N.<0 DIE E*F"LH‘I/‘/ (234)
r
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This is also the criterion that s is real. By the arguments of lecture II
it is clear that we have rederived this general stability criterion here,
by a different method than that used previously. This give confidence
that it will be possible to obtain matching to outside solutions. Thus
DI is the ideal generalization of the quantity Ds. The{/?'has been added

here for reasons that will be discussed later.

Now we need to find the equivalent resistive stability criterion. We
proceed as in the straight case, taking the approximation that Q is small.
The ordering is as before, except that we will not take G to be large.
Otherwise, the equations become too complicated to treat analytically.
This is not an unreasonable approximation, as discussed in lecture v,
where the small G approximation turned out to be more realistic than the

infinite G approximation.

To lowest order, when Q is small, Eqs.(229) and (230) yield

g -HT,=0
= XX (235)

——

(E+F)T+HEO

We have assumed _@~ X }f » following the argument above Eq.(119) in

lecture IV. This pair of equations has a nontrivial solution only when

E+F+H =0
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In other words, there can be no solutions with small Q unless this
quantity is small. One could correctly guess that this will turn out

to be the resistive stability criterion. To prove it requires more work.

We define
_ 2
DPE t‘f'/:"LH | (236)

3/2

and assume that it is of order Q in the small Q limit, following pre-

vious procedure. Then the leading order equations are

—

b -H%

—

(Q § -RX f) ~’Qfo (237)
Gl ®), +@HE +Dr

G- e +@x ¥ =0

As with most of our approximate equations, Eq.(229) and (230) have been

combined to derive the middle equation.

As with the equations in lecture IV, it is not clear that they should match
to solutions in the outside region. The first term above is entirely resis—
tive, and never approaches the ideal regime. Again, an intermediate region
of order of the skin depth is needed to carry the solution from dominantly
resistive to nearly ideal. This solution is essentially trivial, again as

before.
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The first and last equations above can be solved together. When combined

they yield

N @ -
Q@ -X ¢+Hx © (238)
This equation no longer yields the constant Eg;approximation, but it is

not hopeless.

This equation has two exponential and one algebraic solution when x is

large. The algebraic solution goes as

that is {

since DR has been taken to be small. Requiring the solution to be odd
fixes two conditions at x = 0, and thus, barring a miracle, the odd
solution must diverge exponentially. The even solution has more free

parameters, so the useful solution here must be even.

We can solve Eq.(238) by Fourier transforms,

J = dexi)([/,{X) .EW)CAM

-2
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The singularity that arises aE/M = 0, as in the similar treatment in
lecture III, is an unecessary annoyance. There is no particular reason
,thaF/u should be real. When the contour is taken to lie in tﬁe complex
plane, this method of solution is known as Laplace's method. It has been

carried through for this equation in reference 17.

Having decided that algebra involved in Laplace's method is too detailed
to include in these lectures, we are cut off from following the calcu-
lation. The general trend is very similar to that in lecture IV. The
middle of Eqs.(237) can be solved for 5-, knowing g? and ?ﬂ » again by
Laplace's method. From the next order correctiénsvio §?>and‘7t a disper-

sion relation can be derived in the same form as Eq.(133).
,
A=A (239)
with [1 coming from coefficients of solutions in the outer region

P ———— —
Bm B
and Zﬁ evaluated from the inner, resistive region solution as

O L o L G A
“®/ (1-a) cos wh/a T (- 5) PER) T (w)

A/' A_/_ Ar (240)

«l—-ﬂ- (241)
62(1H+6)/4 _rer G- I-%) e, —
X 1‘:(}. \J ([ H)[v(_., H) 4R
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There are several things that one can learn from this messy formula.

First, when DR is positive, Zl takes on all values for positive Q. Thus

there is always an instability. When D is negative, 11 is positive, at

R
least when H is small. Thus, as in lecture V, there is a stability

criterion of the form,

A<D

~~
]
£~
)
~

O

AN

m
LR

The stability criterion on D_ is the most immediately useful result of this

R
whole exercise. As we have seen in lecture II, interchange stability cri-
teria are the most useful results of analytic theory because they explore
regions that are almost impossible to calculate numerically. Further, the

resistive interchange stability criterion complements the ideal criterion

of Eq.(234).

Next, consider extending the range of H from consideration of small H.

Really terrible things happen at H = %. First off, note that

_1)*
DI: DR,(H 1) (243)

so that the two stability criteria are equal here. Incidently, the % was

to simplify this relation between D_ and D_.

put in the expression for D 1 R

I
Furthermore, the large and small solutions, that are to be matched in the

outer region, degenerate and exchange sizes at this point. Thus the factor

% /g )"
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becomes small instead of large. There must be many interesting things

happen when H is %5 and larger, but this has not been thoroughly explored.

As H becomes more negative, the first difficulty seems to appear at

H = - 5/2. At this point, the term

Q(z H+S)/4

no longer diverges for large Q. I believe that here the approximation that
Q is small breaks down. There are weakly unstable modes with finite oscil-
latory frequencies that escape from the ordering we have used. Again, this

is a region that has not been thoroughly explored.

Understanding the behavior for large H does not seem to be terrible pres-

sing, because H is nearly always small.

There are several other problems that should be done, that could be impor-

tant.

First, it is probably important to evaluate the tearing mode stability
parameter, more accurately. Other nonideal effects, such as heat conducti-
vity and viscosity, might well make a significant difference. Some work

is being done on this.

I'e
More fundamentally, we need a way to calculate Z3 from the outer regioms.
In these lectures we have put off discussion of this parameter until now.
In fact, we have no good way to calculate it at the present time. It would
be ideal to express it as an integral, so that the result is weighted over

the entire outer region. Such an expression could make this theory very
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tidy and would make numerical calculation of tearing modes straightforward.

I close with this somewhat uncertain note. In a way it is satisfying to
know that there are still open problems that must be faced before the
subject becomes nature. We are working with an interesting, growing

theory.
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